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Here, I wish to motivate bilinear system identification techniques for 3¢
order spectroscopy.
The von Neumann equation describes time evolution of a density matrix

p =, Di|i) (i where {|1);)} spans the Hilbert space:

agigft) _ _%[H(t),p(ﬁ)]

Integrating:
o) = p(0) + = / dty[H (1), p(t)]

One can solve by repeatedly inserting the above equation into itself:
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And so on:

p(t) zp(O)—Fi (‘hl)/ot dt; /Otl dtg.../otn1dtn[H(tl),[H(tQ),...[H(tn),p(tn)]...]]

This series is traditionally defined as
p(t) = pn(t) = p(0) + > pult)
n=0 n=1

where po(t) = p(0) and p,(t) = [ dtr... [;"" dtn[H(t1), ...[H(ts), plty)]...]-
Re-inspecting the above equation, I find a recursive relationship for the n*®
order perturbation using linearity of the commutator:
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By differentiating both sides, I derive an equation of motion for the n* order
perturbation:

apgt(t) _ %Z [H(t)7 Pn—1 (t)]

In nonlinear spectroscopy, polarization is related to the perturbation of the
density matrix as follows (see Mukamel):

P (t) = (upn(t))

I wish to use a general form to relate the polarization measurement Ps(t) with
n'" order perturbations of the density matrix. In superoperator form (where the
elements of n x n density matrices concatenate to create 1 x n? vectors), let us
define x as a concatenation of p,,0 <n < 3:
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x(t) = Zz(t)

p3(t)

The third-order polarization measurement Ps(t) is therefore

P3(t) =

0
0
0 -x(t)

F

such that applying F' (in operator form) behaves as follows: F- = (u-). The
1 x 4n? vector x(t) is governed by the time evolution equation
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ox(t) | M@) 0 0 0
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p(0)
where x(0) = 8 and applying M (t) (in operator form) behaves as
0

follows: M (t)- = F:[H(t),"].

This is a general form to describe polarization measurement P3(¢) and per-
turbations of the density matrix.

Next, I investigate rudimentary linear control theory.

Standard state-space representation of a linear system has this form:

x(t) = A(t)x(t) + B(t)u(t)



y(t) = C(O)x(t) + D(t)u(t)

If the system is LTI (linear and time-invariant), then matrices A, B,C, D
will be time-independent. Our hope is to formulate the nonlinear spectroscopy
problem in a form suitable for control theory analysis.

Our observation Ps(t) can be interpreted as y(t) as shown above. In partic-
ular, C(t)=C=(0 0 0 F)and D(t)=0. Can the time dependence within
H(t) be modeled as input u(t) to the system? In general, H(t) = Ho + E(t) - p.

Let us define superoperators My, M; such that M (t) = Ay + E(t) - M;. By
linearity of the commutator, applying My (in operator form) can behave as
My = %[HO, /], and applying M7 (in operator form) can behave as M;- =
_Tl [,LL, ]

Now, all matrices are time-independent, but there remains coupling between
x(t) and E(t). In particular, we have the evolution equation:

0 0 0 0 0 0 0 0

. My 0 0 0 My 0 0 0
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Bilinear system theory may be well-equipped to handle this coupling.

In general, 3" order spectroscopy experiments employ four-wave mixing:
at time t = tp, an electric pulse excites a molecule in its ground state. Two
more pulses fire at the molecule (at time ¢t = ¢1,t3), adjusting the molecular
state. A last pulse (at t = t3) is designed such that the molecule is forced back
into its ground state, emitting some measured energy. This last pulse is the
”measurement”.

In a classical controls context, the input u(¢) models the electric field controls
E(t). E(t) is pulse-like at t = 0,t1,t2, and 0 everywhere else. (Since the
last pulse constitutes a measurement, there are effectively no inputs after time
t=t3).

The system evolution, then, after time ¢ = to, is linear with equations as
given below:

0 0 0 O

. M, 0 0 O

x(t) = Ax(t) = 00 My 0 0 x(t)
0 0 M 0

yO)=Cx(t)=(0 0 0 F)x(1)

For convenience, let us define time t = t; = 0. In general, we may not
know My nor z(0). We can use classical subspace identification techniques to
approximate My. Then, we will use some methods from bilinear control theory
to approximate M;.

The closed-form solution to this linear system is given below:

x(t) = e*'x(0)



Here, e is shorthand for the series expansion of e®:

e =T4+A+A%/24+ A%/6+ ...

In this formulation, A is nilpotent, so e has a finite number of terms. In
particular:
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Since y(t) =(0 0 0 F)x(t), we can find a closed-form solution for y(¢):

y(t) = F(M3t3)6  MZt?/2 Mot 1)x(0)

Expanding x(0) in terms of its perturbation components, the above equation
simplifies:

y(t) = F[Mgt*po(0)/6 + Mgt?p1(0)/2 + Mot ps(0) + p3(0)]

Thus, for a particular E(t), the output polarization maps to a cubic function
of time (after the third pulse). System identification techniques to identify M,
and {p;(0)|1 < i < 3} could prove useful. (Here, py is a constant, so it should still
represent the ground state of the molecule, as it did before E(t) was applied.)



