References
1. Open AI. (2023). ChatGPT (Mar 14 version) [Large language model].
https://chat.openai.com/chat.
2. Feeny AK, Rickard J, Patel D, et al. Machine learning prediction of
response to cardiac resynchronization therapy: improvement versus
current guidelines. Circ Arrhythmia Electrophysiol. 2019;12(7):e007316.
3. Alhusseini MI, Abuzaid F, Rogers AJ, et al. Machine learning to
classify intracardiac electrical patterns during atrial fibrillation.
Circ Arrhythmia Electrophysiol. 2020;13:e008160.
4. Seitz J, Durdez TM, Albenque JP, et al. Artificial intelligence
software standardizes electrogram-based ablation outcome for persistent
atrial fibrillation. J Cardiovasc Electrophysiol. 2022;33:2250-2260.
5. Bahlke F, Englert F, Popa M, et al. First clinical data on artificial
intelligence-guided c atheter ablation of long-standing persistent
atrial fibrillation. J Cardiovasc Electrophysiol. 2024; in press
6. Rostock T, Salukhe TV, Steven D, et al. Long-term single- and
multiple-procedure outcome and predictors of success after catheter
ablation of persistent atrial fibrillation. Heart Rhythm.
2011;8:1391-1397.
7. Knecht S, Sohal M, Deisenhofer I, et al. Multicentre evaluation of
non-invasive biatrial mapping for persistent atrial fibrillation
ablation: the AFACART study. Europace. 2017;19:1302-1309.
8. Narayan SM, Baykaner T, Clopton P, et al. Ablation of rotor and focal
sources reduces late recurrence of atrial fibrillation compared with
trigger ablation alone: extended follow-up of the CONFIRM trial
(Conventional Ablation for Atrial Fibrillation With or Without Focal
Impulse and Rotor Modulation). J Am Coll Cardiol. 2014;63:1761-1768.