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Abstract—To  solve real-world expensive constrained
multi-objective optimization problems (ECMOPs),
surrogate/approximation models are commonly incorporated
in evolutionary algorithms to pre-select promising candidate
solutions for evaluation. However, the performance of existing
approaches are highly dependent on the relative position
of unconstrained and constrained Pareto fronts (UPF and
CPF, respectively). In addition, the uncertainty information
of surrogate models is often ignored, which can misguide the
search. To mitigate these key issues (among others), an efficient
probabilistic selection based constrained multi-objective EA is
proposed, referred to as PSCMOEA. It comprises novel elements
such as (a) an adaptive search bound identification scheme based
on the feasibility and convergence status of evaluated solutions
(b) a probabilistic selection method backed by theoretical
formulations of model mean and uncertainties to conduct search
in the predicted space to identify promising solutions (c) an
efficient single infill sampling approach to balance feasibility,
convergence and diversity across different stages of the search
and (d) an adaptive switch to unconstrained search based on
certain search conditions. Numerical experiments are conducted
on an extensive range of challenging constrained problems using
low evaluation budgets to simulate ECMOPs. The performance
of PSCMOEA is benchmarked against five competitive state-of-
the-art algorithms, to demonstrate its competitive and consistent
performance.

Index Terms—Surrogate assisted optimization, multi-objective
algorithm, infill strategy, expensive constrained optimization.

I. INTRODUCTION

ECISION making in real-world optimization problems
often requires trade-off considerations among conflicting
objectives subject to satisfying various practical constraint(s).
Formally this constitutes a constrained multi-objective opti-
mization problem (CMOP) [1], represented as shown in Eq. 1.

Minimize: F(x) = {1(0), f2(x). ... far ()}
x € (1)

subject to .
gi(x) <0, j=1,...p

Here, x = (x1,x2,...,%,) is an n-dimensional decision
vector defining the decision/search space Q = [z}, 2zl ]n -
R™ for real-valued continuous variables. The M objective
functions are f;(x),..., far(x), subject to p inequality con-
straints g;—1.,(x) < 0. Equality constraints, if present, are
generally converted to inequality constraints by applying re-
laxation techniques [1], hence they are omitted for brevity.
The constraint violation (CV) of a solution is computed as
CV(x) = >_ max(0,g;(x)), which is O for any feasi-
ble solution (which satisfies all constraints), and a positive
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quantity for an infeasible solution (which violates at least one
constraint).

Between two feasible solutions x; and x5, solution x;
dominates xo if f;(x1) < fi(xg) for each ¢ € {1,..., M}
and fj(x1) < fj(x2) for at least one j € {1,...,M},
which is denoted as x; < x3. A feasible solution x* is
said to be a Pareto optimal if no other feasible solution x
dominates x*. The set of all feasible Pareto optimal solu-
tions are represented by a trade-off set known as constrained
Pareto set (CPS), while its image in the objective space is
termed as constrained Pareto front (CPF). Likewise, the Pareto
set/front obtained by disregarding the constraints is referred
to as unconstrained PS/PF (UPS/UPF)!. Solving CMOPs is
typically acknowledged to be more challenging than solving
unconstrained MOPs (UMOPs) due to the need to account
for feasibility in addition to convergence and diversity of the
solutions. This challenge is further aggravated for expensive
problems (ECMOPs), wherein evaluation of each candidate de-
sign requires significant expense, for example, time-consuming
numerical simulations or physical experiments [2]. Evidently,
there are stringent limitations on the number of calls to the
true (expensive) evaluation that can be practically afforded
when solving real-world problems of this nature. As an
example, consider the Ford crash simulation discussed in [3],
requiring 36-160 hours to assess a single design. Extrapolating
from this, conducting 100 design evaluations (sequentially)
would require approx 5 months to 1.8 years.

Multi-objective Evolutionary Algorithms (MOEAs) are a
common choice to solve MOPs. This is primarily attributed to
their ability to deal with highly non-linear/black-box functions
and to evolve a set of solutions (‘population’) that naturally
yields itself to a discrete approximation of the PF. Even
so, they require evaluation of a large number of candidate
solutions prior to convergence, and hence not suitable for
solving EMOPs in their native form. To circumvent this
challenge, surrogate-assisted MOEAs (SA-MOEAs) are often
used, wherein approximations of the expensive functions are
built to guide the search for the most part, with expensive
evaluation called only sparingly for promising candidates.
While there exist many different types of surrogate models,
such as polynomial response surface modeling (RSM), radial
basis function (RBF), support vector regression (SVR), one
particular type of model, i.e, Kriging (Gaussian Process), has
gained significant attention [4]. This is mainly attributed to
the fact that unlike other models, which typically only provide
a mean estimates of the response function, Kriging can also

Note that feasibility is a necessary condition for optimality, hence generally
CPS/CPF are simply referred to as PS/PF. The use of the terms CPS/CPF here
is to explicitly distinguish them from UPS/UPF.



provide uncertainty bounds, which can be used for a more in-
formed selection of infill solutions [4]-[6]. While SA-MOEAs
have demonstrated significant progress in addressing EMOPs,
majority of the studies focus on unconstrained EMOPs, as
evident from (and highlighted in) a recent survey [7]. Only a
limited number of investigations have delved into ECMOPs,
although this important problem of practical significance is
gaining traction in the research community recently [8]-[13].
Constraint-handling is a key element of solution approaches
for solving CMOPs. It refers to strategies incorporated in one
or more evolutionary operations, such as ranking, recombina-
tion or environmental selection, in order to drive the population
towards feasibility and eventually cover the PF. The constraints
may introduce several topological features in the search land-
scape that make it difficult for the search methods to navi-
gate. These include, but are not limited to, presence of very
constricted feasible regions, multiple disconnected regions and
feasible regions with significant bias (e.g., some parts of a CPF
are achieved well before others). These different constraint
scenarios affect the relative positions of UPF and CPF and/or
induce particular difficulties in achieving certain parts of the
CPF, which in turn impacts the performance of the solution
methods. A number of constraint handling techniques (CHTs)
have been proposed for solving general CMOPs, some of
which are also adapted to work for ECMOPs. However,
limited evaluation budget constraint induces significant chal-
lenge to the algorithms for solving ECMOPs [14]. While
prior approaches have demonstrated potential in addressing
ECMOPs [1], [6], [15], several unresolved challenges and
promising prospects require further attention which motivate
this research. Firstly, the algorithm is required to be efficient in
navigating potential feasible region(s) followed by identifying
well converged and distributed solutions on the CPF within the
allocated evaluation budget by ensuring proper balance among
feasibility, convergence and diversity. Secondly, the algorithm
should be capable of utilizing the uncertainty information of
surrogate models to ensure reliable performance comparison
of solutions in the predicted landscape in order to avoid
any misguided search. Lastly, limited attention has been paid
to the development of steady-state methods, where only a
single candidate solution can be evaluated at a time [5]. There
exist scarce approaches that cater to such scenarios, and are
generally extensions of efficient global optimization (EGO)
techniques, e.g. MultiObjectiveEGO [9]. This is likely because
formulating a sampling criterion that can balance feasibility,
convergence and diversity concurrently is challenging in its
own right. Most existing approaches therefore operate on a
generational model (multiple expensive evaluations done in
each generation). However, recent studies have shown that
steady-state approaches may be more advantageous for expen-
sive UMOPs under limited evaluation budgets [5], especially
where the evaluations are non-parallelizable, and it is worth
investigating if similar benefits can be realized for ECMOPs.
Towards addressing the above research gaps, the following
contributions are made in this study:
1) First, illustrative examples are provided to highlight the
influence of the relative positions of UPF and CPF on
some recent representative search methods. This helps

explain why some existing approaches might struggle,
and provides a motivation to address these challenges in
the algorithm design.

2) A new CMOEA based on probabilistic selection is pro-
posed, referred to as PSCMOEA, to deal with ECMOPs.
PSCMOEA is a steady-state algorithm, unlike most of
its peers. Its mainstay in efficient search is the careful
consideration of model uncertainties in its operation
along with the status of the solutions in the archive
in terms of feasibility, convergence and diversity. These
considerations feed into various components, including
(a) ranking/environmental selection using a theoretically
derived probabilistic constrained dominance (PC D); (b)
infill criteria that adapts itself based on the status of the
evaluated solutions in the archive, catering for scenarios
where all solutions are feasible, all are infeasible, or a
mix of both.

3) PSCMOEA also contains other additional improvisa-
tions, such as normalization of the solutions in the
presence of a mix of feasible/infeasible solutions, and
adaptive switch to unconstrained search to improve
convergence rate, triggered based on correlation between
search directions of UPF and CPF.

4) Numerical experiments are presented on an extensive
range of problems with challenging features to demon-
strate the competence of PSCMOEA relative to five
other state-of-the-art methods.

Following this introduction, Section II provides an overview
of related work, highlighting the limitations of existing meth-
ods on specific problems to justify the motivation for this
study. The proposed approach is detailed in Section III, fol-
lowed by the numerical experiments in Section IV. Concluding
remarks are presented in Section V.

II. RELATED WORK AND MOTIVATION
A. Conventional constraint handling techniques for CMOPs

CMOEAs have received significant attention in the recent
years [1]. Existing CMOEAs can be roughly classified into
four main categories based on their specific constraint handling
techniques (CHTs). The first and perhaps the most used
category separates the solutions into feasible and infeasible
blocks based on the CV information, followed by preferring
feasible solutions over infeasible ones [16], [17]. This is
referred to as parameterless technique, constraint domination
principle or feasibility-first principle. While it is a simple
and an intuitive way of handling constraints, it may drive
the population towards an easily identifiable portion of the
CPF and miss other parts [18]. The second category involves
converting a CMOP into an UMOP by adapting constraints as
additional objectives or penalty functions [18]-[20]. However,
ensuring the UMOP shares the same optimum as the CMOP
requires extensive parameter tuning. Besides, addition of new
objective(s) may induce further complexities, such as those
encountered in many-objective optimization. The third and
fourth categories can be considered as the representative of the
most recent techniques. The third category utilizes multiple
populations by setting different goals to optimize objectives



and constraints collaboratively [21]-[23]. This is achieved by
evolving dedicated populations for each goal. Typically the
primary goal is set to identify feasible region(s) by considering
constraints while the secondary goal attempts to expedite
convergence without considering constraints (i.e., search for
UPF). Subsequently, these populations adopt a co-evolutionary
approach by interacting with each other to enhance the effec-
tiveness of evolutionary search and selection. However, the
performance primarily depends on the relationship between
these two goals, and disparities in optimal solution sets (for
UPF vs CPF) may misguide the search. The fourth category
divides the evolutionary process into stages favoring specific
optimization tasks (e.g., with or without considering con-
straints) at different stages [24]-[26]. However, appropriate
transition of stages and optimal distribution of computational
resources are critical considerations that affect the performance
of the approach.

B. Constraint handling techniques for ECMOPs

Although some of the past approaches incorporated simple
mechanisms to handle constraints for ECMOPs [9], [27],
[28], dedicated works to solve more challenging ECMOPs
have only recently started emerging. The design of SA-
CMOEAs typically involves three key elements: model man-
agement, optimization framework, and infill identification
approach. Various recent SA-MOEAs (all proposed within
last 3 years), such as SAMO-COBRA [29], IC-SA-NSGA-
II [30], KTS [11], ASA-MOEA/D [12], and KMGSAEA [10],
employ different surrogate models and optimization strategies
for evolving candidate solutions. It is also seen that recent
SA-CMOEAs adopt strategies inspired by parallel develop-
ments in the field of generic CMOEAs. Notably, KTS uses
two inter-switchable surrogate-assisted EAs (with and without
considering constraints) based on the correlation between
the convergence direction and CV minimization direction,
motivated by the concept of co-evolutionary approaches as
discussed above. ASA-MOEA/D adaptively applies three types
of local search (e.g., convergence driven, diversity driven
and feasibility driven) to optimize the subpopulations along
different reference vectors (RVs) within a decomposition
based framework, demonstrating effectiveness of approximat-
ing CPFs of different shapes. KMGSAEA introduces a multi-
granularity Kriging-assisted framework to mitigate the adverse
effects of model errors. Furthermore, another category of SA-
CMOEAs is evident in literature which involves constructing
and optimizing effective acquisition functions based on the
surrogate prediction of response functions and different per-
formance indicators such as expected Hypervolume (HV) [31]
improvement and expected improvement (EI) [32]. To address
constraints in these approaches, the probability of feasibility
(PoF) [33] of solutions is typically multiplied with these
acquisition functions to balance objective optimization with
constraint satisfaction. In [34], a constraint-oriented criterion
is formulated by multiplying PoF with the probability of HV
improvement followed by optimizing the criterion to identify
the optimal solution in antenna design optimization, while in
[35], an R2 indicator-based EI is multiplied with PoF. In [36],

three separate infill criteria is designed by multiplying PoF
with computationally efficient EIM (expected improvement
matrix), wherein non-dominated objective values are replaced
with corresponding EI values. Besides, decomposition-based
SA-CMOEAs [37], [38] enable parallel selection of multiple
infill points by decomposing ECMOPs into constrained single-
objective sub-problems where PoF is multiplied with unary
indicators, contributing to improved diversity.

C. Motivations of this study

Some of the challenges in CMOPs can be understood by
observing relative locations of UPF and CPF, and the geometry
of CPF itself. A few common instances as represented in [39]
relevant to this study are schematically shown in Fig. 1.
Fig. 1(a) represents a case where CPF and UPF are identical,
making it easy for feasibility-first (FF) and/or co-evolutionary
based strategies given their higher focus on feasibility. How-
ever, for the instances in Fig. 1(b) - 1(c), enhanced diversity
during evolutionary search is required since the UPF and
CPF share disconnected segments. Emphasis on the FF or
unconstrained search might bias the search in these scenarios
while, strategies that preserve some infeasible solutions [18]
might be more suitable to navigate the disconnected feasible
regions, followed by intensification of search close to the CPF.
In Fig. 1(d), the CPF and UPF are completely separated by
infeasible region(s) between them where balancing conver-
gence and feasibility is a considerable challenge. Therefore,
co-evolutionary approaches are less effective since ignoring
constraints may waste computing resources by driving the
search towards UPF, especially when the gap between UPF
and CPF is large. Fig. 1(e) entails extremely relative small
size of CPF and feasible regions, which is challenging for
all CMOEAs because identification of the feasible region(s)
is very difficult. In Fig. 1(f), convergence to the CPF can
be restricted by the presence of disconnected feasible regions
with local basins of attraction. Conventional CMOEAs may
likely get stuck in such local fronts if the approach cannot
navigate infeasible and local feasible regions effectively during
evolution.
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Fig. 1. Different relative positions of UPF and CPF.
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Fig. 2. Test cases to illustrate the influence of the relative position of UPF and CPF on search performance of existing approaches.

In order to solve CMOPs, it is critical to balance conver-
gence, diversity, and feasibility of the solutions during the
course of search. Although feasibility is important, discarding
all infeasible individuals encountered during the search may
significantly impair diversity, limiting exploration of promising
regions. Conversely, retaining too many infeasible individ-
uals risks guiding evolution away from the CPF. Besides
these, ECMOPs have additional challenges due to limited
the number of function evaluations. Although surrogates in
SA-CMOEAs help to partially drive the solutions towards
promising locations, the information they provide regarding
feasibility, convergence and diversity of the candidate solutions
is subject to their prediction uncertainties. If not carefully
accounted for, the inaccurate information about the landscapes
can adversely affect the search performance of the algo-
rithms. The search difficulties encountered in some concrete
instances of problems are demonstrated in Fig. 2, taking two
most recently proposed SA-CMOEAs, namely KTS [11] and
KMGSAEA [10] as examples.

Scenario 1 shows the case of MWI11 test problem [40],
shown in Fig. 2(a). The CPF comprises two disconnected
feasible regions detached from the UPF by an infeasible
region along with a solitary point on the surface of UPF
It also includes one disconnected feasible region yielding no
CPF solution. A set of 100 solutions generated using Latin
Hypercube Sampling (LHS) is shown in Fig. 2(a), which spans

a large range in the infeasible region. The arrows indicate that
both UPF and CPF lie in the same optimization direction (i.e.,
correlation between ranks based on objectives and CV mini-
mization is positive). This implies that co-evolutionary based
approaches will swiftly identify feasible region on the way to
the UPF via unconstrained search. Therefore, both KTS and
KMGSAEA are able to identify a few feasible solutions at the
end of computation budget (500 evaluations are performed in
this study) as shown in Fig. 2(b) - 2(c). However, it is also
clearly noticeable that the density of converged solutions is
much higher in UPF compared to the CPF for both cases.
Due to the partial focus on unconstrained search, a number
of evaluations are wasted even after identifying the feasible
regions. This situation becomes even more pronounced in
scenarios 2 and 3 (Fig. 2(d) and 2(g) respectively). These two
test problems, referred to as Testl and Test2, are constructed
based on FCP series [17] in which search is biased towards
some local regions in the objective space. In Fig. 2(d), all
the initially generated 100 solutions are located in between
UPF and CPF which means the expected search direction to
achieve CPF is opposite to that of achieving the UPF. The
CV is high in the middle region which gradually decreases
towards both UPF and CPF. Now, an interesting thing can be
observed from Fig. 2(e) - 2(f) that the search is conducted
totally opposite to the desired direction by both KTS and
KMGSAEA. Similar situation can be observed for scenario 3



in Fig. 2(g). In this problem, the initial solutions are generated
on both sides of the CPE. Between UPF and CPF, there are a
couple of infeasible regions with low CV values. As from the
illustration in Fig. 2(h) - 2(i), the search is directed towards
those infeasible regions by both KTS and KMGSAEA. All the
scenarios demonstrate the significant impact that the relative
locations of UPF and CPF have on the algorithm performance.
Additionally, it is evident that discarding constraint informa-
tion can sometimes lead to negative impact on the search while
solving ECMOPs.

Some of these shortcomings are aimed to overcome through
PSCMOEA, which is intended to solve a diverse range of
ECMOPs efficiently.

III. PROPOSED APPROACH

The general framework of PSCMOEA? is shown in Fig. 3,
which, in brief, comprises the following steps. In step 1,
the initial solutions are generated and evaluated, followed by
training of Kriging surrogate models in step 2. In step 3,
normalization bounds are computed based on the status of
the existing archive of evaluated solutions, to conduct the
decomposition-based search in step 4. The step 4 executes
a search on the surrogate space in order to identify promising
candidate solutions. In step 5, the infill solution for true
evaluation is selected from these promising candidates. The
infill solution is evaluated in step 6, added to the archive
and the process loops back to step 2, until the prescribed
number of evaluations are exhausted. More details of these
steps, along with rationale behind their design, are discussed
in the following subsections.
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Step 6: Evaluate the new sample and update
the training data

Fig. 3. A general overview of the PSCMOEA framework. The green shaded
boxes indicate the steps where this study introduces new contributions.

A. Initialization and Kriging models

The initialization process is quite similar to most canonical
SA-CMOEAs. N solutions are generated in the variable space

2For research purposes, Matlab implementation of PSCMOEA will be made
available in its final form after manuscript review process is complete; to
incorporate any suggested updates.

Algorithm 1 PSCMOEA baseline framework

Require: Maximum function evaluations F'Ej, 4, initial population size
N, sparsity threshold (e), SUbEA parameters: population size (Ng), number
of generations (G g), crossover and mutation probability (P, and Py,),
crossover and mutation distribution index (7. and 7)), infeasible ratio for
initial ranking of SubEA («), RVTagFlag: ‘ON’ or ‘OFF’, SearchFlag:
‘Constrained’ or ‘Unconstrained’.

Output: Constrained Pareto front (CPF) approximation.

: X < Initialize N solutions. {Following LHS strategy}
¢ [F(x), G(x)];.y « Evaluate (X); FE = |X]|.
A « Store initially evaluated database: [X, F ()., G(x);,x]-
. Identify feasible (Afe,s) and infeasible (Ajpfeqs) solutions in A.
: Set RVTagFlag: ‘OFF’ and SearchFlag: ‘Constrained’.
2 if Ageas # O then

Initialize the shadow ND archive (AS). {Section III-D}
else

AS «— (. {Initial shadow ND archive is set empty}
10: end if
11: while (FE < FEnqa2) do
12: Train the Kriging model for each objective and constraint.
13:  Set the normalization bounds Z! and ZN. {Algo. 2}
14:  C < SubEA (A, models, Z!, ZN, Flags).
15: New sample < Infill Identification (C, A, AS, SearchFlag, RV-

TagFlag). {Algo. 4}

16: Evaluate the new sample with expensive functions.
17: Update archive A, shadow ND archive AS and FE = FE + 1.
18: Update the RVTagFlag and SearchFlag
19: end while

VRIDNELD =

based on LHS sampling and the corresponding objective and
constraint functions are computed through true (expensive)
evaluations. This dataset is then used to build surrogate
models. In this study, Kriging is used, also known as Gaussian
Process (GP) regression [4], as the underlying surrogate model
for its ability to provide information about uncertainty along
with mean predictions. Using the archive A of all evaluated
solutions, a Kriging model is built for each individual objective
and constraint function. To ensure model stability, input data
is pre-screened by removing solutions closer than le™ in
the normalized variable space. The process of modeling and
choice of hyperparameters is consistent with a number of
recent studies [5], [41] and the PlatEMO framework [42],
hence the details are not replicated here for brevity.

B. Setting the normalization bounds

Normalization plays a crucial role in MOEAs by ensuring
a fair basis for comparison when dealing with objectives that
cover significantly different numerical ranges [43]. Normaliza-
tion is particularly important in decomposition-based MOEAs,
so that the uniformly distributed reference vectors (RVs) could
map to uniform objectives irrespective of their ranges. How-
ever, setting suitable bounds for normalization is challenging
the when true ideal (Z!) and Nadir (Z™) points are unknown.
On the other hand, setting bounds by only considering the
feasible ND solutions in the archive A could make the search
overly conservative, diminishing the likelihood of identifying
competitive solutions beyond the current range [S], [44].
Another open question is what bounds to use when there is
no feasible solution in the archive? In this context, a new and
adaptive way of setting the normalization bounds is introduced
based on the feasibility status of A at the beginning of each
generation. The bounds will be utilized during search on the
surrogate space (will be detailed in the next subsection). The



process of identifying the normalization bounds is outlined in
Algo. 2 and further illustrated through Fig. 4.

Algorithm 2 Setting normalization bound

Require: Archive A.
Output: Normalization bounds, Z! and ZN.

1: Identify feasible (Afe,s) and infeasible (Ajpfeas) solutions in A and take
their corresponding objective values Fieas and Fippeas respectively.
1 if Ageas == 0 then
Z! = min{F¢ ., }M; ZN = maX{Fiinfeas}NI. {i=1,...
. else if Ajpfeas == () then
Identify Fndg,s from Ag,s. {Feasible ND set in Ag,}
VAR min{FndfeaS}M; ZN = max{Fnd}, }M. {i=1... M}
Extend ZN following it: ZN = ZN + ((ZN — 1) x 0.1).
else
Identify Fndg.,s from Afes.
Identify and list the infeasible solution(s) which are ND w.r.t any
Fndy,s, presented as Filr;fcas'
11:  Combine Feomp +— {Fndyes, FE;., -
12: Z'= min{Fiomb}M; ZN = rnax{Fiomb}M. {i=1,...M}
13:  Extend ZN as: ZN = ZN + ((ZN - 21) x 0.1).
14: end if

M}
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Fig. 4. Normalization bound when archive is (a) fully infeasible, (b) fully
feasible and (c) mix of feasible and infeasible. The gray shaded region
denotes feasible region. The bluish shaded region in (b) and (c) denotes
the extended bounds. The green and black circular dots represents true
feasible and infeasible solutions respectively. The triangular points represent
the converged predicted candidate set along the RVs.

From Section II-C, it could be inferred that search bounds
should adapt in different stages of the search. For example, in
the beginning when no feasible solution has been identified,
priority has to be given to the exploration when searching for a
new candidate solution in the predicted fitness landscape (nor-
malized in terms of current ZT and ZN). To ensure this, the
complete available original objective space is used for search-
ing by calculating the minimum (Z') and maximum (ZY)
numerical values of each objective in A (Algo. 2, line 3).
As shown in Fig. 4(a), although the initial true solutions are
still outside the feasible region, the RVs generated based on
the current ZI and ZN cover the available feasible region and
intersect the CPF uniformly, leading to solutions with a good
spread in predicted space (denoted with triangles). The second
type includes the situation when the full A is feasible (Algo. 2,
line 4 - 7). In this case, Z! and ZN are calculated by taking
the minimum and maximum of feasible non-dominated (ND)
objective values respectively. After that, ZN is modified by
adopting a boundary extension technique introduced in [5]. It
has shown efficacy to identify well distributed solutions on the
PF regardless of the shape (regular/irregular) [5]. As illustrated
in Fig. 4(b), the rectangle with dashed line indicates the current
bound which is extended following equation in Algo. 2, line 7,

shown by the blue shaded region. Such a simple extension
promotes diversity which increases the likelihood of covering
the whole CPF. For example, the two candidates along two
extreme RVs represented by magenta colored triangle can be
obtained only through this extension. The third case denotes
a more frequent scenario encountered by the SA-CMOEAs in
which A contains both feasible and infeasible solutions. In
this case, search has to be directed in a way to explore more
feasible regions (if present) and at the same time, to sample
well distributed solutions on the CPF of the already identified
feasible region. Setting the normalization bound at this stage
only based on the infeasible solutions (as case 1) would result
in misdirected evaluations by searching in an unreasonably
wide area. On the other hand, considering the bounds based
only on feasible ND solutions might bias the search towards
one of multiple disconnected regions shown in Fig. 4(c).
Therefore, a novel strategy is proposed by maintaining the
trade-off between convergence and diversity in which the high
quality infeasible solutions in terms of the objective values are
considered alongside the feasible ND solutions to construct
the bounds (Algo. 2, line 9 - 13). The list of infeasible
solutions which are ND to any feasible ND solution in terms
of objectives are added to the feasible ND set to construct
the combined set. After that, the minimum and maximum
values of each objective in this combined set are considered
as the Z! and Z™N respectively, followed by the extension of
the ZN. The benefit of the proposed strategy can be clearly
noticed from Fig. 4(c). By considering the high quality (ND)
infeasible solutions, the search can cover both the feasible
regions. The magenta colored solutions are only obtained (in
the predicted space) using the proposed normalization bound.
Using these bounds, the predicted value (pt) and the associated
uncertainty (o) of the solution are scaled using Eq. 2 for the
subsequent steps.
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C. SubEA to identify promising candidate solutions

As discussed in the overview and outlined in Algo. 1,
line 14, a SubEA is used to search the surrogate to identify a
promising candidate pool for infill identification in the subse-
quent step. A decomposition-based evolutionary approach is
employed for this purpose, with mirrored reference vectors
that have been shown to perform well for irregular shaped
Pareto fronts [5], [45]. An illustration of mirrored RVs can
be seen in Fig. 4, represented by black dotted lines. These are
formed by connecting the uniformly generated reference points
on the unit simplex using Normal Boundary Intersection (NBI)
method with their corresponding mirrored points (which will
lie in third quadrant for Fig. 4). The details of SubEA are given
below, of which the environmental selection using probabilistic
constraint dominance is where this work makes the key
contribution, and hence is discussed in more detail. Note that
all fitness values used in SubEA undergo normalization using
the bounds identified previously (Algo. 2). Furthermore, as
SubEA operates on the surrogate landscape, it doesn’t involve
any expensive evaluations.



1) Initialization and evaluation: In this step, a predefined
number of samples (population size, Ng) are required as the
initial population for surrogate assisted search. For enhanced
seeding [46], part of the truly evaluated solutions in A are
inherited directly into this population. For this, the solutions in
|A| are ordered using infeasibility-driven ranking strategy [18]
by maintaining recommended 20% marginally infeasible solu-
tions on top of the feasible ones. The top Ng solutions are kept
if |A| > Ng. Otherwise, all solutions of A are kept followed
by the remaining ones generated using LHS sampling. The
performance of any newly generated solution(s) is estimated
using the surrogate models.

2) Offspring generation: Offspring solutions are evolved
from the parent population using simulated binary
crossover (SBX) and polynomial mutation (PM) [47]. If
any of these offspring solutions turn out identical to either
the parent population and/or any truly evaluated solution in
the archive, the offspring is substituted with a new randomly
generated solution. Two solutions are deemed identical if the
Euclidean distance computed between them in the normalized
variable space is less than a tolerance of le ™.

3) Environmental selection: The SubEA follows a popula-
tion based approach, wherein Ng new samples are evolved
and evaluated (using surrogates) in each generation. Out of
the 2Ng (parent+offspring) solutions, denoted as Q, Ng
are retained for the next generation through environmental
selection. The selection process discussed below is developed
through careful considerations of the surrogate predictions and
associated uncertainties of the objectives and constraints, and
forms one of the key contributions of this study. The pseudo-
code of the selection scheme is outlined in Algo. 3.

The mean and uncertainty of the response functions for
the 2Ng solutions are denoted as p and o, respectively,
estimated from Kriging models. Given the set W of RVs,
each of these 2/Ng solutions are assigned to its closest RV
based on minimum angle (denoted as <) assignment [48] in the
predicted objective space. For this, the objective distributions
of 2Ng solutions are scaled using Eq. 2. This assignment may
lead to one or more solutions being associated with a single
RV (referred to as active RV), while some RVs may not have
any solution associated with them (inactive RV).

For comparing solutions assigned to each (active) RV (Wj;
{j =1,..., Nw(= No. of RVs)}) an integrated performance
criterion is proposed, denoted probability of constrained dom-
ination (PC D) shown in Eq. 3, which quantitatively estimates
the probability of a solution x being better than solution
y. PCD comprises of three terms, capturing three scenarios
respectively: (a) x is feasible and y is not; (b) both are feasible
and x dominates y in terms of objective values; and (c) both
are infeasible and x has a lower C'V than y.

PCD =P(x <y) = PoFx(1 — PoFy) + PoFxPoFy P(F(x) < F(y))

x feasible, y infeasible
+ (1 — PoFy)(1 — PoFy)P(CV (x) < CV(y))

x infeasible, y infeasible

x feasible, y feasible

3
In the above equations, the probability of feasibility (PoF)
estimates the likelihood that a solution (e.g. x) falls into

Algorithm 3 Environmental selection method for SubEA

Require: Population to order Q (of size ~ 2Ng), Z!, ZN, SearchFlag.
Output: A set of solutions Ny, one assigned to each reference vector.

1: Normalize the objective vectors in Q using the ZT and ZN.
2: Generate reference vectors (RVs) W and set nyy = Ny = |W|.
3: while nyy # 0 do

4: Assign each solution to its closest RV using angle as the proximity
metric: <;(p;, W);i=1,...,Q.

5: Project the assigned solutions along the corresponding RV.

6:  if SearchFlag == ‘Constrained’ then

7: Along each RV, compare each solution pairwise with all others
according to Eq. 3. The average of the pairwise scores yields the
final score of the corresponding solution.

8: else if SearchFlag == ‘Unconstrained’ then

9: Along each RV, compare each solution pairwise with all others
according to Eq. 6. The average of the pairwise scores yields the
final score of the corresponding solution.

10: end if
11: Select the solution with the highest score along each RV.
12: Remove the selected solutions and the RVs (which had at least one

solution assigned) from Q and W respectively.
13: nwy =|W|
14: end while

the feasible region, computed by integrating the joint prior
distributions of all constraints as shown in Eq. 4.

2 u .“'gi(x)
pofx = [T #(0:0 <0) =[] @ ( - (X)) @

To estimate the dominance as per the second component of
Eq. 3, the distributions of the candidates along each objec-
tive (us,(x), os,(x)) are projected along the corresponding
Wj. The projection of the distributions on the RV, using Eq. 5,
yields single p17(x) and o¢(x) for a solution, x.

uf(x):WjuT; of(x) :Wj\I/W]'T S

%1 £2> and
pyr(x), oy(x) are the mean and standard deviation, respec-
tively, projected along the RV. The probability that x domi-
nates y in terms of the M original objectives is estimated by

applying the concept of probabilistic dominance (PDg) [49],
as shown in Eq. 6.

Here, ¥ represents the covariance matrix

M
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where, error function ’erf’ is defined as:
erf(x) = % /0 " et at %)

For the third component, the probability that CV(x) <
CV(y) is needed to be estimated. However, from the individ-
ual Kriging models, we only get the individual constraint dis-
tributions of each solution. Computing P(C'V (x) < CV(y))
directly based on these distributions is not appropriate since a
highly feasible distribution in the predicted landscape can bias
the estimation, therefore resulting in incorrect classification.
To overcome this, The concept of rectified Gaussian distri-
bution has been adopted to determine the corresponding CV



distributions. In probability theory, it represents a modification
of the Gaussian distribution wherein its negative elements are
reset to 0, analogous to an electronic rectifier. Essentially, it
is a combination of a discrete distribution (constant 0) and a
continuous distribution (a truncated Gaussian distribution with
the interval (0, c0) due to censoring [50]).

For a normal distribution N(u, o2), the mean of the rectified
distribution (upr) yields a higher value than p since some
probability density is shifted to a higher value (since negative
values are transformed to 0). Conversely, the rectified standard
deviation (o) is smaller than o. Following the method pro-
posed in [51], the interval between a = 0 and b = u + 60 (to
allow 60 limit) is set first to be acting on a standard normal
distribution: ¢ = £, d = b?T“. Using the transformed

(o}
constraints, /1r and 0% can be expressed as shown in Eq. 8.
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Once the CV distribution of each individual constraint
is available, and assuming that the individual CV distribu-
tions are mutually independent, the estimated total (sum of)
CV of a solution, x can be mathematically expressed as:
N (X1 kg 01 043)-

For a given solution x, the above pairwise comparison is
done with all solutions associated with the same RV, and the
corresponding PC'D values are averaged to yield its overall
fitness score. This is repeated for each solution along the
given RV, and solution with the highest score is selected
as the best performing solution along the RV. A proof-of-
concept of ranking along a given RV is shown in Fig. 5 for
DASCMORPI problem [52] based on 100 samples. The samples
span both feasible and infeasible regions of the search space.
The colormap of the solutions denotes the score (higher the
better) in a normalized scale. It can be seen that the selected
candidate is competitive, as it is feasible and dominates all
other feasible solutions. The scores of all other candidates also
reflect their quality well in terms of convergence.

The above procedure is repeated for all active RVs. Sub-
sequently, all the active RVs and their corresponding best
solutions are selected from W and Q, respectively. Using the
remaining set of RVs and solutions, the process (involving
assignment, projection, and selection) is repeated, until no
empty RV remains. Thus, in the end, each RV is paired with
an associated best solution (totaling Ny solutions). In the
scenario where Ng > Ny, the remaining Ng — Ny solutions
are randomly chosen to form the surviving set of Ng solutions
for the subsequent generation.
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Fig. 5. Best candidate selection along the RV according to Eq. 3.

D. Infill sample identification

In this stage one solution out of the population (C) delivered
by the SubEA needs to be identified for expensive evaluation.
To maintain dynamic balance among feasibility, convergence
and diversity, the sampling criteria is set based on the status of
archive A: (a) A is fully infeasible — in this case feasibility and
diversity are targeted; (b) A is fully infeasible — convergence
and diversity are targeted; and (c) A is a mix of feasible
and infeasible solutions — feasibility is targeted, followed by
convergence and diversity. The proposed sampling process is
outlined in Algo. 4, noting that any duplicate solutions in C are
removed a priori. Each of the above three cases are discussed
in more detail below.

Algorithm 4 Infill identification for expensive evaluation

Require: Archive A, candidates C, VARVAR SearchFlag, RVTagFlag.
Output: Infill sample, C!™ for expensive evaluation.

1: Identify feasible (Afe,s) and infeasible (Ajnfeas) solutions in A.
2: if Afeys == () then
for i =1:|C| do
for j =1:|C| do
Compute P(C; < C;). {According to PCD (Egq. 3) if Search-
Flag is ‘Constrained’; otherwise based on PDg (Eq. 6)}
6 end for
7 Score; +— mean{P(C; < C,_1,,c)}-
8: end for
9
0

BANE

SC «— {Scoreq, ..., Scorec}. {Final score list of all C}

Arrange C in descending order of SC and their corresponding RVs
are tagged accordingly.

11: if RVTagFLag == ‘ON’ then

12: Select the top scored candidate along an unique RV as the new
infill, CI".

13: Store the selected RV for subsequent stage.

14: end if

15: Select the top scored candidate as the new infill, CI™ and store the

corresponding RV for subsequent stage.
16: Return RVTagFLag = ‘ON’.
17: else if Ajjfeas == 0 then

18: Identify the reference set of solutions, Af where A ef = AND.
19:  CI"™ «— Infill(A, C, ZY, ZN, A ). [5]
20: else

21: Identify Fndg.,s from Afge,s.

22: Identify and list the infeasible solution(s) which are ND w.r.t any
Fndg,s, presented as Fiﬁms.

23: Combine Fomp «— {Fndyeys, Fiﬁfeas} and treat them as A .

24:  CI™ «— Infill(A, C,Z1, ZN | A ). [5]

25: end if

Until no feasible solution has been identified in A, the
preferred infill solution is the one that is most likely of being



feasible along a new RV, to enhance feasibility and diversity.
For this, the average score of each solution in C is computed
by comparing it with all other solutions in the set using
Eq. 3, and the one with highest score is chosen for evaluation.
The selection process is illustrated in Fig. 6. The triangular
markers represent candidate set C, along the RVs in the
predicted landscape. The one with highest score is highlighted
in magenta and selected for true evaluation at iteration ¢ as
shown in Fig. 6(a). The green circular marker shows the
solution in the original objective space after evaluation. The
corresponding RV (blue solid line) is also stored in A, to
promote diversity in the subsequent selection process. Fig. 6(b)
represents the selection stage of iteration (¢ 4+ 1), where the
search bound is still unchanged due to not achieving improved
performance from iteration (¢f). The selection of blue RV
again (same RV as the previous iteration) indicates that the
corresponding solution based on the prediction still represents
the best performing one. In such a scenario, the selection
strategy avoids the blue RV sample and instead selects the
next best performing candidate (along yellow RV). The same
process is repeated as long as the search bound in the original
objective space stays unchanged and no feasible solution is
identified in A. This is maintained by the ‘RVTagFlag’ as
mentioned in Algo. 4, line 11 - 16. This simple diversity
enhancing approach encourages search for feasible regions
from different directions resulting in enhanced performance
where the problem has multiple disconnected feasible regions.

A Selected infill A Selected infill

f2

2

h

(a) Iteration (t) (b) Iteration (t 4+ 1)

Fig. 6. Infill selection when the full evaluated archive A is infeasible.

On the other hand, when some or all solutions in A are fea-
sible, the intent is to promote convergence and diversity during
infill sample selection aiming for well distributed solutions on
the CPF, outlined in Algo. 4, line 17 - 25. This is done through
an adapted version of two-state infill identification, which as
demonstrated in [5] for unconstrained problems. In the first
stage, the subset of C that is ND w.r.t. a reference set A s
is identified. In case no such solution exists in C, the ND set
of C is chosen instead. In the second stage, a distance-based
selection (DSS) approach [53] is applied on the subset to select
the most diverse candidate as the final infill solution. The key
element here is the use of Mahalanobis distance (MD) [5]
for computing distance instead of commonly used Euclidean
distance (ED). This is because MD considers both the mean
and uncertainties in the computation of distances (in this
instance, characterized by predicted mean and uncertainty of

the Kriging model).

The notable difference in this study from [5] is the con-
struction of Ajes. In [5], Aer is simply the ND set of archived
solutions (Anp), since there are no infeasible solutions to
deal with in unconstrained problems. However, here, when the
archive includes a mix of feasible and infeasible solutions, A ¢
is constructed by assembling feasible ND solution(s) (Fndye,s)
with the set of infeasible solution(s) which are ND w.r.t any
Fndy, in terms of the original objectives (Algo. 4, line 21 -
23). This is consistent with the setting of normalization bound
as discussed in Section III-B. The general idea behind preserv-
ing the infeasible solution(s) with good objective performance
in A, is to explore diverse areas for sampling if any feasible
region still remains undiscovered. This will particularly benefit
the search in problems with multiple disconnected feasible
regions.

Finally, the concept of ‘shadow ND archive’ (AS) is also
adopted from [5] with slight modification. It contains the
set of infill solutions that ended up being dominated after
evaluation, or whose closest solution in A is dominated. This
set is included into A, while applying DSS to reduce the
possibility of selecting an infill in a dominated region. Unlike
[5], in the presence of constraints, apart from the newly
evaluated solution being dominated, there is a chance of it
being infeasible as well. When such a solution is encountered,
it is also assigned to AS. Note that AS is only activated
and updated progressively from the point of identifying a
feasible solution in A. If feasible solution(s) exists in the
initial archive, AS is constructed at the beginning as outlined
in Algo. 1, line 6 - 10. Initially, the infeasible solutions which
are ND to any feasible solution, are added to the AS,

After the MD computations based on the above sets, the
candidate solution in the subset of C with the highest merit is
selected as the final infill solution, employing the same prin-
ciple as in DSS. The solution then undergoes true (expensive)
evaluation.

E. Search switching mechanism

To expedite feasible region identification and convergence,
an adaptive search switching mechanism is additionally em-
bedded within PSCMOEA framework which is only triggered
based on certain conditions. The ‘SearchFlag’ essentially
controls the environmental selection step in SubEA (as dis-
cussed in Section III-C3) and infill selection (when A is fully
infeasible) by setting ‘Unconstrained’ or ‘Constrained’ based
probabilistic ranking criteria. Note that ‘Constrained’ flag is
the default whereas the ‘Unconstrained’ flag is only activated
based on two specific conditions, which are (a) no feasible
solution is identified so far in the A and (b) the Kendall-
tau rank correlation [54] between objective optimization and
CV minimization is at least moderately positive (defined by
a value > 0.27 in this study, based on approximate ranges
suggested in statistics literature). This general idea is to bias
the search towards the UPF for identifying potential feasible
location(s), when the UPF and CPF are along the same
search direction. This offers the strategy to adapt based on
the problem characteristics and is effective in expediting the



convergence. For determining the rank correlation, referred to
as 7, two ranks are derived for every solution. The first denotes
the rank of the solution based on its CV (in ascending order)
and the second rank is based on their corresponding front
by front rank calculated by non-dominated sorting approach.
The correlation between these two is denoted by 7. Once/if
the ‘Unconstrained’ search is triggered, it is continued to
the subsequent iteration only if the latest evaluated solution
yields the minimum CV value, otherwise it returns back to
regular ‘Constrained’ search. The switching mechanism is also
terminated once the first feasible solution is identified.

IV. NUMERICAL EXPERIMENTS

The proposed PSCMOEA is assessed on multiple well-
known benchmark problem suites to cover a wide range of
problem characteristics. The performance is compared with
five state-of-the-art SA-CMOEAs proposed in recent years.
Additionally, an ablation study is conducted to highlight the
functionality and significance of some the algorithm’s key
components.

A. Test problems and experimental settings

As detailed in Section II-C, two test cases, namely Testl
and Test2, are formulated in this study to highlight some
challenging scenarios, the detailed formulations of which
are in the supplementary online material (SOM Section I).
Besides this, numerical experiments are conducted on three
distinct set of popular benchmark test problems including MW
series [40] (14 instances), LIRCMOP series [55] (14 instances)
and DASCMORP series [52] (9 instances). While most of the
problems involves bi-objective formulations, few of them such
as MW4, MWS8, MW14, LIRCMOP13 - LIRCMOP14 and
DASCMOP7 - DASCMOPY contain 3 objectives. For this
study, variable dimension (D) is consistently set to as 10.
These test suites collectively cover a wide range of challenges,
such as low feasibility, disconnected CPFs, local fronts, and
irregular CPF shapes.

For PSCMOEA, the crossover and mutation probability is
set to as 0.9 and 0.1, respectively with distribution index as
10 and 20, respectively. Regarding SubEA, a population of
100 solutions undergoes evolution over 100 generations. The
spacing parameter (H) for generating RVs is set to 99 for
2-objective instances and 12 for 3-objective instances. The
five representative state-of-the-art algorithms considered are
KMGSAEA [10], ASA-MOEA/D [12], KTS [11], MultiObjec-
tiveEGO [9], and SILE [13]. Four of them have been published
in last two years (2022-23) and evaluate more than one solu-
tion per generation, while one of them, MultiObjectiveEGO,
is a steady-state method that evaluates one solution per gener-
ation. The global parameter settings remain consistent across
all algorithms. For KMGSAEA, MultiObjectiveEGO and SILE
including PSCMOEA, the initial sample size is determined
as 11D - 1, where D represents the number of variables.
Note that KTS is an exception, with a fixed sample size of
100 for all cases due to algorithmic requirements. Similarly,
ASA-MOEA/D uses 50 and 91 initial samples for 2- and 3-
objective instances respectively. The initial samples for each

independent run are generated using the same seed for all
algorithms, ensuring a fair comparison without initialization
bias. The experiments are conducted with maximum evalu-
ations F'E,,., = 500 for all algorithms and all problems.
Other algorithm specific parameters are set to their defaults
recommended in the respective publications. Results of 31 runs
were used for statistical performance comparison.

B. Performance measurement

To measure the quality of the obtained CPF approximations
in terms of convergence and diversity, three widely recognized
metrics are utilized: IGD [56], IGD* [57] and HV [58]. The
reference point for HV calculation is set to the commonly
used (1.1,...,1.1). For IGD and IGD", reference CPF sets
with 1000 points were generated using PIatEMO for MW,
LIRCMOP, and DASCMORP series. For Testl and Test2 prob-
lems, same reference sets are adopted as FCP1 and FCP3
test problems [17] as they share identical CPFs. All metrics
are computed in the normalized objective space using true
ideal and nadir points. The computation is performed on the
feasible points obtained by an algorithm in each run for a given
problem. If an algorithm in unable to identify any feasible
solution in a given run, the following process if followed. The
worst metric value in terms of IGD, IGD* or HV is determined
across all the considered algorithms for a particular problem,
and is deteriorated slightly further by adding for (IGD, IGD*)
or subtracting (HV) an additional small quantity 0.1.

To measure how efficiently the algorithm finds feasible
solutions, the number of evaluations required for the algorithm
to identify the first feasible solution (FFE) is tracked. In case
no feasible solution is identified in a particular run, FFE is
assigned as the F'E,,,, = 500. Additionally, to establish
the consistency in performance of an algorithm, the number
of successful trials (ST) is counted, where the algorithm
successfully identified at least one feasible solution. Notably,
among the test problems, some are “feasibility-hard” for which
it is difficult to locate a feasible solution within a limited
budget, such as MW series, LIRCMOP1 - LIRCMOP4 and
DASCMOPS - DASCMOPO9. On the other hand, some prob-
lems such as LIRCMOPS - LIRCMOP14 and DASCMOPI
- DASCMOP3, are feasibility-easy, where feasible solutions
may often exist in the initial randomly generated samples
itself.

To establish statistical significance, Wilcoxon ranksum test
with 95% confidence interval is utilized. In the pairwise
comparisons, a statistically significantly better, worse and
equivalent performance in terms of a given metric is classified
as ‘win’ (1), ‘loss’ (=) and ‘tie’ ({) respectively.

Lastly, to visually summarize the cumulative performance
of the algorithms across multiple problems, Performance
profiles [59] based on mean IGD and mean FFE are uti-
lized. In these plots, the x-axis indicates the ratio (\) of
the performance of a given algorithm compared to the best
performing algorithm for the instance (lower the better). The
y-axis (ps(A)) denotes the proportion of total instances solved
by the algorithm for a given A. A higher area under the curve
signifies a better cumulative performance.



C. Performance comparison in terms of FFE and ST

The statistics obtained FFE and ST across 31 runs are
shown in Table I. From the ST values, it is clearly noticeable
that PSCMOEA is overall the most successful and consistent
method in identifying feasible regions for the feasibility hard
problems such as Testl, Test2, MW1, MW10, LIRCMOPI,
LIRCMOP2, DASCMOP9 etc. For DASCMOP9, PSCMOEA
identifies feasible solution in all runs, no other peer algo-
rithm could identify any feasible solution in any run. Similar
trends can be noticed from Testl, Test2, MW10 problems
as well. There are only a few exceptions where PSCMOEA
is not the best but is competitive, such as MWSE, MWI11,
DASCMOPS5, DASCMOP®6 (inferior to KMGSAEA) and LIR-
CMOP3 (inferior to KTS). The overall performance estab-
lishes the credibility of the proposed probabilistic selection
strategy to drive the search in the predicted landscape. The
validation of correct search behavior can be confirmed from
the illustration in Fig. 7 where its clear that PSCMOEA could
guide the search towards the CPF for Testl/Test2 problems
even though UPF is not located in same search direction as
CPF. As for the FFE statistics, PSCMOEA once again achieves
superior performance in most of the feasibility-hard problems
compared to its counterparts. This means that PSCMOEA is
able to identify feasible solution swiftly. Thus, fewer function
evaluations are spent on the infeasible space, leaving more of
the budget towards identifying a well distributed set of CPF
solutions. Additionally, the cumulative results of the pairwise
significance test (1/~/] of compared method vs PSCMOEA)
at the bottom of Table I confirms the clear advantage of
PSCMOEA over it’s peers in terms of FFE. This is also
reflected strongly in the performance profile in terms of mean
FFE presented in Fig. 8(a) for the feasibility-hard problems.
PSCMOEA obtains the best results in close to 70% of the
instances, and competitive performance in remaining problems
with low 7 values relative to the peers.
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Fig. 7. Distribution of the evaluated solutions for the median run (out of 31)
in terms of IGD by PSCMOEA.
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Fig. 8. Performance profiles based on (a) mean FFE and (b) mean IGD for
feasibility-hard problems (Testl-2, MW1-14, LIRCMOP1-4, DASCMOP4-
9), (¢) mean IGD for feasibility-easy problems (LIRCMOPS5-14 and
DASCMOP1-3).

D. Performance comparison in terms of IGD, IGD* and HV

The IGD statistics based on 31 runs are presented in
Table II, where PSCMOEA shows the best performance in
18 (out of 39) instances followed by KTS in 13 instances.
However, KTS performs the best on LIRCMOP2 - LIRC-
MOP4 where the feasible region essentially is a very nar-
row strip. From our observation, both PSCMOEA and KTS
could identify only a few feasible solutions (maximum 2
or 3). The larger values in the metric is only due to one
additional feasible solution. PSCMOEA performs the best for
most of the feasibility-hard problems since it could identify
the feasible solutions faster and more consistently, leaving
remaining computational budget for obtaining high quality
CPF approximation. The pairwise significance tests based on
IGD (1/=/{ of the compared algorithms against PSCMOEA)
are presented at the bottom of Table II. It can be seen that peer
algorithms obtain significantly worse performance metrics than
PSCMOEA. KTS performs best among them but shows worse
performance than PSCMOEA in 18 instances, while being
better in 7 instances including LIRCMOP2 - LIRCMOP4 as
discussed above. For reference, the total 1/~/] statistics in
terms of IGD* and HV is also added at the bottom which also
signifies the similar performance trend. More detailed tables
of IGD* and HV for MW, LIRCMOP and DASCMOP series
are included in the SOM II, III and IV respectively. The plots
of the obtained solutions by all compared algorithms on MW,
LIRCMOP and DASCMOP series problems are also included
as supplementary data for the interested readers in SOM
Sections II, IIT and IV respectively, due to space constraints.

The performance profiles, based on mean IGD, are pre-
sented in Fig. 8 to summarize cumulative performance of
the algorithms. Two profiles are drawn, corresponding to
feasibility-hard and feasibility-easy problems(Fig. 8(b)) and
easy (Fig. 8(c), respectively). For the former category, PSC-
MOEA clearly outperforms the other algorithm by obtaining
the best results in almost 60% of the total instances, and being
competitive on the remaining instances. For the feasibility-
easy problems, KTS shows marginally better performance than
PSCMOEA, since it could use total evaluation budget to search
for a good approximation of the CPF without wasting evalu-
ations searching for UPF in such cases. PSCMOEA displays
very similar profile to (and better than others), highlighting its
ability to identify well distributed set of solutions on CPF.



TABLE I
MEAN FFE (STD.) AND ST ACROSS 31 TRIALS OBTAINED BY PSCMOEA AND PEER-ALGORITHMS. 1//2/] SYMBOLS DENOTE WHETHER THE
CORRESPONDING ALGORITHM IS SIGNIFICANTLY BETTER/ EQUIVALENT/ WORSE THAN PSCMOEA. THE GRAY SHADE HIGHLIGHTS THE BEST MEAN

PERFORMANCE.
Problems M |__PSCMOEA KMGSAEA ASA-MOEA/D KTS MultiObjectiveEGO SILE

FFE | ST FFE ST FFE ST FFE ST FFE ST FFE ST
Testl 2 | 129(50) | 31 | 500 (0) 4 | O | 168 (183) T | 24 | 421 (149) | | 7 | 336 (147 | | 25 | 220 (146) | | 25
Test2 2 | 138 (116) | 29 | 354 (216) | | 10 | 150 (148) ~ | 28 | 341 (218) | | LI | 299 (210) L | 17 | 296 (209) | | 16
MWI 2 | 296(123) | 27 | 433 (714 | | 20 | 485@3) ) | 5 | 484 @D | 6 | 500 (0) 0 84 @31 | 5
MW2 2 | 147 28) | 31 | 218 (68) L | 30 | 196 (86) L | 31 | 166 (69) ~ | 31 | 211 (50) L | 31 | 235 (60) { | 31
MW3 2] 118B) |31 | 9@ ~ | 31| 72@2)1 |31 | 107D T | 31 | 499 (3) { I BLANH L | 31
MW4 3| 263 (31) | 30 | 387 (10D | | 18 | 496 (12) } | 4 | 396 (88) { | 22 | 500 (0) | 0 487 @31 | 3
MW5 2 | 252 (68) | 31 | 344 (66) . | 29 | 437 (90) L | 12 | 373 (118) L | 20 | 500 (0) L 0 67 (1601 | 6
MW6 2 | 157 (29) | 31 | 292 (118) | | 28 | 379 (125) 4 | 19 | 194 (60) 4 | 31 | 320 (96) L | 28 | 330 (100) | | 27
MW7 2] 1250) |3l | 122D~ | 31| 9016 T | 3L | L1 (8 T | 3L | 487 (73) 4 I 143 (18) | | 3l
MW8 3 | 229 (106) | 30 | 243 (48) ~ | 31 | 376 (115) J | 22 | 205 (92) ~ | 29 | 428 (115) | | 12 | 339 (118) | | 23
MW9 2 | 306 (76) | 31 | 321 (73) ~ | 30 | 494 30) | 2 | 394 (92) | | 23 | 500 (0) | 0 500 (0) 4 | O
MWI0 2 | 416 (118) | 14 | 463 (10) ~ | 11 | 500(0)J | 0 | 483 (@8) | | 4 | 500 (0) | 0 500 0) 4 | O
MWI1 2 | 258 O1) | 30 | 122 (15) T | 31 | 273 85) ~ | 31 | 147 (36) T | 31 | 480 (57) | 2 | 374149 | | 17
MWI2 2 | 233(71) | 31 | 374 (52) 4 | 29 | 441 (105) 4 | 10 | 317 98) L | 29 | 500 (0) L 0 429 (84) | | 19
MWI3 2 [ 119 (50) | 31 | 109 (37) ~ | 31 | 108 (55) ~ | 31 | 106 (38) ~ | 31 | 281 (194) | | 24 | 119 (45) ~ | 31
MW14 3| 142 (28) | 31 | 179 (61) | | 31 | 240 (95) L | 31 | 138 (50) ~ | 31 | 184 (54) | | 31 | 145 (53) ~ | 3l
LIRCMOPI 2 | 342(90) | 30 | 480 39) | | 10 | 478 (79) 4 | 3 | 376 (99) ~ | 23 | 477 (94) | 2| 395 (100) | | 25
LIRCMOP2 | 2 | 279 (60) | 31 | 490 (26) | | 4 | 461 (126) | | 3 | 325 94 =~ | 27 | 467 (93) 4 7 404 (93) | | 24
LIRCMOP3 2 ] 309098) | 28 | 50024 | 1 | 433854 | 2 | 265 (72 T | 31 | 499 (@) | I 423 (96) | | 18
LIRCMOP4 | 2 | 298 (82) | 31 | 500(0) 1 | 0 | 48584 | | 1 | 233(63) T | 31 | 439 (61) J T | 450D} | 16
LIRCMOP5-12 | 2 T |31 TO) ~ |3l T0) ~ 31 TO) ~ |3l 10) ~ 31 TO) ~ |3l
LIRCMOPI3-14 | 3 T |3l T ~ |3l T0) ~ 31 T ~ |31 T0) ~ 31 TO) ~ |3l
DASCMOPI | 2 7G) | 31| TGy~ |3l 6@ ~ 31| 40~ |31 ]| S@~ 31 7G) ~ | 3l
DASCMOP2 | 2 76) | 31| 70G)~ |3l 6@ ~ 31| 7=~ |31]| 60)~ 31 76)~ | 3l
DASCMOP3 | 2 76) | 31| 70G)~ |3l 6@ ~ 31| 6@~ [31]| 60~ 31 76)~ |3l
DASCMOP4 | 2 | 162 (38) | 31 | 220 (70 | 31 | 499 (6) L | 2 | 249 (128) 4 | 25 | 500 (0) 4 0 500 (0) 4 | O
DASCMOP5 | 2 | 172 (68) | 30 | 211 (66) 4 | 31 | 492 (29) | | 5 | 272 (14D) 4 | 23 | 500 (0) 4 0 500 0) | O
DASCMOP6 | 2 | 189 (104) | 29 | 198 67) 4 | 31 | 497 (1D { | 2 | 244 (13D) 4 | 25 | 500 (0) 4 0 500 (0) 4 | O
DASCMOP7 | 3 | 157 (39) | 31 | 254 (112) | | 30 | 492214 | 4 | 197 &% 1 | 29 | 500 (0) L 0 500 0) 4 | O
DASCMOPS | 3 | 162 (71) | 30 | 235 (105) /| 30 | 488 (49) | | 4 | 218 (113) 4 | 27 | 500 (0) 4 0 500 0) ) | O
DASCMOPY | 3 | 240 (66) | 31 | 498 (9) | | 1 5000)F | 0 | 50001 | 0 | 5000 ¢ 0 500 (0) ) | 0

FFE (1/~11) /19719 3/16/20 5722715 0713126 0715722

E. Component-wise performance assessment of PSCMOEA

To systematically observe the benefits offered by the key
internal components of PSCMOEA, three variants of PSC-
MOEA are constructed. Of these, the first two are constructed
by modifying the probabilistic selection ranking strategy. The
third variant is constructed to show the effectiveness of the
search switching mechanism. The brief outline of the variants
is presented below.

e V1: In the first variant, instead of ranking the solutions
along the RVs for ‘Constrained’ search according to
Eq. 3, a lexicographic ranking strategy is undertaken
which essentially follows a feasibility-first (FF) principle.
According to it, the solution cluster along a RV is
divided into feasible and infeasible set based on their
corresponding PoF score as represented in Eq. 4. The
threshold value of PoF for each individual constraint
distribution is set as > 0.99 to treat a solution as feasible.
Note that each constraint has to satisfy the threshold PoF
value. Among the feasible block, the solutions are sorted
based on their PDg score, as represented in Eq. 6. For
the infeasible block, the solutions are first sorted based
on their PoF product score (higher the better). If there
are solutions with the same PoF product score, then they
are further sorted based on their number of satisfied (NS)
constraints (higher, the better). If there remain solutions
with the same NS counts, they are sorted based on their
mean CV predictions (smaller, the better). Finally the

sorted feasible block of solutions are placed above the
sorted infeasible ones. Note that the same ranking strategy
is followed during the infill identification stage as well
when the archive is fully infeasible. All other components
are kept as same as PSCMOEA.

o V2: The second variant contains a simpler ranking strat-
egy. For a block of candidate solutions along a RV,
numerical score of PoF and PDrf is calculated for each
individual candidate. For each solution, the product of
PoF and PDg scores (PoF x PDg) is considered as the
overall score. The scores for all solutions along the RV is
calculated, and they are sorted in descending order. Same
principle is undertaken during the infill identification
stage by keeping all the remaining components as same
as PSCMOEA.

e V3: This variant is constructed simply by taking off
the search switching mechanism (Sec. III-E) from PSC-
MOEA while keeping all other components the same.

All variants (including PSCMOEA), are run on each test
problem 31 times. The performance is compared pairwise with
each other variant in terms of IGD, IGD*, HV and FFE, and
the results are summarized in Table IIl. For example, MW
contains a total of 14 problems. This means total 42 (= 14 x 3)
comparisons are performed for PSCMOEA against the three
variants. More detailed statistics including mean 1GD, IGD™,
HYV, FFE, ST are included in the SOM Section V.

As mentioned above, the first two variants (V1 and V2)
are constructed to observe the effectiveness of the proposed



TABLE I

MEAN IGD (STD.) ACROSS 31 RUNS OBTAINED BY PSCMOEA AND PEER-ALGORITHMS. 1//¢/] SYMBOLS DENOTE IF THE COMPARED ALGORITHM IS
SIGNIFICANTLY BETTER/ EQUIVALENT/ WORSE THAN PSCMOEA. THE GRAY SHADE HIGHLIGHTS THE BEST MEAN PERFORMANCE. THE CUMULATIVE
1/=2/| STATISTICS OF EACH ALGORITHM AGAINST PSCMOEA IN TERMS OF IGD, IGD* AND HV ARE PROVIDED AT THE BOTTOM.

Prob. M Algorithms
) PSCMOEA KMGSAEA ASA-MOEA/D KTS MultiObjectiveEGO SILE
Test1 2 |2.08e-01 (1.10e-01) | 8.51e-01 (0.00e+00) | | 2.08e-01 (3.53e-01) 1T | 6.59e-01 (3.60e-01) | | 5.96e-01 (2.15e-01) | | 1.68e-01 (3.40e-01) 1
Test2 2 | 1.21e-01 (1.93e-01) | 6.58e-01 (2.48e-01) | | 1.59e-01 (2.35¢-01) = | 6.34e-01 (2.42¢-01) | | 5.88e-01 (2.24e-01) | | 4.74e-01 (3.57e-01) |
MW1 2 | 2.50e-01 (3.80e-01) | 6.80e-01 (2.89¢-01) | | 9.11e-01 (1.27e-01) | | 8.32e-01 (2.98¢-01) | | 9.61e-01 (4.51e-16) | | 9.09e-01 (1.37e-01) |
MW2 2 | 1.58e-01 (1.30e-01) | 4.96e-01 (3.74e-01) | | 5.45e-01 (2.29¢-01) | | 1.82e-01 (2.16e-01) ~ | 4.20e-01 (1.74e-01) | | 2.31e-01 (1.49e-01) |
MW3 2 | 2.05e-02 (7.83e-03) | 4.53e-02 (1.02e-02) | | 9.64e-02 (3.41e-02) | | 1.74e-02 (2.50e-03) ~ | 5.97e-01 (1.80e-02) | | 8.42¢-02 (8.39¢-02) |
MW4 3 14.99-01 (3.98e-01) | 7.74e-01 (6.46e-01) ~ | 1.46e+00 (1.57e-01) | | 7.08e-01 (5.53e-01) | | 1.52e+00 (6.77e-16) | | 1.44e+00 (2.44e-01) |
MW35 2 | 2.67e-01 (1.48e-01) | 4.50e-01 (2.51e-01) | | 7.97e-01 (3.05e-01) | | 6.82e-01 (3.30e-01) | | 1.02e+00 (4.51e-16) | | 9.60e-01 (1.28e-01) |
MWé6 2 | 5.44e-01 (2.17e-01) | 7.92e-01 (3.30e-01) | | 1.01e+00 (3.58e-01) | | 6.83e-01 (3.07e-01) | | 8.60e-01 (3.03e-01) | | 8.12e-01 (3.05e-01) |
MW7 2 | 2.87e-02 (1.15e-02) | 4.83e-02 (1.24e-02) | | 3.97e-02 (1.31e-02) | |2.47e-02 (5.88e-03) ~ | 7.38e-01 (1.80e-02) | | 5.23e-02 (7.04e-02) |
MWS8 3 |3.01e-01 (4.06e-01) | 4.82e-01 (2.34e-01) | | 1.62e+00 (2.74e-01) | | 4.43e-01 (4.21e-01) | | 1.49e+00 (6.10e-01) | | 9.00e-01 (6.71e-01) |
MW9 2 | 2.87e-01 (2.36e-01) | 6.30e-01 (3.32e-01) | | 1.19e+00 (1.63e-01) | | 6.19e-01 (4.34e-01) | | 1.23e+00 (2.26e-16) | | 1.23e+00 (2.26e-16) |
MW10 2 | 6.46e-01 (2.11e-01) | 6.79¢-01 (2.13e-01) ~ | 8.07e-01 (1.13e-16) | | 7.58e-01 (1.46e-01) | | 8.07e-01 (1.13e-16) | | 8.07e-01 (1.13e-16) |
MWI11 2 | 2.86e-01 (2.02e-01) | 1.38e-01 (1.30e-01) 1 | 1.74e-01 (1.38e-01) ~ | 1.11e-01 (1.52e-01) 1 | 7.88e-01 (5.56e-02) | | 6.07e-01 (2.14e-01) |
MWI12 2 | 1.80e-01 (1.99e-01) | 4.60e-01 (4.00e-01) | | 1.21e+00 (4.38e-01) | | 4.65e-01 (4.10e-01) | | 1.49e+00 (2.26e-16) | | 1.06e+00 (3.66e-01) |
MW13 2 | 4.88e-01 (2.75e-01) | 4.85e-01 (5.21e-01) ~ | 2.39e+00 (1.15e+00) | | 7.78e-01 (7.34e-01) | | 3.58e+00 (1.33e+00) | | 1.28e+00 (1.23e+00) |
MW14 3 | 7.74e-02 (2.62e-02) | 5.63e-01 (1.81e-01) | | 7.34e-01 (2.19e-01) | | 1.91e-01 (1.47e-01) | | 8.95e-01 (1.93e-01) | | 7.48e-01 (1.72e-01) |
LIRCMOP1 | 2 |5.41e-01 (1.59¢-01) | 8.55e-01 (1.50e-01) | | 8.86e-01 (1.55e-01) | |4.69e-01 (3.25e-01) ~ | 9.01e-01 (1.35e-01) | | 4.40e-01 (2.77e-01) 1
LIRCMOP2 | 2 |5.96e-01 (1.64e-01) | 9.10e-01 (7.19e-02) | | 8.75e-01 (1.83e-01) | | 3.00e-01 (2.79e-01) 1 | 8.59e-01 (1.97e-01) | | 4.30e-01 (2.82e-01) 1
LIRCMOP3 | 2 |5.52e-01 (1.75¢-01) | 9.15e-01 (1.94e-02) | | 8.92e-01 (1.07e-01) | | 3.12e-01 (1.52e-01) 1 | 9.03e-01 (9.08e-02) | | 6.07e-01 (2.73e-01) ~
LIRCMOP4 | 2 |598e-01 (1.61e-01) | 9.09¢-01 (3.39¢-16) | | 8.91e-01 (9.89¢-02) | | 2.70e-01 (1.28e-01) 1 | 8.91e-01 (9.94e-02) | | 6.11e-01 (2.95¢-01) ~
LIRCMOPS | 2 | 1.21e-01 (2.23¢-01) | 3.05e-02 (6.83e-03) 1 | 1.02e+00 (4.65e-01) | | 2.77e-02 (9.07e-03) 1 | 2.86e+00 (4.09¢-01) | | 6.94e-01 (2.21e-01) |
LIRCMOP6 | 2 |3.94e-02 (3.93e-02) | 3.47e-02 (4.57e-03) ~ | 9.89e-01 (5.04e-01) | | 4.40e-02 (1.93e-02) | | 2.88e+00 (5.51e-01) | | 4.23e-01 (8.17e-02) |
LIRCMOP7 | 2 |2.26e-01 (1.09¢-01) | 2.47e-01 (8.30e-02) ~ | 4.17e-01 (3.81e-01) 2.07e-01 (4.56e-02) ~ | 1.68e+00 (4.68e-01) | | 3.12e-01 (1.65e-01) |
LIRCMOPS | 2 | 1.86e-01 (7.25¢-02) | 2.41e-01 (1.79e-01) ~ | 4.17e-01 (3.81e-01) 1.89e-01 (5.56e-02) ~ | 1.82e+00 (4.43e-01) | | 4.37e-01 (1.87e-01) |
LIRCMOPY | 2 | 1.36e-01 (5.49¢-02) | 2.98e-01 (6.36e-02) | | 3.40e-01 (1.01e-01) 1.74e-01 (6.09e-02) | | 1.07e+00 (2.24e-01) | | 3.63e-01 (5.14e-02) |
LIRCMOP10 | 2 | 1.07e-01 (7.34e-02) | 3.17e-01 (8.69e-02) | | 3.46e-01 (1.04e-01) | | 6.78e-02 (2.59e-02) 1 | 8.72¢-01 (1.43e-01) | | 3.68e-01 (4.54e-02) |
LIRCMOPI11 | 2 | 1.09¢-01 (5.63e-02) | 2.19¢-01 (6.39e-02) | | 3.20e-01 (9.23¢-02) | | 1.10e-01 (6.02¢-02) ~ | 8.14e-01 (1.05e-01) | | 3.13e-01 (4.81e-02) |
LIRCMOP12 | 2 | 1.12e-01 (3.02e-02) | 2.25¢-01 (7.52e-02) | | 2.11e-01 (7.62¢-02) | | 1.52e-01 (4.18e-02) | | 8.90e-01 (1.64e-01) | | 2.93e-01 (4.94e-02) |
LIRCMOP13 | 3 | 1.41e-01 (1.96e-01) | 6.05e-01 (1.93e-01) | | 1.09e+00 (2.02e-01) | | 6.79e-02 (1.16e-02) ~ | 1.22e+00 (1.15¢-01) | | 1.12e+00 (1.17e-01) |
LIRCMOP14 | 3 |2.05e-01 (2.43e-01) | 5.98¢-01 (1.50e-01) | | 1.07e+00 (1.50e-01) | | 1.75e-01 (3.75e-02) | | 1.15e+00 (1.18e-01) | | 1.08e+00 (1.33e-01) |
DASCMOP1 | 2 |2.06e-02 (1.07e-02) | 6.28e-01 (1.40e-01) | | 6.36e-02 (2.14e-02) | | 6.14e-02 (7.43e-02) ~ | 4.77e-01 (1.18e-01) | | 4.07e-01 (1.59e-01) |
DASCMOP2 | 2 | 1.06e-01 (2.09¢-02) | 4.96e-01 (6.06e-02) | | 1.34e-01 (2.12e-02) | | 9.30e-02 (1.03e-02) 1 | 4.24e-01 (5.79¢e-02) | | 3.51e-01 (6.48e-02) |
DASCMOP3 | 2 | 2.77e-01 (6.89¢-02) | 5.95¢-01 (8.33¢-02) | | 2.61e-01 (5.83e-02) ~ | 4.44e-01 (7.89¢-02) | | 5.12e-01 (5.91e-02) | | 4.18e-01 (8.24e-02) |
DASCMOP4 | 2 | 4.43e-01 (3.39¢-01) | 4.05e-01 (2.60e-01) ~ | 1.20e+00 (8.16e-02) | | 4.79e-01 (3.97e-01) = | 1.22e+00 (0.00e+00) | | 1.22e+00 (0.00e+00) |
DASCMOPS5 | 2 | 4.78e-01 (2.93e-01) | 4.49e-01 (1.81e-01) ~ | 1.26e+00 (1.31e-01) | | 6.63e-01 (4.23e-01) ~ | 1.30e+00 (6.77e-16) | | 1.30e+00 (6.77e-16) |
DASCMOP6 | 2 | 5.88e-01 (2.81e-01) | 5.84e-01 (1.76e-01) ~ | 1.32e+00 (6.69e-02) | | 7.01e-01 (3.52e-01) ~ | 1.34e+00 (9.03e-16) | | 1.34e+00 (9.03e-16) |
DASCMOP7 | 3 |3.85e-01 (3.58¢-01) | 3.29e-01 (2.44e-01) ~ | 1.21e+00 (1.38e-01) | |2.58e-01 (3.42e-01) ~ | 1.26e+00 (4.51e-16) | | 1.26e+00 (4.51e-16) |
DASCMOPS | 3 | 3.67e-01 (3.79¢-01) | 4.10e-01 (2.76e-01) ~ | 1.44e+00 (1.78e-01) | | 3.96e-01 (4.77e-01) ~ | 1.50e+00 (6.77e-16) | | 1.50e+00 (6.77e-16) |
DASCMOPY | 3 | 4.60e-01 (1.61e-01) | 1.26e+00 (1.80e-02) | | 1.26e+00 (4.51e-16) | | 1.26e+00 (4.51e-16) | | 1.26e+00 (4.51e-16) | | 1.26e+00 (4.51e-16) |
IGD (1/=/]) 2/11/26 1/3/35 7/14/18 0/0/39 3/2/34
IGD™ (1/~/]) 2/11/26 1/2/36 7/13/19 0/0/39 3/2/34
HV (1/=/]) 1/9/29 1/4/34 5/17/17 0/0/39 4/3/32

integrated ranking method using PoF and PD metrics following
Eq. 3. From the given statistics in Table III, one can clearly
observe that both V'1 and V2 perform worse than PSCMEOA
in terms of all metrics. This is because the ranking approach
used in V'1 is biased more on PoF metric than PDg, where PDg
is only applied for ranking the solutions with high likelihood
of feasibility (by considering PoF > 0.99 as feasible). For the
feasibility-hard problems, such an approach drives the search
very slowly in the original objective space as it ignores the
dominance relationship among the candidates in the predicted
fitness landscape. On the other hand, the second variant V2
equally weighs them by simply multiplying PoF and PDg. to or-
der the candidate solutions. For feasibility-hard problems, such
approach can expedite the convergence rate for the instances
where a good positive correlation exists between objective
optimization and CV minimization direction. This is because
PDr can drive the search towards optimal objective location
when PoF is very low. For this case, the win statistics improves
for MW test suites compared to V'1 as indicated in Table III.
However, the weakness of such approach can be observed
on the problems where the correlation is negative between

objective optimization and CV minimization direction, for
example on Testl where it could not identify any feasible
solution across 31 runs. Moreover, there is no means to fully
rank the candidates with O PoF. In addition, the information
regarding the CV distribution with low PoF is ignored in
the approach, hence resulting in performance degradation for
such scenarios. From these results, it could be inferred that
PSCMOEA ranking strategy can more efficiently deal with a
range of scenarios.

As for V3, it is constructed to observe the influence of
the search switching mechanism on the overall performance
of PSCMOEA. From Table III, some interesting performance
trends can be observed. The switching mechanism clearly
improves the performance significantly in terms of all metrics
on the MW test suite while a slight performance degradation
can be noticed on DASCMOP series. This is because most
of the problems in MW test suite have a positive correlation
between UPF and CPF search direction, therefore switching
to unconstrained search occasionally expedites the search. The
opposite situation happens in DASCMOP series for not having
good correlation. The switching behavior can be observed



TABLE 11T
THE CUMULATIVE RESULTS OF PAIRWISE SIGNIFICANCE TESTS (1///])
BETWEEN ALL PAIRS OF VARIANTS, INCLUDING PSCMOEA.

. Algorithms
Metric  Problems M PSCMOEA Vi v V3
Test 2 3/3/0 1/3/2 0/1/5 3/3/0
IGD MW 2 &3) 23/16/3 7/11/24  13/13/16  11/20/11
DASCMOP (2 & 3) 16/9/2 2/7/18 2/7/18 18/9/0
Test 2 3/3/0 1/3/2 0/1/5 3/3/0
IGD* MW 2 &3) 24/16/2 6/10/26  13/13/16  13/17/12
DASCMOP (2 & 3) 16/8/3 4/5/18 2/7/18 18/8/1
Test 2 3/3/0 1/3/2 0/1/5 3/3/0
HV MW 2 &3) 23/17/2 6/11/25 13/13/16 11/21/10
DASCMOP (2 & 3) 16/9/2 4/5/18 2/8/17 16/10/1
Test 2 1/4/1 1/4/1 3/0/3 1/4/1
FFE MW 2 &3) 16/22/4 7/12/23 14/18/10  10/22/10
DASCMOP (2 & 3) 14/13/0 0/14/13  1/14/12  12/13/2

from the bar chart in Fig. 9 which illustrates the number of
times PSCMOEA switched to unconstrained search during the
median-run (out of 31 runs in terms of IGD metric) for the
feasibility-hard problems. From the figure, it is clear that there
are higher number of iterations conducted in unconstrained
mode for MW series than those from other test suites. In
particular for MW 10, the number is highest because the fea-
sibility rate is very low and the relationship between CPF and
UPF remains positive during the search. On the other hand, in
Testl and Test2, no unconstrained search was initiated due to
the consistent negative correlation. LIRCMOP and DASCMOP
encounter some interactions in unconstrained mode, however,
it did not improve the solutions, PSCMOEA did not waste
further resources on unconstrained search. Overall the number
of iterations that switch to unconstrained search are typically
very low, indicating that PSCMOEA is able to swiftly identify
if the unconstrained search is of any benefit, and switch back
to the default constrained search if not.

Iterations after initialization
O T S
s a 8 8 8 g
8 & & &8 8 &
T T T
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Fig. 9. Number of times PSCMOEA switches to unconstrained search in the
median-run (out of 31 trials) in terms of IGD metric on (a) MW series, Testl
- Test2, LIRCMOP1 - LIRCMOP4 and DASCMOP4 - DASCMOP9.

V. CONCLUDING REMARKS

In this study, some of the existing works have been reviewed
that tackle ECMOPs, and highlighted how the relative position
of UPF and CPF and model uncertainties can impact their
performance. These observations along with the lack of steady-
state methods to solve ECMOPs, formed the key motivations
of the study. To address the identified gaps, the paper develops
an efficient approach based on probabilistic selection, referred
to as PSCMOEA, for solving ECMOPs on a low evaluation

budget. The key differentiating feature of PSCMEOA is its
careful consideration of model uncertainties and the status of
evaluated solutions in terms of feasibility, convergence, and
diversity in its components. These considerations feed into
multiple components, such as environmental selection using
probabilistic constrained dominance (PC'D), adaptive setting
of normalization bounds to effectively explore the predicted
space and an adaptive search switching mechanism to expedite
the convergence when the UPF and CPF search directions are
similar. Numerical experiments and benchmarking with five
state-of-the-art algorithms were conducted on an extensive
set of problems to demonstrate the efficacy of PSCMOEA.
Moreover, ablation studies were conducted to highlight and
verify the effectiveness of some of the key components.

Some of the potential directions for future work include
extension to many-objective problems (i.e., those with more
than 3 objectives) and development of a generational version
of the proposed approach.
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