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Hüseyin Bor
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Abstract. In this paper, we have proved two main theorems under more weaker conditions

dealing with absolute weighted arithmetic mean summability factors of infinite series and trigono-

metric Fourier series. We have also obtained some new results for different absolute summability

methods.
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1. Introduction.

Let
∑
an be a given infinite series with the partial sums (sn). By uαn and tαn we denote the nth

Cesàro means of order α, with α > −1, of the sequences (sn) and (nan), respectively, that is (see

[20])

uαn =
1

Aαn

n∑
v=0

Aα−1n−vsv and tαn =
1

Aαn

n∑
v=0

Aα−1n−vvav, (tn
1 = tn) (1)

where

Aαn =
(α+ 1)(α+ 2)....(α+ n)

n!
= O(nα), Aα−n = 0 for n > 0. (2)

The series
∑
an is said to be summable |C,α|k , k ≥ 1, if (see [22], [24])

∞∑
n=1

nk−1
∣∣uαn − uαn−1∣∣k =

∞∑
n=1

1

n
|tαn|

k
<∞. (3)

If we take α = 1, then |C,α|k summability reduces to |C, 1|k summability. Let (pn) be a sequence

of positive real numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1) . (4)
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The sequence-to-sequence transformation

vn =
1

Pn

n∑
v=0

pvsv (5)

defines the sequence (vn) of weighted arithmetic mean or simply the
(
N̄ , pn

)
mean of the sequence

(sn), generated by the sequence of coefficients (pn) (see [23]). If we write Xn =
∑n
v=0

pv
Pv

, then

(Xn) is a positive increasing sequence tending to infinity as n → ∞. The series
∑
an is said to

be summable
∣∣N̄ , pn∣∣k, k ≥ 1, if (see [2])

∞∑
n=1

(
Pn
pn

)k−1
|vn − vn−1|k <∞.

In the special case when pn = 1 for all n (resp. k = 1), |N̄ , pn|k summability is the same as

|C, 1|k (resp. |N̄ , pn| (see [30]) summability. Also if we take pn = 1
n+1 and k = 1, then we obtain

|R, logn, 1| summability (see [1]).

For any sequence (λn) we write that ∆2λn = ∆λn −∆λn+1 and ∆λn = λn − λn+1. The sequence

(λn) is said to be of bounded variation, denoted by (λn) ∈ BV, if
∑∞
n=1 |∆λn| <∞.

2. The known result. Many works dealing with the absolute summability factors of infinite

series and Fourier series have been done (see [3-5, 7-19, 25, 27-29, 31-34]). Among them, in [12],

the following theorem has been proved.

Theorem A. Let (Xn) be a positive increasing sequence and let (pn) be a sequence of positive

numbers such that

Pn = O(npn) as n→∞. (6)

If the conditions

λm = o(1) as m→∞, (7)

m∑
n=1

nXn | ∆2λn |= O(1) as m→∞ (8)

m∑
n=1

pn
Pn

|tn|k

Xn
k−1 = O(Xm) as m→∞, (9)

hold, then the series
∑
anλn is summable | N, pn |k, k ≥ 1.

Remark. It should be noted that, in Theorem A, there is a restriction on the sequence (pn).

Therefore, due to restriction (6) on (pn) no result for pn = 1
n+1 can be deduced from Theorem A.

3. The main result. The aim of this paper is to obtain a further generalization of Theorem A
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under weaker conditions. In this case, there is not any restriction on the sequence (pn). It is clear

that (6) and (9) imply that

m∑
n=1

|tn|k

nXn
k−1 = O(Xm) as m→∞. (10)

Also (6) implies that

m∑
n=1

Pn
n

= O(Pm) as m→∞. (11)

It should be remarked that (6) implies (11) but the converse needs not be true (see [26]).

Now we shall prove the following general theorem.

Theorem 1. If the sequences (Xn), (λn), and (pn) satisfy the conditions (7)-(11), then the series∑
anλn is summable |N̄ , pn|k, k ≥ 1.

We need the following lemma for the proof of Theorem 1.

Lemma ([6]). Under the conditions of Theorem 1, we get

nXn | ∆λn |= O(1), as n→∞ (12)

∞∑
n=1

Xn | ∆λn |<∞ (13)

Xn | λn |= O(1) as n→∞. (14)

4. Proof of Theorem 1. Let (Tn) be the sequence of (N̄ , pn) mean of the series
∑
anλn.

Then, by definition, we have

Tn =
1

Pn

n∑
v=0

pv

v∑
r=0

arλr =
1

Pn

n∑
v=0

(Pn − Pv−1)avλv. (15)

Then, for n ≥ 1, we get

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1λv
v

vav. (16)

Applying Abel’s transformation to the right-hand side of (16), we have

Tn − Tn−1 =
pn

PnPn−1

n−1∑
v=1

∆

(
Pv−1λv

v

) v∑
r=1

rar +
pnλn
nPn

n∑
v=1

vav

=
(n+ 1)pntnλn

nPn
− pn
PnPn−1

n−1∑
v=1

pvtvλv
v + 1

v

+
pn

PnPn−1

n−1∑
v=1

Pv∆λvtv
v + 1

v
+

pn
PnPn−1

n−1∑
v=1

Pvλv+1tv
1

v

= Tn,1 + Tn,2 + Tn,3 + Tn,4.
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To complete the proof of the theorem, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

(
Pn
pn

)k−1
|Tn,r|k <∞, for r = 1, 2, 3, 4.

Firstly, we have that

m∑
n=1

(
Pn
pn

)k−1
|Tn,1|k = O(1)

m∑
n=1

|λn|k−1|λn|
pn
Pn
|tn|k = O(1)

m∑
n=1

|λn|
pn
Pn

|tn|k

Xn
k−1

= O(1)

m−1∑
n=1

∆|λn|
n∑
v=1

pv
Pv

|tv|k

Xv
k−1 +O(1)|λm|

m∑
n=1

pn
Pn

|tn|k

Xn
k−1

= O(1)

m−1∑
n=1

|∆λn|Xn +O(1)|λm|Xm = O(1) as m→∞,

by the hypotheses of the theorem and Lemma. Also, as in Tn,1, we have that

m+1∑
n=2

(
Pn
pn

)k−1
|Tn,2|k = O(1)

m+1∑
n=2

pn
PnPn−1

(
n−1∑
v=1

pv|tv|k|λv|k
)
×

(
1

Pn−1

n−1∑
v=1

pv

)k−1

= O(1)

m∑
v=1

|λv|k−1|λv|pv|tv|k
m+1∑
n=v+1

pn
PnPn−1

= O(1)

m∑
v=1

|λv|
pv
Pv

|tv|k

Xv
k−1 = O(1) as m→∞.

Again, by using (11), we obtain that

m+1∑
n=2

(
Pn
pn

)k−1
|Tn,3|k = O(1)

m+1∑
n=2

pn
PnP kn−1

{
n−1∑
v=1

Pv|∆λv||tv|

}k

= O(1)

m+1∑
n=2

pn
PnP kn−1

(
n−1∑
v=1

Pv
v
v|∆λv||tv|

)k

= O(1)

m+1∑
n=2

pn
PnPn−1

(
n−1∑
v=1

Pv
v

(v|∆λv|)k|tv|k
)
×

(
1

Pn−1

n−1∑
v=1

Pv
v

)k−1

= O(1)

m∑
v=1

Pv
v

(v|∆λv|)k−1v|∆λv||tv|k
m+1∑
n=v+1

pn
PnPn−1

= O(1)

m∑
v=1

v|∆λv|
|tv|k

vXv
k−1

= O(1)

m−1∑
v=1

∆ (v|∆λv|)
v∑
r=1

|tr|k

rXr
k−1 +O(1)m|∆λm|

m∑
v=1

|tv|k

vXv
k−1

= O(1)

m−1∑
v=1

|∆ (v|∆λv|)|Xv +O(1)m|∆λm|Xm
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= O(1)

m−1∑
v=1

vXv|∆2λv|+O(1)

m−1∑
v=1

Xv|∆λv|+O(1)m|∆λm|Xm

= O(1) as m→∞,

by the hypotheses of Theorem 1 and and Lemma. Finally by using (11), as in Tn,1, we have that

m+1∑
n=2

(
Pn
pn

)k−1
|Tn,4|k ≤

m+1∑
n=2

pn
PnP kn−1

(
n−1∑
v=1

Pv
v
|λv+1||tv|

)k

= O(1)

m+1∑
n=2

pn
PnPn−1

(
n−1∑
v=1

Pv
v
|λv+1|k|tv|k

)
×

(
1

Pn−1

n−1∑
v=1

Pv
v

)k−1

= O(1)

m∑
v=1

Pv
v
|λv+1|k−1|λv+1||tv|k

m+1∑
n=v+1

pn
PnPn−1

= O(1)

m∑
v=1

|λv+1|
|tv|k

vXv
k−1 = O(1) as m→∞.

This completes the proof of Theorem 1.

If we take pn = 1 for all n, then we obtain a new result dealing with |C, 1|k summability factors of

infinite series. Also if we set k = 1, then we obtain a new result concerning the |N̄ , pn| summability

factors of infinite series. Finally, if we take pn = 1
n+1 and k = 1, then we obtain a new result for

|R, logn, 1| summability of factored infinite series.

5. An application to trigonometric Fourier series

Let f be a periodic function with period 2π and Lebesgue integrable over (−π, π). The trigono-

metric Fourier series of f is defined as

f(x) ∼ 1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx) =

∞∑
n=0

An(x),

where

a0 =
1

π

∫ π

−π
f(x)dx, an =

1

π

∫ π

−π
f(x) cos(nx)dx, and bn =

1

π

∫ π

−π
f(x) sin(nx)dx.

Write φ(t) = 1
2{f(x+ t) + f(x− t)}, and φα(t) = α

tα

∫ t
0
(t− u)α−1φ(u)du, (α > 0).

It is known that if φ1(t) ∈ BV(0, π), then tn(x) = O(1), where tn(x) is the (C, 1) mean of the

sequence (nAn(x)) (see [21]). Using this fact, we have obtained the following theorem dealing with

trigonometric Fourier series.

Theorem B ([12]). If φ1(t) ∈ BV (0, π), and the sequences (pn), (λn) and (Xn) satisfy the

conditions of the Theorem A, then the series
∑
An(x)λn is summable | N̄ , pn |k, k ≥ 1.
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Now, we can generalize Theorem B under weaker conditions in the following form.

Theorem 2. If φ1(t) ∈ BV(0, π), and the sequences (pn), (λn), and (Xn) satisfy the conditions of

Theorem 1, then the series
∑
An(x)λn is summable

∣∣N̄ , pn∣∣k, k ≥ 1.

In the special cases of (pn) and k as in Theorem 1, we can obtain similar results from Theorem 2

for the trigonometric Fourier series.
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