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Here, I wish to motivate bilinear system identification techniques for 3rd

order spectroscopy.
The von Neumann equation describes time evolution of a density matrix

ρ =
∑

i pi |ψi〉 〈ψi| where {|ψi〉} spans the Hilbert space:

∂ρ(t)

∂t
= − i

~
[H(t), ρ(t)]

Integrating:

ρ(t) = ρ(0) +
−i
~

∫ t

0

dt1[H(t1), ρ(t1)]

One can solve by repeatedly inserting the above equation into itself:

ρ(t) = ρ(0)+
−i
~

∫ t

0

dt1[H(t1), ρ(0)] +

(
−i
~

)2 ∫ t

0

dt1

∫ t1

0

dt2[H(t1), [H(t2), ρ(t2)]]

And so on:

ρ(t) = ρ(0)+

∞∑
n=1

(
−i
~

)n ∫ t

0

dt1

∫ t1

0

dt2...

∫ tn−1

0

dtn[H(t1), [H(t2), ...[H(tn), ρ(tn)]...]]

This series is traditionally defined as

ρ(t) =

∞∑
n=0

ρn(t) = ρ(0) +

∞∑
n=1

ρn(t)

where ρ0(t) = ρ(0) and ρn(t) =
∫ t

0
dt1...

∫ tn−1

0
dtn[H(t1), ...[H(tn), ρ(tn)]...].

Re-inspecting the above equation, I find a recursive relationship for the nth

order perturbation using linearity of the commutator:
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ρn(t) =
−i
~

∫ t

0

dτ [H(τ), ρn−1(τ)]

By differentiating both sides, I derive an equation of motion for the nth order
perturbation:

∂ρn(t)

∂t
=
−i
~

[H(t), ρn−1(t)]

In nonlinear spectroscopy, polarization is related to the perturbation of the
density matrix as follows (see Mukamel):

Pn(t) = 〈µρn(t)〉
I wish to use a general form to relate the polarization measurement P3(t) with

nth order perturbations of the density matrix. In superoperator form (where the
elements of n× n density matrices concatenate to create 1× n2 vectors), let us
define x as a concatenation of ρn, 0 ≤ n ≤ 3:

x(t) =


ρ0(t)
ρ1(t)
ρ2(t)
ρ3(t)


The third-order polarization measurement P3(t) is therefore

P3(t) =


0
0
0
F

 · x(t)

such that applying F (in operator form) behaves as follows: F · = 〈µ·〉. The
1× 4n2 vector x(t) is governed by the time evolution equation

∂x(t)

∂t
=


0 0 0 0

M(t) 0 0 0
0 M(t) 0 0
0 0 M(t) 0

x(t)

where x(0) =


ρ(0)

0
0
0

 and applying M(t) (in operator form) behaves as

follows: M(t)· = −i
~ [H(t), ·].

This is a general form to describe polarization measurement P3(t) and per-
turbations of the density matrix.

Next, I investigate rudimentary linear control theory.
Standard state-space representation of a linear system has this form:

ẋ(t) = A(t)x(t) +B(t)u(t)
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y(t) = C(t)x(t) +D(t)u(t)

If the system is LTI (linear and time-invariant), then matrices A,B,C,D
will be time-independent. Our hope is to formulate the nonlinear spectroscopy
problem in a form suitable for control theory analysis.

Our observation P3(t) can be interpreted as y(t) as shown above. In partic-
ular, C(t) = C = (0 0 0 F ) and D(t) = 0. Can the time dependence within
H(t) be modeled as input u(t) to the system? In general, H(t) = H0 +E(t) ·µ.

Let us define superoperators M0,M1 such that M(t) = A0 + E(t) ·M1. By
linearity of the commutator, applying M0 (in operator form) can behave as
M0· = −i

~ [H0, ·], and applying M1 (in operator form) can behave as M1· =
−i
~ [µ, ·].

Now, all matrices are time-independent, but there remains coupling between
x(t) and E(t). In particular, we have the evolution equation:

ẋ(t) =


0 0 0 0
M0 0 0 0
0 M0 0 0
0 0 M0 0

x(t) +


0 0 0 0
M1 0 0 0
0 M1 0 0
0 0 M1 0

x(t)E(t)

Bilinear system theory may be well-equipped to handle this coupling.
In general, 3rd order spectroscopy experiments employ four-wave mixing:

at time t = t0, an electric pulse excites a molecule in its ground state. Two
more pulses fire at the molecule (at time t = t1, t2), adjusting the molecular
state. A last pulse (at t = t3) is designed such that the molecule is forced back
into its ground state, emitting some measured energy. This last pulse is the
”measurement”.

In a classical controls context, the input u(t) models the electric field controls
E(t). E(t) is pulse-like at t = 0, t1, t2, and 0 everywhere else. (Since the
last pulse constitutes a measurement, there are effectively no inputs after time
t = t2).

The system evolution, then, after time t = t2, is linear with equations as
given below:

ẋ(t) = Ax(t) =


0 0 0 0
M0 0 0 0
0 M0 0 0
0 0 M0 0

x(t)

y(t) = Cx(t) = (0 0 0 F )x(t)

For convenience, let us define time t = t2 = 0. In general, we may not
know M0 nor x(0). We can use classical subspace identification techniques to
approximate M0. Then, we will use some methods from bilinear control theory
to approximate M1.

The closed-form solution to this linear system is given below:

x(t) = eAtx(0)
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Here, eA is shorthand for the series expansion of ex:

eA = I +A+A2/2 +A3/6 + ...

In this formulation, A is nilpotent, so eA has a finite number of terms. In
particular:

eAt =


1 0 0 0
M0t 1 0 0

M2
0 t

2/2 M0t 1 0
M3

0 t
3/6 M2

0 t
2/2 M0t 1


Since y(t) = (0 0 0 F )x(t), we can find a closed-form solution for y(t):

y(t) = F (M3
0 t

3/6 M2
0 t

2/2 M0t 1)x(0)

Expanding x(0) in terms of its perturbation components, the above equation
simplifies:

y(t) = F [M3
0 t

3ρ0(0)/6 +M2
0 t

2ρ1(0)/2 +M0tρ2(0) + ρ3(0)]

Thus, for a particular E(t), the output polarization maps to a cubic function
of time (after the third pulse). System identification techniques to identify M0

and {ρi(0)|1 ≤ i ≤ 3} could prove useful. (Here, ρ0 is a constant, so it should still
represent the ground state of the molecule, as it did before E(t) was applied.)
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