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Key Points:

« Water mass budgets provide insights into the processes transforming material wa-
ter mass properties and how they relate to circulation.

« Spurious water mass transformations due to advection scheme errors can be quan-
tified by combining mass and tracer budget diagnostics.

» We describe best practices for model analysis and present a novel Python stack
for model-agnostic and out-of-memory regional calculations.
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Abstract

Water mass transformation theory provides conceptual tools that in principle enable in-
novative analyses of numerical ocean models; in practice, however, these methods can

be challenging to implement and interpret, and therefore remain under-utilized. Our aim
is to demonstrate the feasibility of diagnosing all terms in the water mass budget and

to exemplify their usefulness for scientific inquiry and model development by quantita-
tively relating water mass changes, overturning circulations, boundary fluxes, and inte-
rior mixing.

We begin with a pedagogical derivation of key results of classical water mass trans-
formation theory. We then describe best practices for diagnosing each of the water mass
budget terms from the output of Finite-Volume Generalized Vertical Coordinate (FV-
GVC) ocean models, including the identification of a non-negligible remainder term as
the spurious numerical mixing due to advection scheme discretization errors. We illus-
trate key aspects of the methodology through an example application to diagnostics from
a polygonal region of a Baltic Sea regional configuration of the Modular Ocean Model
v6 (MOMSG6). We verify the convergence of our WMT diagnostics by brute-force, com-
paring time-averaged diagnostics on various vertical grids to timestep-averaged diagnos-
tics on the native model grid. Finally, we briefly describe a stack of xarray-enabled Python
packages for evaluating WMT budgets in FV-GVC models, which is intended to be model-
agnostic and available for community use and development.

Plain Language Summary

A useful tool for characterizing ocean variability and change is water mass anal-
ysis, in which the ocean is decomposed into parcels with distinct properties (such as their
temperature, density, or dissolved oxygen concentrations). Water mass transformation
theory provides a concise equation for the evolution of these water masses, which can
be used to identify the various processes that act to increase or decrease the total mass
(or size) of each parcel. In practice, however, calculating the terms in these WMT bud-
get equations from ocean model simulation output is technically challenging, limiting the
creativity of applications in the literature. We review the fundamentals of water mass
transformation theory, explain how to calculate WMT budgets based on the output of
a generic ocean model simulation (with examples from a widely used one), and summa-
rize a new publicly-available software for doing such calculations.

1 Introduction

The mean state, intrinsic variability, and forced changes of the global ocean can
be usefully characterized by dividing waters into several distinct water masses and an-
alyzing their respective steady balances or transient evolutions (Sverdrup et al., 1942).
Each such water mass is defined by the intersection of bounds on scalar tracer concen-
trations and/or fixed spatial coordinates that define a region of the globe. (For conve-
nience, we use the term ‘water mass’ to refer to both the region that it occupies in space,
), as well as the total mass of seawater in the region, Mgq; it will be clear which is meant
from context and notation.) The ocean’s global overturning circulation, for example, is
canonically described as the circulation of water masses through latitude-density space
(Doos & Webb, 1994; Lumpkin & Speer, 2007; Cessi, 2019). Since density variations ex-
ert a significant control on oceanic flow, it is common to categorizing water masses in
distinct density classes. Seawater density itself depends nonlinearly on temperature and
salinity (and pressure), which due to their different boundary conditions are partially
independent and are thus used to further distinguish water masses. Passive tracers, es-
pecially dissolved or particulate biogeochemical substances, also serve as effective wa-
ter mass tags (Broecker, 1982). We focus here on water masses defined by bounds on a
single scalar (e.g., temperature, density, or tracer concentration) but acknowledge that
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it can be beneficial to consider the intersections of bounds on multiple tracers (e.g., to

analyze the thermohaline streamfunction as in Zika et al. (2012); D66s et al. (2012); Groeskamp

et al. (2014)). Throughout the text, we denote surfaces of constant scalar values as isoscalar
surfaces and the direction normal to isoscalar surfaces (in the direction of increasing scalar
value) as diascalar.

In water mass analysis, ocean variability and change is understood as the variabil-
ity and change of its constituent water masses. Kinematically, water mass change refers
to the movement of the isoscalar surfaces that bound the water mass. For instance, the
observed contraction of Antarctic Bottom Waters corresponds to the deepening of their
bounding isopycnal surface due to decades of abyssal warming and freshening (Purkey
& Johnson, 2012). The utility of a particular tracer for water mass analysis depends on
how its source/sink and transport processes relate to the problem at hand. Water mass
analysis has long been used by oceanographers to infer patterns of large-scale ocean cir-
culation from tracers with long residence times and known sources/sinks. Early anal-
yses (e.g., Iselin (1939)) were carried out qualitatively and by hand, while more recent
analyses employ numerical models on fixed Eulerian grids.

A major conceptual breakthrough was Walin (1982)’s introduction of Water Mass
Transformation (WMT) theory, which directly equates the kinematic evolution and cir-
culation of water masses to the various transformation processes that drive material change.
Tziperman (1986), A. J. G. Nurser et al. (1999), Marshall et al. (1999), Tudicone et al.
(2008) and others further developed important aspects of the theory. Groeskamp et al.
(2019) present a modern treatment of WMT fundamentals and review various applica-
tions in the literature; our purpose here is not to repeat this exercise but instead to com-
plement it by detailing how each of the terms in a water mass budget should be diag-
nosed and interpreted in the context of finite-volume ocean models. Calculations of full
water mass transformation budgets are rare in the literature, reflecting the scarcity of
necessary diagnostics and the technical difficulty of implementing methods consistent with
increasingly complicated numerical model formulations. The difficulty of closing WMT
budgets motivates a common use case, which is to assume a closed budget and simply
bundle any neglected terms into a remainder (e.g. Tesdal et al., 2023; Evans et al., 2023).
Many go even further, assuming the water mass distribution to be in steady state and
thus identifying the remainder of the water mass transformation terms as the diascalar
overturning transport (de Lavergne et al., 2016; Ferrari et al., 2016). A major caveat of
all these indirect inference approaches is that any errors in the explicitly calculated terms—
whether observational, computational, or conceptual in nature—are obscured by bundling
them into the remainder along with the neglected terms; this total remainder term is of-
ten found to be of leading order, calling into question interpretations of WMT budget
results. A more careful analysis would evaluate every term in the budget and confirm
that the remainder is zero—or at least sufficiently small to not affect the interpretation
of results (see Lele et al. (2021) for an observation-based example of an approximately
closed full WMT budget).

A related but more subtle problem with model-based water mass analysis regards
spurious water mass transformation due to numerical mixing, which is the effective di-
ascalar mixing induced by artificial diffusive and dispersive errors in a discretized tracer
advection scheme (Molenkamp, 1968). Spurious water mass transformations in density
space (i.e. diapycnal) are particularly concerning because diapycnal mixing plays a leading-
order role in ocean dynamics and energetics (Toggweiler & Samuels, 1998; Ferrari & Wun-
sch, 2009) and because measured diapycnal mixing rates are small enough that they can
be easily overwhelmed by numerical errors (Griffies et al., 2000; Lee et al., 2002). Current-
generation ocean and climate models still suffer from significant biases which can be traced
to excessive diapycnal mixing, much of which is thought to be due to spurious numer-
ical mixing as opposed to over-tuned mixing parameterizations (Fox-Kemper et al., 2019).
Reducing spurious diapycnal mixing thus remains a priority of ocean model development
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and a driver of major model configuration choices, such as the adoption of isopycnal or
hybrid generalized vertical coordinates (e.g., Adcroft et al., 2019; Griffies et al., 2020).
Despite the importance of numerical mixing for both the development of ocean models
and their application for scientific research, there is no consensus on the best practices
for quantifying it, and no open-source community diagnostics are presently available. Let
us briefly review some of the key approaches for quantifying numerical mixing in the lit-
erature and describe each of their limitations, motivating our novel approach here.

In their formative analysis, Griffies et al. (2000) apply Winters et al. (1995)’s avail-
able potential energy-based framework to diagnose spurious diapycnal mixing from er-
roneous increases in background potential energy in explicitly ‘adiabatic’ idealized flows.
This background potential energy approach is invasive in that it requires temporarily ‘spin-
ning down’ a diabatic model in a counterfactual adiabatic configuration; a limitation of
this approach is that the spurious mixing inferred from the adiabatic configuration does
not necessarily correspond to that of the diabatic configuration of interest. Ilicak et al.
(2012) apply this method to a suite of idealized and realistic ocean model configurations,
and demonstrate that numerical mixing is highest in an eddying depth-coordinate model.
The interpretation of such results requires additional humility, however, because the cal-
culation of background potential energy by globally sorting the density field is ill-posed
for global ocean models with nonlinear equations of state and topography that dynam-
ically decouples ocean basins (Huang, 2005; Stewart et al., 2014; Saenz et al., 2015).Hill
et al. (2012) propose an approach based on the diapycnal spreading of passive tracers;
however, this approach is not scalable to global climate models configurations due to the
many additional passive tracers that would need to be integrated. Drake et al. (2022)
raise a more fundamental problem with the tracer-based approach: a tracer’s diapycnal
spreading rate is not exactly proportional to tracer-weighted diffusivity. Burchard and
Rennau (2008) propose a tracer variance approach motivated by turbulence studies, which

offers the means to map where spurious mixing occurs. However, it provides a three-dimensional

effective diffusivity and so does not distinguish between diapycnal and isopycnal. Given
these caveats and limitations of the above methods, we would like a more robust met-
ric of spurious diascalar mixing that can be: 1) directly compared to parameterized di-
ascalar mixing processes, 2) efficiently and unintrusively diagnosed, and 3) unambigu-
ously interpreted.

Lee et al. (2002) pioneered a promising approach for diagnosing spurious diapyc-
nal mixing as the remainder of a model’s WMT budget, which in principle allows spu-
rious mixing to be directly compared against other terms in the mass budget. Lee et al.
(2002)’s analysis suggests that spurious diapycnal mixing is an order of magnitude larger
than the parameterized vertical mixing in their model, although they invoke some ques-
tionable assumptions to close the mass budget without directly diagnosing transforma-
tions due to parameterized diffusion or surface fluxes. Megann (2018) improve upon this
approach by directly comparing effective diapycnal transports with those implied by pa-
rameterized mixing, attributing the difference between the two to spurious numerical mix-
ing. Urakawa and Hasumi (2012) and Urakawa and Hasumi (2014) extend the approach
by evaluating every term in the WMT budget and identifying the remainder as the spu-
rious water mass transformation, without resorting to approximations or expressing the
results in terms of an ‘effective’ numerical diffusivity. (They additionally propose a method
for decomposing spurious numerical mixing into cabbeling and non-cabbeling compo-
nents, but this requires implementing intrusive new diagnostics, so we neglect it here for
simplicity). Bailey et al. (2023) generalizes the approach from latitudinal coordinates to
a rectangular region with vertical walls. An important caveat of the above WMT bud-
get calculations is that they consider transformations across potential density surfaces
(often referenced to either surface pressures p = patm =~ 0dbar, denoted pg, or a mid-
depth pressure of 2000 dbar, denoted p2). Because potential density surfaces deviate sig-
nificantly from neutrality away from their reference pressure, purely isoneutral processes
can misleadingly appear to induce diapycnal transformations, potentially leading to mis-
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interpretation of results (see T. J. McDougall et al. (2014) as well as the discussion in
Section 4). Tudicone et al. (2008) address these limitations by diagnosing water mass trans-
formations across approximately neutral density 4" surfaces (as defined by Jackett and
McDougall (1997)); however, they do not diagnose all of the terms in the WMT bud-

get and thus do not isolate the contributions from spurious numerical mixing. A prac-
tical limitation of each of these approaches is that the calculation of lateral transport
terms is tailored to the particular analysis, such that it would take a considerable effort

to replicate the analysis for 1) a different region, 2) a model with a different grid or bud-
get diagnostics, or 3) with respect to a different tracer. Holmes et al. (2021) cleverly sidestep
the two challenging aspects of WMT analysis described above-nonlinear equation of state
effects and the diagnosis of lateral transports across complicated regional boundaries—

by framing their analysis in terms of diathermal fluxes and by diagnosing budget terms
in individual grid columns.

We present a theoretically precise and numerically accurate approach for diagnos-
ing closed WMT budgets in Finite-Volume ocean models with Generalized Vertical Co-
ordinates (FV-GVC models). The following self-contained derivations of the theory are
inspired by the water mass transformation framework introduced by Walin (1982), re-
cently reviewed by Groeskamp et al. (2019), and extended to the numerical modeling con-
text by Lee et al. (2002), Urakawa and Hasumi (2012), and Bailey et al. (2023). Because
the derivations in these prior texts leave out many details and pass over some important
theoretical and practical aspects of water mass analysis, we present a more complete and
pedagogical derivation of the fundamental equations of water mass analysis. We argue
that this level of care is necessary to 1) correctly close regional WMT budgets, 2) con-
fidently attribute the remainder term to spurious numerical mixing, and 3) robustly in-
terpret the balance of terms in the budget.

Section 2 presents the continuous theory and Section 3 describes how each of these
terms is diagnosed in practice, including the identification of the remainder term with
spurious numerical mixing (Section 3.5). Section 4 concludes with a future outlook dis-
cussion, including discussions of unconventional WMT analyses and important subtleties
of WMT calculations in density space. Appendix A describes the relationship between
the continuous theory (Section 2) and the layer-integrated mass and tracer budget di-
agnostics provided by FV-GVC models (used for the calculations in Section 3). Appendix
B describes how these terms correspond to diagnostics available in the Modular Ocean
Model v6 (MOMS6; Adcroft et al. (2019)). In Appendix C we discuss some theoretical
aspects of WMT budgets under the Boussinesq approximation, which is employed by many
commonly used FV-GVC ocean models and often assumed in WMT analyses. Appendix
D describes the core open-source Python package (xwmb) developed to carry out these
WMT budget calculations, as well as the stack of packages it depends on, which are all
intended to be model-agnostic and available for use by the ocean modeling community.
Throughout, we provide illustrations of theoretical concepts and examples of numerical
calculations based on diagnostics from a year-long ocean-only simulation in a regional
Baltic Sea configuration of MOMG6 at a nominal horizontal grid spacing of 0.25°. Ongo-
ing extensions of the work to global OM4 (Adcroft et al., 2019) and CM4 (Held et al.,
2019) outputs and approximately neutral density coordinates (following Stanley et al.
(2021)) are beyond the scope of this paper and will be described elsewhere.

2 Theory: kinematics of A\-water masses and their transformations
2.1 Evolution of A-water masses

We are interested in the evolution of bulk water masses defined by contours {\}
of a single given scalar A(x,t), which we here define as the class of waters with A\(x,t) <
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A. The key metric that characterizes a water mass is, unsurprisingly, its mass

M) = / pdV, (1)

Az, t) <A

where p(x,t) is the seawater density in situ and dV is the volume element. More gen-
erally, we can consider the intersection Q(\, ) = {z : A(,t) < A} N R of this global

water mass definition with an arbitrary time-varying spatial region of the ocean, R(t).
We emphasize that the water mass region {2 need not be contiguous. The water mass

region (2 is characterized by the sub-mass

Ma(A ) = / pdV < M(A 1), 2)
Q(\t)

For example, if R is the Southern Ocean south of 30°S, then we identify Q(1°C,t) =
{z: O(z,t) <1°C} NR as the mass of cold waters around Antarctica.

The complementary water mass that is instead bounded from below, /\/lJr ()\ t) =
[5cxpdV, is simply derived as ./\/lﬂ()\ t) = Mgz — Mq(\,t), where Mg = MQ()\ —
+00) is the total seawater mass in the region R. Similarly, intermediate water masses
are defined by Mgq(A1;\2) = fX1<>\'§X2 pdV = Mga(A2) — Ma(\).

To understand the evolution of MQ(S\, t) over time, we start by integrating the sea-
water mass conservation equation,
dp

ot :_V'(pv)’ (3)

over the spatial extent of the water mass Q(S\, t). Invoking the divergence theorem, we

have 5
/ ”dv_— / V- (pv)d 515 pv-7dsS, (4)
)\t

Q(At) QN t)

where we define 0€2 as the surface that bounds €2 and 7 is the outward normal unit vec-
tor. Since the water mass (A, t) is time-varying, time derivatives do not commute with
the density-weighted volume integral:

ot
Q(At) Q7 t)

9 oy =2 / pdV # / 8pdv (5)

Hence, we cannot simply pull the time derivative on the left-hand side (LHS) of equa-
tion (4) out of the volume integral. Instead, we must invoke the three-dimensional gen-
eralization of Leibniz’ integral rule (also known as Leibniz-Reynolds’ transport theorem),
which accounts for the time-evolving bounds of integration through an additional term:

%/dez / %de+ 55 Fo@ . 5ds, (6)

QA1) Q(\t) QA1)

where F(z,t) is an arbitrary scalar function and v is the velocity of the boundary
99 itself. A nonzero boundary velocity v(®? can occur as a result of movement in ei-
ther the bounding M-isosurface or the boundaries of the region R. The boundary veloc-
ity is generally decoupled from the fluid velocity; the important exception is for a ma-
terial region that follows the flow, in which

v . 4 =v.n  (material region). (7)
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Applying equation (6) to the case of F' = p and combining with equation (4), we find
that A-water mass evolution is determined by a balance between flow convergence within
the water mass and the movement of the water mass’ boundary:

R = — [r— p— (8 ) . N
it/\/lg()\,t) =5 / pdV = ?é p(v—v'"Y) - ndsS. (8)

Q) NN t)
This form of equation (8) is useful because the surface integral can be evaluated sepa-
rately for each of the different categories of the water mass boundary, 0.
2.2 Characterizing dia-surface transport and boundary conditions

For an arbitrary region R of the ocean (e.g., Figure 1), we consider four distinct
categories of water mass boundaries: the sea floor, the sea surface, interior A-isosurfaces,
and any remaining boundaries of R that do not fall under one of the other categories.
We can thus evaluate the total surface integral by considering the disjoint union

OV, 1) = OV%eatioor (A, 1) U ODsure(A, 1) U Ar (X, 1) U IR. (9)

Figure 1. A schematic (z,z) profile view of the A-water mass budget (equation (8)) for a
water mass (), t) defined by the region R and tracer values that satisfy A(z,t) < A for a specific
choice of A. Note that A is not required to be monotonic with depth and it is possible for mul-
tiple isosurfaces of A to exist within a single vertical profile. The water mass Q(S\7 t) is bounded
by the seafloor (brown), sea surface (blue), interior A-isosurfaces (red), and a specifed regional
boundary OR (grey dashed). Water mass changes are due to mass fluxes across each of these

boundaries, except the impermeable seafloor.

Boundary 1: the seafloor. The seafloor is assumed to be static (v(®) = 0), trivially
leading to pv® - A®) = 0. Tt is also impermeable to fluid flow, so that pv - R®) = 0.

Boundary 2: the sea surface. The sea surface, on the other hand, is time dependent
and permeable, allowing for exchanges of mass due to processes like precipitation, evap-
oration, sea ice freezing/melting, river inflow, etc. Following section 4 of A. G. Nurser
and Griffies (2019), this transport condition is given by

p(v—ol) -l = O, (10)
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where Qi}[“f is the net mass flux crossing the boundary per unit surface area due to the
various exchange processes mentioned above. We thus define the net surface mass flux
into the water mass as

Sa(\t) = — / pv—v®). Al ds = / o3urfds. (11)

Osure(N,t) Qsure(A,1)

In practice, it is more convenient to work in terms of the horizontal projection of d.S, which
we write as dA, and thus define the normalized surface mass flux

Q" = QT dS/dA, (12)
which we use hereafter.

Boundary 3: interior A-isosurfaces. This surface is the boundary between the re-
gions in R where A < X and A\ > X, with normal vector (") = VA/|[VA|. Note that,

so long as A is continuous, [VA| >0 on the A-isosurface. We defer the further treatment
of this case to Section 2.3, where we relate the density-weighted dia-\ velocity, (vf'v()‘)) .
7™ to the kinematic material time derivative that appears in the A conservation equa-
tion (16). The density-weighted dia-\ velocity is then integrated along the A = X iso-
surface, Ax (A, t), which we again emphasize need not be contiguous or single-valued in
a water column.

Boundary 4: specified regional boundaries. Finally, the velocities of (and across)
the remaining surfaces of 89(5\, t) depend on the definition of the specified region of in-
terest, R(t). When R is the global ocean, for example, the other three boundaries al-
ready constitute all of 02 and this term vanishes. Another useful limit is when R is time-
independent, such that v(®®) = 0, and we only need consider the contribution from the
cross-boundary flow, v-7(®R) A further simplifying assumption, which has been adopted
in most prior regional water mass transformation analyses (including Groeskamp et al.
(2019) and Bailey et al. (2023)) and will be employed hereafter, is that the region has
vertical boundaries. In this case, 2-7(9®) = 0 such that v-n(9®R) depends only on the
horizontal velocity
u=@w-&)+(v-9)y. (13)

We define the net convergent horizontal mass transport across the region’s boundaries
OR (see Figure 1) as

Tor (M) = — / pu- 1R dgs, (14)

AR N{A<A}

where the surface integral includes the vertical boundaries of the region, where A < A

Altogether, the Al-water mass budget equation (8) within the region R can thus be writ-
ten as P

5 Ma(h 1) = Sa(h,1) / p(v— o). AN dS 4 Tyr (X, 1). (15)

AR (Xt)

While equation (15) is conceptually straightforward, the surface integral appearing on
the right-hand side (RHS) is unwieldy and challenging to diagnose from both observa-
tion and models; we derive a more tractable expression for it in the following section.

2.3 Dia-\ transport and water mass transformation

_The natural starting point for developing a better understanding of the drivers of
dia-\ transport is the conservation equation for the tracer concentration A,
DX 0A

DA _9A v 1
Di 8t+v VA=A, (16)
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where % is the material time derivative (which is the total time derivative computed
following the fluid flow) and A represents the sum of all processes that modify or trans-
form the A concentration along that trajectory. Example processes leading to transfor-
mation include boundary exchange fluxes, molecular (or parameterized turbulent) dif-
fusion, and internal tracer sources or sinks (e.g. chemical reactions, ecological species in-
teractions, or radioactive decay). Multiplying equation (16) by p/|VA| and integrating

along the A = X isosurface within R, denoted Ax (A, t), we arrive at

p OX / VA / pA
/ VN ot dS + pv 2y ds = 2y ds. (17)

Ar(At) Ar (At) Ar (At)

Dividing by |V | requires that it not vanish anywhere along the M-isosurface Ax (X, t);
while this may at first seem like a stringent constraint, however, it will always be the case
so long as A is continuous. Note that it is perfectly fine for one or two components of the
gradient to vanish, as in the case of vertical overturns, but the three-dimensional gra-
dient will not vanish on any point on the surface as this would imply the point ceases

to be on the boundary between where A < X and A > ), which is the definition of the
isosurface. In the second term on the LHS of the isosurface-integrated equation (17), we
recognize 7Y = VA/|VA| as the unit vector normal to the A-isosurface, thus identi-
fying this term with the flow-velocity component of the dia-surface transport term that
appears in the mass budget equation (15),

/ pv - %dS: / pv-n(:\) ds. (18)

Ar(At) Ar(Ab)

The boundary-velocity component of the dia-\ transport term is instead defined kine-
matically as the velocity v along which \ is materially conserved,

oA
i N .wa=0. 1
N +wv v 0 (19)
Again assuming |V A| # 0, equation (19) can be multiplied by p/V A and rearranged
as 2\
N P 97 20
pvM . n VA ot (20)

Substituting equations (18) and (20) into equation (17), we can re-express the dia-A mass
transport in terms of isosurface-integrated A-tendencies, evaluated along the particular
A = ) isosurface,

oA \
5 5 5 tv- V)\) PA
™). A 4 — / G+ VN o / P4 (@t
IR N 2 @)
Ar(Xt) AR (Xt) Ar (A1)

To make evaluation of the surface integrals in equation (21) more amenable to our
anticipated finite-volume discretization, we reformulate the definition of A\-water masses
as integrals in A coordinates. Applying the chain rule, we first re-express the dia-\ thick-
ness, dh, of an infinitesimal volume element dV in A coordinates, dA = |V A|dh, such
that AV = dhdS = dAdS/|VA|. We can re-express the density-weighted integral of
an arbitrary scalar function F(x,t) over the water mass Q(\,t) as

A
GO (M\t) = / pfdvz/ }ﬁ pFdS dh:/ }5 "%—zds ax, (22)

Q(\t) =0 | Ar(M,1) =0 | Ar(M,1)

where we emphasize that (A, t) is the full boundary of the water mass while Ag (X, t)
is just the A-isosurface and excludes the lateral boundary OR and the seafloor. Taking
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the partial derivative with respect to X and applying the Fundamental Theorem of Cal-
culus, we have the generalized dia-A transformation relation for the arbitrary scalar F,

pF

(0 t) = 0,GY) = o5 /pfdv = yf
Q) Ar(Xt)

In doing so, we have ignored the contribution from the lower bound (5\’ — —00) be-
cause f Ar (V) % dS — 0 as X decreases below the range of realizable values and thus

the area Ag (X', t) of the isosurface vanishes; in practice, it suffices to set a lower limit
of A\g < min{A(x,t)}.

Taking the arbitrary scalar F to be A-tendencies, the dia-) transformation rela-
tion (23) allows us to express the surface integrals in equation (21) as volume integrals.
First, we integrate the density-weighted A conservation equation (17) over Q(S\, t) and
take a derivative with respect to A:

B / N B / , B / .
= Zav| + = v-VN)AV | = = Ndavi . 24
| P 5 | p( ) | P (24)
QX t) Q(Xt) QX t)
g (Ab) RO gV (Ab)

We refer to equation (24) as the X\-Water Mass Transformation (\-WMT) equation be-

cause the dia-\ transformation relation (23) allows us to then combine equations (21)

and (24), yielding an expression for the dia-\ transport in terms of differential A-transformation
tendencies integrated over the water mass (see definition on RHS of equation 24),

/ plv—vN) - aM ds =g{P (A1), (25)
Ar (\t)
which we simply refer to as the total water mass transformation. The terms in equations
(24) and (25) have units of mass transport, kg/s; motivated by the Boussinesq approx-

imation, they can be converted into equivalent volume transports (units of m3/s or Sv =
10°m3/s) by dividing by a reference density such as py ~ 1035kg/m3.

Now that we have defined our final expressions for each term, we drop the variables’
arguments for conciseness. It is often useful to decompose the transformation term by
process type (Figure 2), e.g.,

gs(lT) = gg()Surface) + ggce—Ocean) + gs(zSeaﬂoor) + gg(lMiX), (26)

or even more granularly by physical process (e.g., brine rejection, radiative cooling, di-
apycnal mixing by internal wave breaking, isopycnal mixing by mesoscale eddies). To
simplify discussions of the A\-water mass budgets diagnosed from our Baltic Sea simu-
lation, we hereafter bundle all fluxes across external ocean boundaries into:

gézBF) = géSurface) + géllce—OCean) + gs()Seaﬂoor). (27)

2.4 The A-Water Mass Transformation Budget

The power of the A\-water mass budget approach arises when we replace the total
surface integral in the A-water mass budget equation (8) with our expressions for the nonzero
mass transports across the sea surface (11), interior A-isosurfaces (25), and lateral bound-
aries (14), yielding the concise A-WMT budget:

Mg = So — G5 + Uor. (28)

—10—
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Rearranging equation (28) as
HMa —So — Wor = G, (29)

clarifies the distinction between the kinematic mass budget terms on the LHS and the
water mass transformation processes on the RHS. In the context of numerical ocean mod-
els, equation (29) is not necessarily closed because additional spurious water mass trans-
formations QS()S) can arise due to discretization errors; we defter a detailed investigation

of spurious nuermical mixing until Section 3.5. The A-WMT budget is illustrated schemat-
ically in Figure 2.

R gézs urface) ggce_Ocean) QQL

QN ={A<AINR

- (S) AMa(X) >0
A gQ sj\ (Seafloor)
(Mix) 9o
Y gQ
A Y (T) (S)
\IjaR = atMQ()\) = \de’R + 'SQ - gQ - gQ

where géT) _ géZMix) n gg()BF)

o

and gg()BF> = gs()SurfaCC) + ggcc—Ocoall) + géScaﬂoor)

Figure 2. A schematic (z,z) profile view of the A-WMT budget (equation (41)) for a water
mass (), t) defined by the region R and tracer values that satisfy A(z,t) < X for a specific
choice of \. Note that \ is not required to be monotonic with depth and it is possible for mul-
tiple isosurfaces of A to exist within a single vertical profile. The water mass Q(:\, t) is bounded
by the seafloor (brown), sea surface (blue), interior A-isosurfaces (red), and a specifed regional
boundary OR (grey dashed). The various terms in the budget are defined throughout Section 2.
The dia-scalar transformation term QS(ZT) is decomposed into the contributions from fluxes across
the sea surface, seafloor, and M-isosurface. An additional term gg‘f) is introduced to account for

water mass transformations associated with spurious numerical mixing (see Section 3.5).

2.5 Example: Water Mass Transformations in the Baltic Sea

Example evaluations of the A-WMT budget equation (29) are shown in Figure 3
for A = © (Conservative Temperature), S (Absolute Salinity), and pg (potential den-
sity referenced to atmospheric pressure) in a region R of the inner Baltic Sea (whose bound-
ary OR is visualized later in Figures 5 and 9). The region contains two distinct water
masses (Figure 3a): (1) light fresh water of seasonally-varying temperature in the shal-
low inner Baltic Sea and (2) salty, cold, and dense open ocean water at the entrance to
the Baltic Sea. Let us consider the dominant features of this region’s annual-mean WMT
budgets.

In temperature space (Figure 3b), a leading-order balance emerges between sur-
face heat fluxes (which warm warm water and cool cold water) and interior mixing (which
mixes cold and warm waters together, transforming both towards intermediate temper-
atures). Interestingly, near 2.5 °C, the warming of cold waters due to mixing is not bal-
anced by surface cooling, resulting in a small annual mean drift towards warmer water

—11—



391

392

393

394

395

396

397

398

399

400

classes. In salinity space (Figure 3c), we see two distinct lobes of water mass transfor-
mation, consistent with the bimodal water mass distribution seen in Figure 3a. For the
deep water lobe with S > 20 ppt, interior mixing again produces a straightforward dipole
structure as relatively fresh (S < 29 ppt) and salty (> 29 ppt) waters are mixed together;
however, only the fresh part of these mixing-driven transformations are balanced by sur-
face flux salinification, with the freshening of the salty part instead being primarily bal-
anced by a net export of relatively fresh water into the open ocean. The WMT budget
in potential density space (Figure 3d) closely follows that of salinity, except for the light-
est waters (pg < 1007 kg/m?) where the temperature-related transformations are con-
centrated.
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Figure 3. Examples of water masses and their budgets for the region R of the Baltic Sea
shown in Figure 9. a) The distribution of water masses in R as a function of Conservative Tem-
perature, Absolute Salinity, and potential density po — 1000kg/ m? (referenced to atmospheric
pressure, shown as black contours) averaged over a full year, mainly provided as context for the
budgets that follow. b-d) Annual-mean (angle brackets) WMT budgets (eq. 29) in Conservative
Temperature, Absolute Salinity, and potential density coordinates, diagnosed as described in
Section 3 but using timestep-averaged diagnostics in the model’s native prognostic vertical coor-
dinate to minimize discretization errors. Total water mass transformations gg“ are broken down
into two components: boundary fluxes g}ZBF) and mixing, which includes both directly diagnosed
parameterized mixing géMix) and spurious numerical mixing gg(f), which we identify as the re-
mainder of the other budget terms (see Section 3.5). With in-situ densities of p ~ 1000kg/s, a

water mass transformation rate of 109kg/ s is approximately equivalent to 1Sv = 10°m? /s.
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2.6 On steady-state A\-Water Mass Transformation Budgets

Assuming a steady-state (i.e. v = 0) and neglecting the typically small surface
mass flux term (i.e. Sq = 0), the WMT budget equations (15 and 29) reduce to:

Tyr = / pv-ANds =gl (30)
Ar(X)

We remind the reader that the area Ag () of the M-isosurface within R is the subset of
the total water mass boundary 92 that excludes the lateral boundary OR, the sea sur-
face, and the seafloor. Equation (30) states that the convergent horizontal circulation
into a region is exactly balanced by the circulation across its bounding A-isosurface, which
is driven by the sum of the water mass transformation processes. A common applica-
tion of water mass transformation theory is to use an estimate of the RHS of the steady-
state equation (30) in density coordinates to infer the diapycnal overturning circulation

it induces on the LHS (e.g. de Lavergne et al., 2016; Ferrari et al., 2016; Drake et al.,
2020). Marsh et al. (2000) warn, however, about the dangers of incorrectly applying the
steady state equation (30) to an unsteady meridional overturning circulation. Testing

the steady-state assumption in the context of our annual-mean S-WMT budgets in the
Baltic Sea (Figure 4), we find that the assumption is fairly reasonable for salty waters

(in the deep open ocean), but not the fresh waters (in the shallow inner Baltic Sea) which
are drifting at leading order (Figure 3c).

Testing the steady-state assumption for the annual-mean

351 — e = (Wor)

(€3 + (e

w
o
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N
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N
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o
L
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0 T T T T T
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
WMT rate [10° kg/s]

Figure 4. A test of the steady-state S-WMT budget assumption (eq. 30), reproducing Figure
3c except that we have now bundled all of the transformation terms together, including both
directly diagnosed transformations gé? = Q&BF) + g}f“"’ and spurious transformations ggS‘) (see

Section 3.5) and have changed the sign of the transport term for more direct comparison.

3 Diagnosing Discretized A\-Water Mass Transformation Budgets

In this section, we adapt the continuous theory outlined above to express the WMT
budget in a form befitting the diagnostic output provided by numerical ocean models.
We would like to diagnose the terms in the time-mean WMT budget (29), given by

(0:Ma) — (Sa) — (Tar) + (G5") =0 (31)
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where

1 tn+AL
W= [ oa (32)

is the diagnostic time-averaging operator over a given interval of length At and centered
around ¢, 1 For clarity, we assume a priori that all diagnostics have been conserva-
tively regridded and remapped into A bins [A,,_ 1 At 1 | (denoting layer m), where over-

n

bars ¢ denote layer averages. We emphasize that whatever vertical regridding/remapping
scheme is employed, it should be conservative so that total water mass and tracer con-
tent is conserved. Any any case, results should be robust to changes in the diagnostic

and target grids (see Section 3.6). We will use ¢ and j as horizontal grid indices (with

a straightforward extension to adjacency matrices for unstructured mesh implementa-
tions, e.g. Ringler et al. (2013)) and ¢ as the X layer index. We discuss aliasing errors

due to ‘offline’ remapping with time-mean diagnostics in Section 3.6.

3.1 Kinematic mass tendency

The Fundamental Theorem of Calculus allows us to write the time-mean mass ten-
dency term as the difference between snapshots bounding the averaging interval,

(@:Ma) = (A1)~ [Mali 2. (33)

For a given interface A= At 1 each of these mass snapshots can be estimated by cu-
mulatively summing layer masses, hq, p? dA, for all layers with A, < A, 41 within a tracer
cell mask R that approximates the continuous region R,

tnt+AL

1
<(9tMQ>()\m+%,tn+%)2E S> T hgpdA . (34)

,JjER g<m+3 "
n

3.2 Convergent horizontal mass transport

The transport term, (¥q), requires accumulating all mass transports normal to the
region’s boundary, R, with a consistently convergent orientation, for A < A. Since the
surface integral form of this term originates from the divergence theorem, internal con-
sistency of the discretized mass budget requires that the discrete boundary, OR ~ OR,
exactly follow the faces of the finite volume elements that bound the tracer cell mask,

R, as illustrated in Figure 5. The total convergent transport across JR is computed by
summing the convergent mass transports over all layers with Ay < A, 1 and over all
of the cell faces along the boundary OR:

o) Oeptur) = ([ cpur@®at)x S| S (pathyde) A

ORN{ASA, 1} i) jWEIR | Ag=A,, 4 1
2
(35)

where i(®), j(%) are the grid face indices that correspond to the normal mass fluxes [(pu) . 'fz(aR)] A OR)

and d¢ are the widths of grid cell faces. Since local recirculations can be orders of mag-
nitude larger than the net convergence into a region (Figure 5, inset arrows), inexact in-
terpolation methods (e.g. for a boundary OR that does not exactly follow the grid cell
faces bounding the mask R) or seemingly minor indexing errors can balloon into leading-
order errors in the overall WMT budget and therefore corrupt the identification of the
residual as spurious numerical mixing.

Our method for directly computing boundary-normal convergent transports, which
consists of finding pairs of grid face indices (i(*), (%)) and assigning the appropriate sign
for the inward orientation —(p@? h, df)-n(9®) is illustrated in Figure 5 and briefly de-
scribed in Appendix D. We have verified for various definitions of discrete boundaries
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R ~ R that the surface integral of the convergent mass flux along JR is within machine
precision of the volume-integrated convergent mass flux diagnostic within R, thereby sat-
isfying the divergence theorem on the model grid.

An alternative method of diagnosing the convergent horizontal mass transport into
the discrete region R is to first compute the convergence into each individual grid col-
umn C (where R = [J{C}), and then sum the convergent transport over all of the columns
in R to get the net convergent transport,

Wor) O tir) = Y24 S | Y (uthd0)- a9 b (36)
CCR | i ,j(0edC [Ag<A,, 41

[We use this approach to diagnose the maps of column-wise horizontal mass transport

convergence shown in Figure 9c¢, discussed in detail later in the text]. Benefits of com-

puting the convergence of horizontal mass transports for each grid column individually

are: 1) it is readily diagnosed from the finite difference of horizontal mass transports across

the lateral faces of a grid column, significantly simplifying its implementation; 2) it is

positioned at the center of tracer grid cells, allowing it to be conveniently integrated with

all of the other diagnostics required to close the A-WMT budget; 3) it can be precom-

puted once globally and then efficiently reused for various choices of R; and 4) it enables

column-wise estimation of spurious numerical mixing (see Section 3.5 and Holmes et al.

(2021)), rather than a single bulk estimate for the entire region R. A major disadvan-

tage of this column-wise approach, however, is that it provides no information about the

spatial structure of normal mass transports along the boundary dR (as shown in Fig-

ure 5), which may be necessary information for some applications. Our software pack-

ages described in Appendix D allow users to specify either of these two methods to cal-

culate the transport convergence term.

Cumulative line integral for convergent transport (W;z(13.0°C))

- 2.0 1000
64 15 og
o 0 800
a5
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Q. 'g
Iy
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Figure 5. Annual-mean convergent transport (expression 36 diagnosed as 35) into the discrete
region R, integrated for waters colder than ®© = 13°C, as a counterclockwise cumulative line
integral beginning from the red star. The black arrows show the orientation of the inward-facing
normal vectors —R (™) for each grid face along the discrete boundary dR. The inset zooms in on
the entrance to the Baltic Sea, where the net mass transport is the relatively small residual of
fluxes in (red arrows) and out (blue arrows) of the region; for clarity, we only show the handful of

arrows that correspond to transports larger than 10% of the maximum cross-boundary transport.
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3.3 Boundary mass source

The boundary mass source term,

<SQ>()‘m+%atn+%) = <9 / Q?\L}rfdA> ) (37)

Qsurs

is estimated by simply summing Q53 d A for all )\Zurf < At 1 This term is globally
small but can be important in smaller regions with large and concentrated freshwater
fluxes (e.g. major river inflows or rapidly melting sea ice, icebergs, or ice shelves).

3.4 Transformation rates

Water mass transformation terms g}z*), i.e. those in the form of the \-Water Mass
Transformation equation (24), are approximated by finite difference:

5 ‘[‘Q(Am+%) pAdV - fﬂ()‘m,%) pAdV
= s — A

(38)

1
m—z

where p AdV represents tracer mass tendencies arising from material transformation pro-
cesses. In the Riemann sum evaluation of the integral, these tendencies take the form

of the density-weighted and layer-integrated tracer tendency terms shown in equations
(A34)—(A35) (derived in Appendix A), as scaled by the vertically-uniform area element
dA.

a) Sensitivity of —(3:Mq) to bins

b) Sensitivity of (¢2") to bins
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Figure 6.

WMT rate [10° kg/s]

WMT rate [10° kg/s]

Sensitivity of the ©-WMT budget to the choice of A bins for (a) the mass ten-

dency term and (b) the boundary flux transformation rate term (eq. 27). Both terms are inte-
grated over the discrete region mask R shown in Figure 5. Blue curves show the default bins
(every 0.1°C, from —4°C to 40°C) and orange curves show the same terms recalculated with
alternative bins that are larger than, and offset from, the default. Differences between the two
calculations are much smaller than the resolved features of interest, giving us confidence that

discretization errors in our offline diagnostic methods are negligible.

Water mass transformation rates can be inherently noisy, making it difficult to dis-
tinguish actual process-based variability from methodological errors. A robust method
for assessing whether variability is due to diagnostic discretization errors is to assess the
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results’ sensitivity to the choice of the target X bins. For three-dimensional general cir-
culation models and O(100) target bins, it is common for each target bin to represent
thousands of grid cells and thus for the results to be relatively robust. Regions of excep-
tionally strong or weak gradients, | V|, however, may require more careful considera-
tions of the target A grid. Our experience is that sensitivity to binning is sufficiently small
to not affect interpretation of results (see Figure 6), except perhaps for small regions con-
sisting of just a few grid columns. Noise at the grid column level was a major motiva-
tion for Holmes et al. (2021)’s diathermal transport approach, which essentially amounts
to smoothing out the noise in the ©-WMT budget equation by integrating in ©.

3.5 Spurious numerical mixing

Theoretically, the time-averaged A-WMT budget (31) should exactly hold (with
the minor caveat that, strictly speaking, this also requires |[VA| # 0 along the A-isosurface).
In practice, however, discretization errors in the advection schemes used in ocean mod-
els can induce water mass transformations in excess of those resulting from the imposed
or parameterized material transformation processes, p)\. To build intuition about spu-
rious mixing, consider the limiting case in which R is global, such that (¥gz) = 0, and
there are no prescribed mass fluxes or material tracer tendencies, i.e. So = 0 and A =
0 (such that gg(lT) = 0), respectively. In theory, equation (29) should then reduce to ;Mg =
0, meaning the A-water mass distribution should remain exactly as is. [Note that the steadi-
ness of the \-water mass distribution does not impose any restrictions on the steadiness
of the flow or tracer fields, which can in principle still be quite turbulent and variable—
as in the adiabatic eddying simulations of Marques et al. (2022), with A = ps]. Most
advection schemes employed in ocean models result in errors that are dispersive and/or
diffusive in nature, which in A-space manifest as spurious water mass transformations,
i.e. at/\/lg(j\, t) # 0. This point applies even to semi-Lagrangian FV-GVC models in
which the vertical coordinate o is A itself (e.g. density transformations in a density co-
ordinate model), since such approaches must rely on imperfect vertical regridding/remapping
schemes to accomodate interior dia-o transports. Purely isopycnal coordinate models
(e.g. stacked shallow water models) are spared from spurious diapycnal mixing by con-
struction, but are subject to other problems that limit their viability for global climate
modeling (Fox-Kemper et al., 2019).

In the general case, spurious numerical water mass transformations QS()S)(;\, t) can
be identified as the remainder of the A-WMT budget equation (29),

G5 = [ (0Ma — Sa — Tor)] - G5 # 0, (39)

where the sign convention is chosen to match those of the other material water mass trans-
formation terms, for example allowing transformations due to parameterized and spu-

rious mixing to be directly compared. We emphasize that the remainder gg(f) can be nonzero
even if both the mass and tracer conservation equations are themselves closed in every

grid cell, because spurious dia-\ transformations may be embedded within the diagnosed
advective A tendency. Crucially, closure of cell-wise tracer budgets does not imply clo-

sure of A-WMT budgets or that spurious mixing is vanishingly small!

Because we have already accounted for all non-advective WMTs when subtract-
ing gé“ in equation (39), the remaining spurious numerical errors can only be due to
errors in the tracer advection operator. [An interpretive limitation of this approach is
that we are unable to distinguish between spurious WMTs due to horizontal vs. verti-
cal aspects of advection schemes.] It is useful to interpret the transformations gg‘) di-
agnosed from the advective tracer tendency in equation (24) as the difference of two dis-
tinct components:

65" =6y - 6", (40)

where —géf) represents transformations due to spurious numerical mixing (diagnosed fol-
lowing eq. 39, with its arbitrary sign chosen to match that of the other material WMT
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terms) and we identify QS()D) as the yet unknown diascalar mass transport induced by all
material transformation (including spurious numerical mixing). Since géA) is directly di-
agnosed from the discrete advective tracer operator, we can also indirectly diagnose the

sum QS()D) = géA) + QS()S).
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