
Computational Astrophysics: N-Body Exercise

Part 3 Laboratories

February 11, 2015

1

Contents

1 Background 3

2 N-body Codes 3

2.1 Algorithm . 4

2.2 Accuracy . 4

2.3 Exploring Parameter Space . 5

2.4 Units . 5

3 The computer and the program 6

3.1 The Programming Environment . 6

3.2 The Program . 6

3.3 Programming Hints . 6

4 Structure of this Exercise 7

5 Projects 9

5.1 Black Holes and the End of the Earth (Standard Exercise) 9

5.1.1 Background . 9

5.1.2 Program . 9

5.1.3 Initial Conditions . 9

5.1.4 Exercise . 10

5.2 Binary Stars and Alien Civilisations (Advanced exercise) 10

5.2.1 Background . 10

5.2.2 Program . 10

5.2.3 Initial Conditions . 11

5.2.4 Experiment . 11

6 Numbers 12

7 Acknowledgements 13

2

1 Background

It is a remarkable and sobering thought that it is impossible to solve the equations for three or more
bodies flying around in space under the influence of their mutual gravity. In special cases you can make
useful approximations, but in general, the problem is insoluble.

This is a major menace in astronomy, which after all is the study of large numbers of objects flying around
in space under the influence of gravity.

In the late 18th century, a partial solution was found. While it is impossible to calculate the orbits exactly,
you can calculate a really good approximation valid for a short period of time. You start by putting all
your bodies in their starting positions. You then work out the gravitational force on each object at this
time. Using this force, you work out the acceleration on each body. Using this acceleration, you work out
the velocity of each body. Using this velocity, you work out where each body will be a short time in the
future. You move each body to its new position. You then go through the whole process again, starting
at the new position.

In this slow, painful, tedious way, you can calculate even the most complex situations. Thousands of
calculations were required. Teams of students would sit at rows of desk, each calculating one tiny stage
over and over again for long years. But the rewards were great – it was from calculations such as these
that the planet Neptune was discovered.

Luckily for you, computers were invented. They are perfectly suited for this job; computers love nothing
more than doing simple calculations over and over again. In this exercise, you will use a computer
program that will do in seconds the same calculations that took some of the greatest astronomers of the
last century most of their lives.

2 N-body Codes

The program you will be working with is one of a class of programs called n-body codes. They deal
with a number of small, well separated objects, moving under the influence of their mutual gravitational
attraction. Assume throughout that all the objects can be treated as points; for example if the Earth is
in orbit around the Sun, assume that all the mass of the Sun is at the centre of the Sun for calculation
purposes.

Warning! Do not attempt to solve the equations on paper – there is no general solution to the three-
body code, and even limited, special-case solutions are hair-raisingly difficult. If you find yourself writing
down pages of equations, you’re doing this the wrong way. All the maths you need can be written in about
three lines!

3

2.1 Algorithm

How can we simulate particles moving in orbit around each other? The physics is simple; we use New-
ton’s inverse square law of Gravity,

F =
GM1M2

r2
(1)

where F is the force, G = 6.67 × 10−11 Nm2kg−2, and r the distance between the two objects. We
proceed as follows:

1. We choose initial positions and velocities for all our objects.

2. Using Newton’s law (above) we work out the force on each object due to the gravitational attraction
of the others. The force is a vector quantity, and as gravity is linear, the total force on each object
is the vector sum of the forces on it due to each of the other bodies.

3. Using the force we just calculated, we work out the acceleration of the body.

4. We now take a small step forward in time, and compute the new position and velocity of all the
objects. The new position is simply the old position plus the product of the velocity and the time
step. The new velocity is the old velocity plus the product of the acceleration and the time step.

5. Repeat steps 2—4.

Simple! The key to computer programming is to remember that computers are pretty stupid. They can
only do simple things, but they do them very fast. Break your problem into tiny little pieces, and get the
computer to do them one after another very fast.

2.2 Accuracy

“How big should our time step be?”. “How long should we run our code for?”. These are the most
common questions demonstrators get asked, and there is no easy answer.

You run your code for as long as it takes to answer the astronomical problem. But your code isn’t precise
– you had to make approximations to solve the three-body problem, and the longer you run your code
for the worse these approximations get. The smaller your time-step, the smaller the errors, but the slower
your code – you must compromise.

In the algorithm above, you’ve approximated the true curvy orbit of the bodies with a series of straight
lines. Every time you take a step, this means you will be slightly in error, and these tiny errors can build
up until your program gives you complete garbage.

You should work out how big this error will be. You can do this mathematically, but a more immediate
way to estimate this is to simulate a situation you know. For example, simulate the Earth going round
the Sun. If your program doesn’t put the Earth in orbit with a period of about a year, your code is wrong.
But check – does the radius of the orbit remain constant? Does the period remain constant? If not, how

4

big is the error? Is it systematic? How long does it take for the error to get big? Does it depend on the
size of the time steps you use?

These errors will determine how good your simulation will be. If, for example, after 20 orbits your
program has changed the Earth’s orbit by 10%, you certainly couldn’t trust your program to accurately
predict the position of a spacecraft after 20 orbits. Marks will be awarded for how well you estimate your
errors, and how carefully you take them into account in carrying out your research project.

If you make your time step smaller, your program will be more accurate. This however will slow down
the computer, so you won’t be able to run as many simulations, or to run them for as long. You will have
to make your own decision on the trade-off between small time-steps and a comprehensive exploration
of the parameter space (below).

What will happen if your objects get close to each other? If the distance they travel in a time step is
comparable to the distance between two objects, you’ve got trouble (why?). There are ways to fix this
in the code, but the simplest way out is not to let the objects get this close; if you have to have close
encounters in your simulation, use very small time steps.

For advanced students: there is a simple modification you can make to the above program to greatly
reduce systematic errors. . .

2.3 Exploring Parameter Space

In all the projects below, you have a wide choice of free parameters. What are the starting masses? What
are the starting positions and speeds? You may feel that you have been given far too little guidance about
these things. You are right, and this is a problem professional astronomers face all the time. For example,
at the moment I am trying to simulate the formation of a galaxy. I’m asking questions like “what should I
use as the building blocks?”, “how hot will the building blocks be?”, “how fast are they moving?”. There
are no definite answers.

What you have to do is explore parameter space. There will be some plausible range of input parameters.
Explore it! Try out different values; home in on the most interesting ones. This is an important and
difficult skill, and a lot of marks will depend on how well you do it.

2.4 Units

You are probably used to working in S.I. units. These are fine for things of order 1m long (like you
and me), but for your average star (mass ∼ 1030 kg), you’ve got problems. Most computers can handle
numbers as large as 10±34, but all you would need to do is multiply the mass of the Earth and the Sun
together, and the program would crash.

The simplest solution is to invent new units for mass, length and time. If you choose these units correctly,
your program will be dealing with numbers like 1, rather than 1030.

5

3 The computer and the program

3.1 The Programming Environment

The computer for this lab uses Windoze 98 and a graphical C compiler. Create a directory for yourself
under the “D:/student/” directory.

3.2 The Program

A template program “D:/student/nbody.cpp” has been provided for you. Make a copy of this program
in your directory. This has the basic n-body code, that will calculate the positions and velocities of
the bodies for a given number of time-steps. This has been provided so that you can concentrate more
on the actual science involved, rather than spending most of your time writing programs. You will,
however, need to do a little bit programming, to calculate things like the total energy of the system, and
the planetary temperature and so forth. In this case, the following section may be of some use.

3.3 Programming Hints

Talk to your demonstrators for lots of hints on good programming style. But here are a few key hints:

1. Write out your code on paper before you type it in. The most common error novice (and experi-
enced) programmers make is to write half the code before realising that they don’t really understand
in detail the algorithm they are trying to code. Make sure you are absolutely clear in your mind
about what you want to do before touching finger to keyboard.

2. Write clear, well commented code. Far more time is spent de-bugging programs than writing them
in the first place; if your code is clearly and logically laid out, with lots of comments, it will save
your hours in the long term.

3. Give your variables sensible names. If all your variables are called things like XAA you will have to
look up what they mean every time you have to alter your code, but something called XVELOCITY
is a little more obvious.

4. Test your code. No program longer than about ten lines ever works first time. If you test each little
part of your program independently, it will be much easier to debug. Also, never believe what your
program is telling you until you’ve tried it on a problem where you know the answer.

4 Structure of this Exercise

This exercise is set up like a mini research project. You should work through the theory, and make sure
you understand what you will be modelling with the program. Next, familiarise yourself with the n-body

6

code provided, making sure you can get it to work. Then, read through the two possible projects in
section 5. One of these involves a more detailed analysis and should only be attempted by those with a
strong programming background.

You should go through the following steps:

• Theory section :

1. Write down the basic equations governing motion – those for force, acceleration and so on.
Now rewrite them using discrete time steps ∆t. These are the equations that will be used in a
computer program.

2. Now consider Newton’s equation for gravity. Write this in terms of vectors (using ~r1 and ~r2
as the position vectors of two particles), and separate out into x, y, and z components.

3. Draw up a flow chart of how an N-body algorithm will work. This does not mean write a
program!!! Rather, write the steps required to calculate the necessary forces, positions etc. at
each time-step. (This should be more detailed than the basic algorithm given in Section 2.1!)
Also, think about what units to use – for instance, what would you measure the distance in?
Why?

Wait for a demonstrator to check what you have done before continuing.

• Programming :

1. Now look at the template code that is provided on the computers. (This code is written in the
C programming language.) Match up what the code does with your flow chart. How well do
they agree? Make your own copy of the template, so that you can alter it as you go along.
Please don’t edit the template file!

2. For your first exercise, set the Earth going around the Sun in a way that mimics reality. What
will be the initial conditions – velocities, positions?

3. Try to determine how accurate your code is. Give some thought as to how you can work out
the errors in your results, and how you can make your program more accurate. In doing this,
explore the parameter space a little and get a feel for the range of parameters for which things
still work well. Things to try would be :

– Change ∆t. (What is the physical interpretation of a large or small ∆t?)
– Change the number of orbits your Earth makes.

4. Try increasing/decreasing the initial velocity by a small amount and/or a significant amount
(order of magnitude perhaps?) – what happens? Also try a velocity close to the escape
velocity (work this out first).

5. Find a way to work out how many orbits the planet is doing. – how many orbits can you get
in a sensible time? (Make this independent of the initial parameters – it needs to be adaptable
in case the orbit changes e.g. due to the influence of a third body.)

6. Check whether energy is being conserved by your program – what is the expression for the
total energy in the system? If conservation is not taking place, explain why.

7

7. Finally, convert your program to a 3-body problem by adding Jupiter to the simulation. Check
that it still works and that it gives reasonable results.

• Project work : Read both of the projects detailed below, and choose one to work on. Restrict
yourself to a 2D problem, i.e. no z-motion. Questions :

1. What are the dependent parameters?

2. How can you systematically explore parameter space?

3. What are realistic values for the various parameters?

See appendix for information on calculating the temperature at Earth (as this is required for both
projects). Note that the appendix calculates the temperature based on one star – you will need to
adapt this calculation if you have a binary system. How will it change?

• Discussion :

1. Write a brief summary of the results of your investigation. Make sure you answer the aims
you had at the start.

2. What happened when two bodies got too close to each other (or even had the same position)?
What does Newton’s equation predict? Is this scenario physical? (i.e. is it likely to happen
with real planets or stars?) How could you make your calculations more realistic?

3. Did you notice any change in speed while running the program, particularly when going from
two bodies to three? Do you think this is a realistic method for n-body simulations where n
∼ 100?

5 Projects

Pick one of these two projects. Please note that if you have little (or no) programming experience, you
are better off choosing the standard exercise.

5.1 Black Holes and the End of the Earth (Standard Exercise)

5.1.1 Background

One of the greatest mysteries of modern astronomy is the enigma of dark matter. We know there is a lot
of stuff out there that we can’t see – what we don’t know is what form it is in. One suggestion is that
the dark matter is in the form of black holes, millions of them, flying unobserved in the dark depths of
interstellar space.

What would happen if one of these hypothetical black holes wandered past our solar system? Would it
suck the Earth into its orbit and carry us away? Would it disturb our orbit and make us fall into the sun,
or fling us out into interstellar space to slowly freeze? This project aims to find out.

8

5.1.2 Program

For this exercise you will need a simple 3-body code as described in section 3. The Earth’s mass is far
too small to deflect either the Sun or the Black Hole, so don’t bother calculating its effect on them –
indeed you may choose to calculate the orbits of the sun and the Black hole rather than computing them
in the program.

5.1.3 Initial Conditions

Start with the Earth in its usual nice steady orbit around the Sun. Fling in the black hole from a range of
directions and orientations. See what happens if it gives the Sun a near miss, or passes by much further
out.

How massive should the black hole be? If it forms from the collapse of a Supernova, it must weight more
than a mass known as the Chandrasekhar mass (stars smaller than this end up as white dwarfs instead).
This gives you the lower limit on the range of masses you should play with. It is possible there could be
black holes out there which weight as much as a thousand times the mass of the Sun, but such massive
holes should be rare. Concentrate on the effects of smaller black holes, but run a few simulations with
the really big ones just to find out what happens.

How fast will the Black Hole approach? Stars in our part of the galaxy are typically moving at speeds of
about 200 km/s, in their orbits around the centre of our galaxy. If the black hole were in a similar orbit to
our Sun, it might sidle up relatively slowly, say 10 km/s. If however it was rotating the other way around
the galactic centre, it might be travelling at 400 km/s, and if it was an interloper from intergalactic space,
the speed might be higher still.

5.1.4 Exercise

See where the Earth ends up after each Black-hole encounter. If it ends up in orbit around the Black
hole, or flung into interstellar space, it is obviously curtains for life on Earth. But what if it ends up
in a different and/or distorted orbit around the Sun? Get your program to work out the temperature of
the Earth at each point. Assume it is a black body whose only heat source is the Sun, and that it is in
thermodynamic equilibrium. Is this assumption reasonable? If we were flung out into interstellar space,
how long would we take to cool down?

5.2 Binary Stars and Alien Civilisations (Advanced exercise)

5.2.1 Background

Is there life on other planets? The question is still wide open; we just don’t know. However, one group
of astronomers have recently argued against life in space. Their argument goes like this:

9

• Our Sun is a very unusual one; most stars in the galaxy (more than 70%) are double stars, pairs of
stars orbiting each other.

• For life to evolve on a planet, it must have stable conditions for at least millions of years. If, for
example, a planet kept wandering up close to stars and far away from them again, any life trying to
evolve would be alternatively frozen and fried.

• No planet can survive in a stable orbit around a double star.

Recently, a group of astronomers claimed to have detected the presence of a planet in a double star
system, although doubt has since been thrown on these claims. The aim of this project is to test this
scenario. Can a planet survive in a reasonably stable orbit around a double star? If not, will the planet be
flung into deepest space or drawn in close to the central fires? How bad will this be?

5.2.2 Program

For this, you will need a three-body program; a code capable of handling the orbits of two stars (the
binary) and one planet. By definition, planets are much smaller and lighter than stars, so you can ignore
the pull of the planet upon the stars; consider only the pull of the two stars on the planet. You may
choose to calculate the orbits of the two stars mathematically, or to simulate it; both approaches have
their advantages.

5.2.3 Initial Conditions

You should run your program with a range of initial conditions. Things to investigate include:

• The separation of the Binary stars. Binary stars can be separated by as little as an astronomical unit
and as much as half a parsec.

• What are the masses of the two stars? (The mass of the planet doesn’t matter; why not?). Stars
range in mass from 10% of the Sun’s mass to 100 times the Sun’s mass, and there is no reason for
the two stars to have the same mass.

• How far is the planet from the stars? Is it in orbit around one of them, or about the centre of mass
of the two? If it is too close, it will be too hot for life, and if it is too far away, it will be too cold.
As the aim of this project is to see if life can form, don’t bother simulating planets too far out or too
close. Assume that the planet is a black body, and that the binary stars have luminosities roughly
like that of the Sun. Using the Stefan-Boltzmann law (and the Appendix), work out roughly the
sort of distances the planet can be from the suns while having a reasonable temperature. Bear in
mind that massive stars can be much brighter than the sun. Also note that you will need to adapt
the equations in the appendix to include the flux from the second star.

• Is the planet moving in the same direction as the stars or a different one? Does it make a difference?

10

Experiment with these initial conditions. You will soon find that for most conditions, your planet is soon
fried or frozen. Concentrate on that small range of parameters that leave the planet relatively intact.
Always start the planet in a roughly circular orbit, with roughly the right velocity to keep it there –
obviously if you start the planet on an eccentric orbit it is bound to suffer dramatic temperature variations.

5.2.4 Experiment

There won’t be a simple answer to the question “can life survive on a planet around a binary star”. For
a start, binary stars are very diverse. We don’t know what temperatures alien life forms could survive
or even enjoy. And given the limited accuracy of our simulation, we can’t follow a planet for very long;
even if the planet is still fine after 100 orbits (if 100 orbits is all your program can cope with, while giving
accurate answers), we don’t know that it would still be OK after a million.

What you should say in your conclusions is something like “In these circumstances the planet will rapidly
go walkabout, its temperature rising above one zillion K. The best conditions for life are if. . . ”. As usual
in astronomy, exact answers are not needed; if you’ve gained an understanding of the sorts of things that
influence a planet’s survival, with some rough numbers, you will have done well.

6 Numbers

• An astronomical unit (AU, the distance from the Earth to the Sun) is 1.496 × 1011 m.

• The radius of the Earth is 6380 km

• One parsec is 3.086 × 1016m (3.26 light years)

• The radius of Mars is 3400 km.

• The distance between the Sun and Mars is 1.524 astronomical units

• The distance between the Sun and the Kuiper belt is between 40 and 100 astronomical units.

• The mass of the Earth is 5.97 × 1024 kg.

• The mass of the Sun is 2.00 × 1030 kg.

• The mass of Mars is 6.4 × 1023 kg.

• The Chandrasekhar mass is 1.4 times the mass of the Sun.

• The mass of a typical galaxy is 1010 times that of the Sun.

• The luminosity of the Sun is 3.8 × 1026W.

• The temperature of the Sun is 5800 K.

• The radiation temperature of deep space is 2.7K.

11

Appendix – planetary temperatures

To calculate the temperature of a planet, we assume that both the planet and the Sun are blackbodies, and
we find the temperature at which the little blackbody must radiate to balance the energy input from the
big blackbody.

Assuming the Sun can be approximated by a blackbody, the energy flux is given by the Stefan-Boltzmann
law

F = σT 4 W m−2

where σ = 5.67 × 10−8 W m−2 K
−4. This can be converted into the luminosity – the total power output

– by multiplying by the surface area of the Sun

L� = 4πR2
�F� = 4πR2

�σT
4 W

Since this energy all flows through a sphere of radius rp, the planet-Sun distance, the flux at rp must be
given by

Fp =
4πR2

�F�

4πr2p
= (R�/rp)

2F�

Now, it would be possible to calculate the temperature straight from Fp, which is called the subsolar tem-
perature. But, this is not the appropriate value for most planets, which have atmospheres, or reasonably
rapid rotation. For these, we need to calculate the equilibrium temperature, which takes into account the
energy radiated by the planet, as well as the albedo, which is the fraction of solar radiation incident on
the planet that is reflected.

The albedo is denoted by A, and if A is the fraction reflected, then 1 − A is absorbed. This means that
power absorbed by the planet is

(1 − A)πR2
pFp = (1 − A)πR2

p(R�/rp)
2F�

since the cross section of the planet is πR2
p, where Rp is the planet’s radius. For an equilibrium tempera-

ture, the absorbed power must equal the radiated power, which is given by 4πR2
pσT

4
p .

Thus, equating these two expressions, we get the temperature to be

Tp = (1 − A)1/4(R�/2rp)
1/2T�

or, expressing rp in astronomical units (AU),

Tp ≈ 279(1 − A)1/4(rp)
−1/2

Note that this temperature does not take into account effects such as the heat retention of atmospheres
(e.g. greenhouse effects), internal heating of planets, or variations of A with wavelength. Typical values
of A for planets are 0.4 (Earth), 0.76 (Venus), 0.16 (Mars), and 0.51 (Jupiter).

[Adapted from Zeilik & Gregory, “Introductory Astronomy and Astrophysics”, 4th Edition, Saunders College Pub-
lishing.]

12

7 Acknowledgements

Original document: Paul Francis, Chris Fluke and Matt Whiting.
Updates 2005: Randall Wayth.

13

