Conflict of Interest Declaration
The authors declare that there are no conflicts of interest.
References
Alexandratos, N. and Bruinsma, J. 2012. World agriculture towards
2030/2050: the 2012 revision. ESA Working paper No. 12-03. FAO, Rome.
[ Links ]
Bhat, S. A., Malik, A. A., Ahmad, S. M., Shah, R. A., Ganai, N. A.,
Shafi, S. S., et al. (2017). Advances in genome editing for improved
animal breeding: a review. Vet. World 10, 1361–1366. doi:
10.14202/vetworld.2017.1361-1366
Boison, S. A., Utsunomiya, A. T. H., Santos, D. J. A., Neves, H. H. R.,
Carvalheiro, R., Mészáros, G., Utsunomiya, Y. T., et al. (2017).
Accuracy of genomicpredictions in Gyr (Bos indicus) dairy cattle. J.
Dairy Sci. 100, 5479–5490. doi: 10.3168/jds.2016-11811
Brown, A., Ojango, J., Gibson, J., Coffey, M., Okeyo, M., and Mrode, R.
(2016). Genomic selection in a crossbred cattle population using data
from the Dairy Genetics East Africa Project. J. Dairy Sci. 99,
7308–7312. doi: 10.3168/jds.2016- 11083
Burrow, H. M., Wolcott, M. L.,Maiwashe, A.,Makgahlela, M. L., Hayes, B.
J., Rees, J. G., and Bradfield, M. J. (2017). Can grazing livestock in
developing countries benefit from use of genomic selection? Proc. Assoc.
Advmt. Anim. Breed. Genet. 22, 353–360
Bush, K.; Courvalin, P.; Dantas, G.; Davies, J.; Eisenstein, B.;
Huovinen, P.; Jacoby, G. A.; Kishony, R.; Kreiswirth, B. N.; Kutter, E.;
Lerner, S. A.; Levy, S.; Lewis, K.; Lomovskaya, O.; Miller, J. H.;
Mobashery, S.; Piddock, L. J. V.; Projan, S.; Thomas, C. M.; Tomasz, A.;
Tulkens, P. M.; Walsh, T. R.; Watson, J. D.; Witkowski, J.; Witte, W.;
Wright, G.; Yeh, P. and Zgurskaya, H. I. 2011. Tackling antibiotic
resistance. Nature Reviews Microbiology 9:894-896.
[ Links ]
Canovas, A., Casellas, J., Thomas, M., and Medrano, J. F. (2017).
Applying new genomic technologies to accelerate genetic improvement in
beef and dairy cattle. Proc. Assoc. Advmt. Anim. Breed. Genet. 22,
377–383.
Carlson, D. F., Tan, W., Lillico, S. G., Stverakova, D., Proudfoot, C.,
Christian, M., et al. (2012). Efficient TALEN-mediated gene knockout in
livestock. Proc. Natl. Acad. Sci. U.S.A. 109, 17382–17387. doi:
10.1073/pnas.1211446109
de Clare Bronsvoort, B. M., Thumbi, S. M., Poole, E. J., Kiara, H.,
Auguet, O. T., Handel, I. G., et al. (2013). Design and descriptive
epidemiology of the Infectious Diseases of East African Livestock
(IDEAL) project, a longitudinal calf cohort study in western Kenya. BMC
Vet. Res. 9:171. doi: 10.1186/1746- 6148-9-171
De Donato, M., Peters, S. O., Mitchell, S. E., Hussain, T., and
Imumorin, I. G. (2013). Genotyping-by-sequencing (GBS): a novel,
efficient and cost-effective genotyping method for cattle using
next-generation sequencing. PLoS One 8:e62137. doi:
10.1371/journal.pone.006213
Eveline M. Ibeagha-Awemu1, Sunday O. Peters, Martha N. Bemji, Matthew A.
Adeleke and Duy N.Leveraging (2019). Available Resources and Stakeholder
Involvement for Improved Productivity of African Livestock in the Era of
Genomic Breeding Do Sherbrooke Research and Development Centre,
Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada,
Fragomeni, B. O., Lourenco, D. A. L., Masuda, Y., Legarra, A., and
Misztal, I. (2017). Incorporation of causative quantitative trait
nucleotides in single-step
GBLUP. Genet. Sel. Evol. 49:59. doi: 10.1186/s12711-017-0335-0
Hanotte, O., Dessie, T., and Kemp, S. (2010). Time to tap Africa’s
livestock genomes. Science 328, 1640–1641.
Kim, E.-S., Elbeltagy, A., Aboul-Naga, A., Rischkowsky, B., Sayre, B.,
Mwacharo, J., et al. (2016). Multiple genomic signatures of selection in
goats and sheep indigenous to a hot arid environment. Heredity 116,
255–264. doi: 10.1038/hdy. 2015.94
Kim, J., Hanotte, O., Mwai, O. A., Dessie, T., Bashir, S., Diallo, B.,
et al. (2017). The genome landscape of indigenous African cattle. Genome
Biol. 18:34. doi: 10.1186/s13059-017-1153-y
Jenko, J., Gorjanc, G., Cleveland, M. A., Varshney, R. K., Whitelaw, C.
B. A., Woolliams, J. A., et al. (2015). Potential of promotion of
alleles by genome
editing to improve quantitative traits in livestock breeding programs.
Genet. Sel. Evol. 47:55. doi: 10.1186/s12711-015-0135-3
Lillico, S. G., Proudfoot, C., Carlson, D. F., Stverakova, D., Neil, C.,
Blain, C., et al. (2013). Live pigs produced from genome edited zygotes.
Sci. Rep. 3:2847. doi: 10.1038/srep02847
MacLeod, I. M., Bowman, P. J., Vander Jagt, C. J., Haile-Mariam, M.,
Kemper, K. E., Chamberlain, A. J. et al. (2016). Exploiting biological
priors and sequence variants enhances QTL discovery and genomic
prediction of complex traits. BMC Genomics 17:144. doi:
10.1186/s12864-016-2443-6
Ludu, J. and Plastow, G. 2013. Livestock and the promise of genomics.
Genome 56:556-566. [ Links ]
Meuwissen, T., Hayes, B., and Goddard, M. (2016). Genomic selection: a
paradigm shift in animal breeding. Anim. Front. 6, 6–14.
Mrode, R., Ojango, J. M. K., Okeyo, A. M., and Nwacharo, J. M., (2019).
Genomic selection and use of molecular tools in breeding programs for
indigenous crossbred cattle in developing countries: current status and
future prospects. Front. Genet. 9:694. doi: 10.3389/fgene.2018.00694
Mrode, R., Tarekegn, G., Mwacharo, J., and Djikeng, A. (2018). Invited
review: genomic selection for small ruminants in developed countries:
how applicable for the rest of the world? Animal 12, 1333–1340. doi:
10.1017/ S1751731117003688.
Neves, H. H., Carvalheiro, R., O’brien, A. M., Utsunomiya, Y. T., Do
Carmo, A. S., Schenkel, F. S., et al. (2014). Accuracy of genomic
predictions in Bos indicus (Nellore) cattle. Genet. Sel. Evol. 46:17.
doi: 10.1186/1297-9686-46-17
Pitchford, W. S., Popplewell, G. I., and Terle, R. (2017). Use of
genomic selection in a tropically adapted composite beef program. Proc.
Assoc. Advmt. Anim. Breed. Genet. 22, 179–182.
Proudfoot, C., Carlson, D. F., Huddart, R., Long, C. R., Pryor, J. H.,
King, T. J., et al. (2015). Genome edited sheep and cattle. Transgenic
Res. 24, 147–153. doi: 10.1007/s11248-014-9832-x
Tan, W., Carlson, D. F., Lancto, C. A., Garbe, J. R., Webster, D. A.,
Hackett, P. B., et al. (2013). Efficient nonmeiotic allele introgression
in livestock using custom endonucleases. Proc. Natl. Acad. Sci. U.S.A.
110, 16526–16531. doi: 10.1073/ pnas.1310478110.
Van Marle-Koster, E., and Visser, C. (2018). Genetic improvement in
South African livestock: can genomics bridge the gap between the
developed and developing sectors? Front. Genet. 9:331. doi:
10.3389/fgene.2018. 00331
Zhang, Z., Ober, U., Erbe, M., Zhang, H., Gao, N., He, J., et al.
(2014). Improving the accuracy of whole genome prediction for complex
traits using the results of genome wide association studies. PLoS One
9:e93017. doi: 10.1371/journal. pone.0093017
Frontiers in Genetics | www.frontiersin.org