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Abstract 
 

In this Part II of a five-Roman-numeralled-part series, we report computed examples of 𝐼𝑀𝑆𝑃𝐸-

optimal designs, as well as one near-optimal design, in the mathematical field of statistical 

design of computer experiments, all under Gaussian-correlation functions, except as specifically 

noted. In particular, we demonstrate the following eight types of phase diagrams and designs: (1) 

the two-factor, 𝑛 = 1 phase diagram of optimal designs, over all hyperparameters, under the 

exponential-, Gaussian-, or either of two Matérn-correlation functions; (2) the similarly detailed, 

two-factor, 𝑛 = 2 and 𝑛 = 3 phase diagrams of optimal designs, over all hyperparameters, 

showing bird’s-beak and sorcerer’s-hat sub-domains; (3) a three-factor, triplet-point optimal 

design, with points on an equilateral triangle and interpoint separation of less than 10-33 over the 

[−1,1]3 design domain; (4) a four-factor, quadruplet-point optimal design; (5) a five-factor, 

quintuplet-point optimal design; (6) a six-factor, sextuplet-point optimal design; (7) a two-factor, 

duet–twin-point optimal design; and (8) a two-factor, quartet–twin-point, near-optimal design. 

 

Key Words: Gaussian process, Matérn process, covariance matrix, twin points, clustered design, 

asphericality. 

 

1. Introduction 

In this Part II of the five-part series, we report computed examples of 𝐼𝑀𝑆𝑃𝐸-optimal designs in 

the mathematical field of statistical design of computer experiments, for designs with two 

through six factors, under Gaussian correlation functions, and with the integration taken over 

closed, (hyper-)cuboidal regions. Our 𝐼𝑀𝑆𝑃𝐸-optimal-design notation traces back to [1] and was 

written out verbosely in [2,3]. Section 3 contains detailed phase diagrams for two-factor, 𝑁-point 

designs for 𝑛 = 1, 2, and 3. Detailed two-factor phase diagrams for 𝑁 = 4 and 11 were reported 

previously, see [2] and [4], respectively. Section 4 mentions a four-factor design with a pair of 
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twin points. Section 5 reports our discovery of 𝑑-uplet-point putatively optimal designs for 3 ≤
𝑑 ≤ 6. Section 6 reports our discovery of a putatively optimal design with two twins – what we 

call a “duet–twin-point design.” Section 7 summarizes these results. Finally, Section 8 reiterates 

our group’s commitment to ICERM’s recommendations on research reproducibility. These 

simple examples provide background for the development, in Parts III and IV of this series of 

papers, of a new class of special, generalized functions, which we have dubbed the “Nu-class of 

low-degree-truncated rational generalized functions,” and for showing that the 𝐼𝑀𝑆𝑃𝐸 objective 

function is a member of this class. 

 

2. Outline 
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3. Two-factor, 𝑰𝑴𝑺𝑷𝑬 -optimal-design phase diagrams

3.1 𝒏 = 𝟏 

We start with the trivial, two-factor, single-design-point case. Irrespective of the correlation-

function parameter, for each case the 𝐼𝑀𝑆𝑃𝐸-optimal design was reported in [3] as a single point 

at the origin of the coincident, bi-unit-square, design and prediction regions. For reference, Table 

1, below, summarizes formulas for the normalized 𝐼𝑀𝑆𝑃𝐸, along with the specific equation 

number in [3], for each of the following four correlation-function parameters: 𝑝 = 1 for 

exponential correlation,  𝜈 = 3/2 for the Matérn-3/2 correlation, 𝜈 = 5/2 for the Matérn-5/2 

correlation, and 𝑝 = 2 for Gaussian correlation. 
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Correlation- 

function 

parameter 

Eq. 𝑰𝑴𝑺𝑷𝑬 formula 

Optimal 

design: 

[𝑥1,1, 𝑥1,2] 

𝑝̃ = 1 L.1 2

(

 1 −

{
 

   
1

𝜃1
[1 − 𝑒−𝜃1𝑐𝑜𝑠ℎ(𝜃1𝑥1,1)]

∙
1

𝜃2
[1 − 𝑒−𝜃2𝑐𝑜𝑠ℎ(𝜃2𝑥1,2)]}

 

 

)

  [0,0] 

𝜈 = 3/2 O.1  2

[
 
 
 
 
 
 
 
 
 
 

1 −
1

2

(

 
 
 
 
 
 
 
 
  
1

√3𝜃1

{
 
 

 
                   2 [    1 − 𝑒

−√3𝜃1 (1+𝑥1,1)

+1 − 𝑒−√3𝜃1 (1−𝑥1,1)
]

−√3𝜃1 [
    (1 + 𝑥1,1)𝑒

−√3𝜃1 (1+𝑥1,1)

+(1 − 𝑥1,1)𝑒
−√3𝜃1 (1−𝑥1,1)

]
}
 
 

 
 

∙
1

√3𝜃2

{
 
 

 
                   2 [    1 − 𝑒

−√3𝜃2 (1+𝑥1,2)

+1− 𝑒−√3𝜃2 (1−𝑥1,2)
]

−√3𝜃2 [
    (1 + 𝑥1,2)𝑒

−√3𝜃2 (1+𝑥1,2)

+(1 − 𝑥1,2)𝑒
−√3𝜃2 (1−𝑥1,2)

]
}
 
 

 
 

)

 
 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 

 [0,0] 

 𝜈 = 5/2 P.1 2

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 −
1

6

(

 
 
 
 
 
 
 
 
 
 
 
 
 

  
1

√5𝜃1

{
 
 
 

 
 
                       8 [   1 − 𝑒

−√5𝜃1 (1+𝑥1,1)

+1 − 𝑒−√5𝜃1 (1−𝑥1,1)
]  

−5√5𝜃1 [
    (1 + 𝑥1)𝑒

−√5𝜃1 (1+𝑥1,1)

+(1 − 𝑥1)𝑒
−√5𝜃1 (1−𝑥1,1)

]

   −5𝜃1 [
    (1 + 𝑥1)

2𝑒−√5𝜃1 (1+𝑥1,1)

+(1 − 𝑥1)
2𝑒−√5𝜃1 (1−𝑥1,1)

]
}
 
 
 

 
 
 

∙
1

√5𝜃2

{
 
 
 

 
 
                       8 [   1 − 𝑒

−√5𝜃2 (1+𝑥1,2)

+1− 𝑒−√5𝜃2 (1−𝑥1,2)
]  

−5√5𝜃2 [
    (1 + 𝑥1)𝑒

−√5𝜃2 (1+𝑥1,2)

+(1 − 𝑥1)𝑒
−√5𝜃2 (1−𝑥1,2)

]

   −5𝜃2 [
    (1 + 𝑥1)

2𝑒−√5𝜃2 (1+𝑥1,2)

+(1 − 𝑥1)
2𝑒−√5𝜃2 (1−𝑥1,2)

]
}
 
 
 

 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 [0,0] 

𝑝̃ = 2 N.1 2

[
 
 
 
 
 

1 − √
𝜋

16

(

  
 

1

√𝜃1
{
    𝑒𝑟𝑓[√ 𝜃1 (1 + 𝑥1,1)]

+𝑒𝑟𝑓[√ 𝜃1 (1 − 𝑥1,1)]
}

∙
1

√𝜃2
{
    𝑒𝑟𝑓[√ 𝜃2 (1 + 𝑥1,2)]

+𝑒𝑟𝑓[√ 𝜃2 (1 − 𝑥1,2)]
}
)

  
 

]
 
 
 
 
 

 [0,0] 

 

Table 3.1.  Normalized 𝐼𝑀𝑆𝑃𝐸 formulas are given for the four correlation-parameter functions, along 

with the corresponding equation number of [3], as described in the text. Each optimal design is an origin 

point. 
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Figure 3.1, below, shows the value of the optimal design, 𝐼𝑀𝑆𝑃𝐸0, as a function of 𝜃2, 
parameterized for fifteen values of 𝜃1. 

 
 

 

Fig. 3.1. Log-log 𝐼𝑀𝑆𝑃𝐸0 vs. 𝜃2 plot for 0.001 ≤ 𝜃2 ≤ 32.768, parameterized by thirteen 

logarithmically spaced values of 𝜃1 in the same range, showing the general trend of increasing 𝐼𝑀𝑆𝑃𝐸0 

for increasing values of either 𝜃1 or 𝜃2, with the other 𝜃𝑖, 𝑖 = 1,2, fixed. The vertical lines are values of 

𝐼𝑀𝑆𝑃𝐸0 parameterized by logarithmically spaced values of 𝜃2. The form of the plot was chosen for 

consistency with the 𝑛 = 4, Fig. 3 phase diagram of [2]. For 𝜃1 = 32.768 and 0. 001, red, green, blue, 

black lines are used to represent 𝐼𝑀𝑆𝑃𝐸0 values for correlation-parameter functions 𝑝̃ = 1, 𝜈 = 3 2⁄ , 𝜈 =
5 2⁄ , and 𝑝̃ = 2, respectively. For 𝜃1 = 32.768, the green and blue lines are indistinguishable. 

 

3.2 𝒏 = 𝟐 

With two points, and over the same ranges of 𝜃1 and 𝜃2 used in Sec. 3.1’s single-point case, each 

design is a specific case of one of the generic design types shown in Fig. 3.2.1, below. In what 

follows, we will call the five categories shown on the upper passage, traversing Fig. 2 from left 

to right, as the canonical categories. 
 

 

 
 

 

n=1 
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Fig. 3.2.1 Each two-point, two-factor, 𝐼𝑀𝑆𝑃𝐸-optimal design falls into one of the five, generic, 

inversion-symmetric categories shown in the above five columns. From left to right, we name 

these categories “horizontal,” “< 45⸰” (by considering the absolute value of the smallest rotation 

angle between the abscissa and the line connecting the upper-diagram’s points), “45⸰,” “> 45⸰,” 

and “vertical.” 

A key feature of the resulting phase diagram, Fig. 3.2.2 below, is the locus of points for which 

𝜃1 = 𝜃2. This locus, which we have dubbed the “spine,” is displayed in red in the Figure and 

consists exclusively of 45⸰-diagonal-point designs. Attached to the spine are two proximal 

regions, the upper (resp., lower) of which is comprised of less- (resp., greater-) than-45⸰ diagonal 

points, displayed in yellow. The concatenation of the spine and these proximal regions constitute 

a bird’s beak which narrows rapidly as one progresses from upper-right to lower-left in the 

Figure. 

Fig. 3.2.3 demonstrates how the bird’s beak narrows along the spine as 𝜃1 = 𝜃2 decreases. The 

abscissa is the same as in Fig. 3.2.2, while the ordinate is the half-range of values of 𝜃1 for which 

the optimal design has category 45⸰. At 𝜃1 = 𝜃2 = 0.001, the slope is approximately -2. 

Fig. 3.2.4 shows various characteristics of this bird’s beak, including how the angle between the 

abscissa and the straight line between design points grows from zero to 90⸰ and how the half-

distance between design points increases and then decreases, both as functions of 𝜃2, using an 

abscissa, (𝜃2 − 𝜃1) 𝜃1⁄ . 
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Fig. 3.2.2. This plot is similar to Fig. 3.1, but with two design points. The uncolored, upper-left (resp., 

lower-right) contiguous region has horizontal (resp., vertical) points. The upper (lower) of the two yellow 

regions have less-than- (resp., greater-than-) 45⸰ diagonal points. The red line follows the 𝜃1 = 𝜃2 locus, 

along which all designs are in the category “45⸰ diagonal points.” 

 
 

Fig. 3.2.3. The bird’s beak narrows along the spine as 𝜃1 = 𝜃2 decreases. The abscissa is the same as in 

Fig. 3.2.2, while the ordinate is the half-range of values of 𝜃1 for which the optimal design has category 

45⸰, divided by 𝜃2. At 𝜃1 = 𝜃2 = 0.001, the slope is approximately -2. 

n=2 
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Fig. 3.2.4. With reference to Fig. 3.2.2’s parameterized path 𝜃1 = 0.128, this figure shows the following: 

(a) a three-segment, continuous plot of 𝐼𝑀𝑆𝑃𝐸0 vs. (𝜃2 − 𝜃1) 𝜃1⁄ , as the bird’s-beak region is crossed, 

where the designs of the leftmost (resp., rightmost) segment are horizontal (resp., vertical) points. The 

central region contains designs in the other three categories; (b) the absolute value of the smallest angle 

from the abscissa to the straight line connecting the design points; (c) the half-distance (radius) between 

the design points; and, (d) cross-referenced from Fig. 3.2.1, the canonical categories of the design points 

as the bird’s beak is crossed. 
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3.3 𝒏 = 𝟑 

With three points, each design is a specific case of one of the ten generic design types shown in 

Fig. 3.3.1, below. 

 

 
 
Fig. 3.3.1. Each three-point, two-factor, 𝐼𝑀𝑆𝑃𝐸-optimal design falls into one of the eleven, generic, 

inversion-symmetric categories shown in the above seven columns. By column, from left to right, these 

categories are labeled, in boldface, as follows: (Col. 1) “3-in-line horiz.,” with obvious meaning; (Col. 2, 

upper) “H,” denoting the design is symmetric under reflection about the abscissa (horizontal axis); (Col. 

2, lower) “Hb1,” with “b1“ denoting the design has a point on the boundary of the first coordinate; (Col 3, 

upper) “V,” with obvious meaning; (Col. 3, lower) “Vb2;” (Col. 4, upper) “D,” denoting the design is 

symmetric under reflection about the lower-left-to-upper-right diagonal of the square design domain; 

(Col. 4, lower) “D’,” denoting the design is symmetric under reflection about the upper-left-to-lower-right 

diagonal; (Col. 5) “I,” indicating the design has no mirror symmetry; (Col. 6, upper) “Ib1;” (Col. 6, lower) 

“Ib2;” and (Col. 7) “3-in-line vert.” 

 

The phase diagram for 𝜃2 ≤ 𝜃1 is shown in Fig. 3.3.2, with the prominent 𝜃2 = 𝜃1 spine forming 

the lower-right boundary. The phases for 𝜃2 > 𝜃1 are not shown, but would follow under 

reversal of the indices of the coordinates, viz., 𝑥2 ↔ 𝑥1. For example, the near-spine H phase at 

𝜃2 = 𝜃1 − 𝜀, for small 𝜀, becomes a V phase at 𝜃2 = 𝜃1 + 𝜀. 
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Fig. 3.3.2. (upper) This phase diagram for three design points is similar to Fig. 3.2.2, but 

only for the 𝜃2 ≤ 𝜃1 domain. The design-point categories (and their colorings) are the 

following: 3-in-line (purple), Vb2 (green), V (blue), Ib2 (yellow), H (red), and I (dark 

green). For clarity, the symmetric extension to the right of the spine, is not shown. Loci, 

on the spine, of a multiple-point and a triple-point are shown. (lower) After removal of 

the large-area purple, yellow, and red colored regions; the small-area Vb2, V, and I loci 

appear distinctly. 

 

n=3 
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We conjecture that the lower-left or upper-right loci of the phases in Fig. 3.3.2. each has one of 

the following four fates: ending at a terminus, narrowing to a non-terminating bird’s beak on a 

log-log plot of 𝜃2 vs. 𝐼𝑀𝑆𝑃𝐸, narrowing to a bird’s beak on a lin-lin plot of 𝜃2 vs. 𝐼𝑀𝑆𝑃𝐸, or 

expanding in 𝐼𝑀𝑆𝑃𝐸 thickness. These conjectures are summarized in Table 3.3, below. 

 

Phase 
Lower/Upper 

end of 2 range 

Character, from lower to upper, 

when appropriate 

Vb2 
lower log-log bird’s beak 

upper sorcerer’s hat 

V 
lower terminus, expanding in 𝐼𝑀𝑆𝑃𝐸 thickness 

upper narrowing, filamentary, expanding in 𝐼𝑀𝑆𝑃𝐸 thickness 

Ib2 
lower bird’s beak 

upper sorcerer’s hat 

H 
lower bird’s beak 

upper sorcerer’s hat 

I 
lower terminus 

upper expanding 

 
Table 3.3. For each of the five phases in the above table’s left column; then for the lower or upper 

end of the range of 𝜃2 of each of these phases, designated in the middle column; the right column 

reports the conjectured character(s) of the phases in Fig. 3.3.2. For example, the lower end of the 

Vb2 phase is a non-terminating bird’s-beak region on a log-log plot of 𝜃2 vs. 𝐼𝑀𝑆𝑃𝐸, while the 

upper end terminates in a sorcerer’s hat. Another example: The V phase, for its upper-𝜃2 values, 

narrows, becomes a thin filament, and then expands in 𝐼𝑀𝑆𝑃𝐸 thickness. 

 

The phases on the lower-left and far-upper-right of the spine are two, first-order, co-dimension-

one loci of coexisting H and V phases, which we name HV. Between these HV phases, but still 

along the spine, there are also first-order, co-dimension-one loci of coexisting D and D’ phases, 

which we name DD’. These last loci have termini at 𝜃1 = 𝜃2 = 0.4224 and 𝜃1 = 𝜃2 = 9.1395, 
as shown in Fig. 3.3.2. These termini, as well as special off-spine points shall be discussed in a 

subsequent paper. 

 

3.4 𝒏 = 𝟒 

The putatively complete phase diagram for four points was presented earlier [2]. 

 

3.5 𝒏 = 𝟏𝟏 

A coarse phase diagram for eleven points was presented earlier [4]. 

 

4. A four-factor optimal design 

A four-factor, minimum-𝐼𝑀𝑆𝑃𝐸-optimal design was presented earlier [4]. 
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5. 𝒅-factor, (𝒅 + 𝟐)-point, 𝒅-uplet-point optimal designs on 𝒅-cubes 

This section details a remarkable series of 𝑑-uplet-point, 𝑛 = (𝑑 + 2)-point designs over design 

domains with 1 ≤ 𝑑 ≤ 6 factors. 

(𝒅, 𝒏; 𝜽𝟏) = (𝟏, 𝟑;  𝟎. 𝟎𝟔𝟒)  

The 𝐼𝑀𝑆𝑃𝐸-optimal design in one factor and three design points is 𝑥 =
{−0.77076… , 0, 0.77076… }. Its dot diagram is given in Fig. 5.1, below. 

(𝒅, 𝒏; 𝜽𝟏, 𝜽𝟐) = (𝟐, 𝟒;  𝟎. 𝟎𝟔𝟒, 𝟎. 𝟎𝟎𝟎𝟎𝟖)  

With unit increases in 𝑑 and 𝑛, the optimal design falls into the rhombus-with-twins phase of the 

Stormann phase diagram of [2]. Its dot diagram is given in Fig. 5.1, below. 

(𝒅, 𝒏; 𝜽𝟏, 𝜽𝟐, 𝜽𝟑) = (𝟑, 𝟓;  𝟎. 𝟎𝟔𝟒, 𝟎. 𝟎𝟎𝟎𝟎𝟖, 𝟎. 𝟎𝟎𝟎𝟎𝟖)  

With another unit increase in each of 𝑑 and 𝑛, the 𝐼𝑀𝑆𝑃𝐸-optimal design found, after one-

hundred random starts and application of the quadruple-precision qMINOS downhill-search 

optimizer [5] to each, was that given in Table 5.1, below. Its dot diagram is given in Fig. 5.1, 

below. Points numbered 3, 4, and 5 lie clustered on the 𝑥1 = 0 plane, very close to the origin. 

Also given are the radial distances, √𝑥2
2 + 𝑥3

2, from the origin, of these points; the angle of the 

radial vector of each of these points, defined as 𝑡𝑎𝑛(𝜑) ≡ 𝑥3 𝑥2⁄ , reported as 0 ≤ 𝜑 < 360 

degrees; and the value of the design’s 𝐼𝑀𝑆𝑃𝐸. We also defined a “root-mean-squared 

asphericality” as the RMS of these three distances divided by their average distance. This gave 

𝑅𝑀𝑆_𝑎𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙𝑖𝑡𝑦 = 4.0%. 

 

Pt. # 𝑥1 107𝑥2 107𝑥3 107√𝑥2
2 + 𝑥3

2 
𝜑 ≡ 𝑡𝑎𝑛−1 (

𝑥3
𝑥2
) 

(degrees) 

1 -0.77089788995…      0.0…    0.0…   

2  0.77089788988…    0.0…     0.0…   

3  0.0000000…   40.0…  176.0… 180  77 

4  0.0000000… -185.0…   33.0… 188 170 

5  0.0000000…  129.0… -121.0… 177 317 

𝐼𝑀𝑆𝑃𝐸  0.0000120270201638066084232417900523123922 

Table 5.1. The design with lowest 𝐼𝑀𝑆𝑃𝐸 found using the quadruple-precision optimizer is given in the 

above table, along with the design’s 𝐼𝑀𝑆𝑃𝐸. Also given, for each of the three central design points, are 

the point’s radial distance from the origin, √𝑥2
2 + 𝑥3

2, and the angle of the point’s vector above the 𝑥2 

axis, 𝜑. It is clear that each central point lies within a central ball of radius 0.00002. 
 

From the values in Table 5.1, the dihedral angles between the three vectors from the origin to 

each of the points numbered 3, 4, and 5 are 170° − 77° = 93°, 317° − 170° = 147°, and 

(77° + 360°) − 317° = 120°, respectively. If each of these dihedral angles were 120°, then 

Points 3, 4, and 5 would be three vertices of an equilateral triangle. Thus, given the uncertainties 

of the values of 𝑥2 and 𝑥3, it is evident that further optimization of the design, carried out with 
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more precision, might well lead to a global minimum of 𝐼𝑀𝑆𝑃𝐸 with a triplet-point, equilateral-

triangle-based design. Additional support for the possibility of such a triplet-point design is the 

order-unity value of the 𝑅𝑀𝑆_𝑎𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙𝑖𝑡𝑦.  

 

 

  
 𝒅 = 𝟏 
 

 

  
 𝒅 = 𝟐 

 

 𝒅 = 𝟑 

 

Fig. 5.1. The first three in the series of 𝐼𝑀𝑆𝑃𝐸-optimal 𝑑-uplet-point designs are shown, above. In each 

case, 𝜃1 = 0.064, and the other hyperparameters, if present, are 𝜃2 = 𝜃3 = 0.00008.  Each design 

includes a 𝑑-uplet-point at the origin of its [−1,1]𝑑 design domain. Spacings of the central points are 

exaggerated for clarity. [left, (𝑑, 𝑛) = (1, 3)] a central singleton point; [middle, (𝑑, 𝑛) = (2, 4)] central 

twin points, with the vector normal to the common line of the twins along the axis with larger 

hyperparameter, which in this case is the abscissa; and [right, (𝑑, 𝑛) = (3, 5)] central triplet points, with 

the vector normal to the common plane of the triplets along the axis with largest hyperparameter. 

Refinement of the Table 5.1 design, using Maple [6] running with 100-digit precision, indeed 

revealed a triplet-point design with the triplet points coinciding with the vertices of an equilateral 

triangle (a.k.a. a regular 3-cell) lying in the 𝑥1 = 0 plane, with 𝜑 taking one of the following 

twelve values: (2𝑚 + 1)𝜋 12⁄  radians, with 𝑚 = 0, 1,… , 12. After fixing the orientation at 𝜑 =
5π 12⁄ , an objective function of 

𝐼𝑀𝑆𝑃𝐸0 = (
0.00001 20270 20163 80436 87372 41927 83048 72010 94549 86639
            &05924 47074 26205 030171 4…                                                       

) 

was found for the design in Table 5.2, below, via a convergence study of small radii of the 

vertices of the equilateral triangle from the origin, as well as single-point perturbations from this 

design. The ampersand denotes a continuation of the preceding line. 

 

𝑥1 1033𝑥2 1033𝑥3 

-0.7708978900145321587787920372041945 0.0 0.0 

 0.7708978900145321587787920372041945 0.0 0.0 

 0.00           …                  00 cos( 5/12) sin( 5/12) 

 0.00           …                  00 cos(13/12) sin(13/12) 

 0.00           …                  00 cos(21/12) sin(21/12) 

Table 5.2. The IMSPE-optimal design found using 100-digit-precision refinement of the design of Table 

5.1 is given. 

The convergence study of the 𝐼𝑀𝑆𝑃𝐸 vs. radial distances from the origin of the triplet points 

demonstrated quadratic convergence, as shown in Fig. 5.2, below. In addition, the 𝐼𝑀𝑆𝑃𝐸 of the 

equilateral triplet in the (𝑥2, 𝑥3) plane is modulated as it rotates about the origin, as shown in 
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Fig. 5.3, below, which uses a polar-coordinate version of the objective function, 𝐼𝑀𝑆𝑃𝐸(𝑟,𝜑). 
We surmise this modulation is a boundary effect that would not be present if the coincident 

design and prediction domains were a unit-radius ball. We also surmise that the triplet-point 

design would survive a change in the coincident design and prediction domains to such a unit-

radius ball. Support for this surmise is given by the fact that the Stormann twin-point design 

survived a change in its boundary from the interior of a square to a disk [7]. 

 

 

Fig. 5.2. This log-log plot shows the parabolic convergence of the 

𝐼𝑀𝑆𝑃𝐸 to 𝐼𝑀𝑆𝑃𝐸0, vs. radius, for radii in the range 10-3 to 10-18. 

 

 
Fig. 5.3. The 𝐼𝑀𝑆𝑃𝐸 expressed in polar coordinates, i.e., 𝐼𝑀𝑆𝑃𝐸(𝑟, 𝜑), is periodically modulated as the 

triplet rotates rigidly about the origin by angle 𝜑 in the (𝑥2, 𝑥3) plane, with a repeat angle of 15°. The 

relative modulation is independent of 𝑟. The amplitude of the modulation vanishes in the limit 𝑟 → 0. 
 

More generally, the putatively optimal designs form a set whose members are one of the designs 

given in Table 5.3, below, for 𝑚 = 0, 1, 2 or 3, or any of the 5! trivial permutations of point 

numbers, i.e., row permutations. Designs formed by the interchange 𝑥2 ↔ 𝑥3, i.e., column 

exchange, are already included in the ultimate-sentence’s count, as can be seen by the identity 

𝑐𝑜𝑠(𝛼) = 𝑠𝑖𝑛(𝛼 + 6𝜋/12). 
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𝑥1 1033𝑥2 1033𝑥3 

-0.7708978900145321587787920372041945 0.0 0.0 

 0.7708978900145321587787920372041945 0.0 0.0 

 0.00           …                  00 cos[(2m+ 5)/12] sin[(2m+ 5)/12] 

 0.00           …                  00 cos[(2m+13)/12] sin[(2m+13)/12] 

 0.00           …                  00 cos[(2m+21)/12] sin[(2m+21)/12] 

Table 5.3. The 𝐼𝑀𝑆𝑃𝐸(𝑟, 𝜑) of the design in the Table is invariant under changes in 𝑚, for 𝑚 = 0, 1, 2, 3. 
For example, the argument of the cosine in the table’s third row and second column can be  

5𝜋 12⁄ , 7𝜋 12⁄ , 9𝜋 12⁄ , or 11𝜋 12⁄ . After trivial allowance for permutation of rows, the argument of the 

cosine in that location of the table can be any one of the set {𝜋 12⁄ , 2𝜋 12⁄ , 3𝜋 12⁄ ,⋯ , 23𝜋 12⁄ } of 

angles spaced by 𝜋 12⁄  radians or 15°. 

(𝒅, 𝒏) = (𝟒, 𝟔), (𝟓, 𝟕), and (𝟔, 𝟖), with 𝜽𝟏 = 𝟎. 𝟎𝟔𝟒 and 𝜽𝟐 = 𝜽𝟑 = ⋯𝜽𝒅 =  𝟎. 𝟎𝟎𝟎𝟎𝟖 

For the three cases in the sub-heading, the best designs found using the qMINOS quadruple-

precision optimizer [5], along with the corresponding values of 𝑅𝑀𝑆_𝑎𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙𝑖𝑡𝑦, are given 

in Table 5.4, below. For the first (resp., second; third) case, the best design was the 77’th of 100, 

(resp., 85’th of 100; 3’rd of 10) random starts. 

 

d n 
Cluster 

type 

Pt. 

#’s 
x1 x2 x3 x4 x5 x6 

105
* 

IMSPE 

RMS 

asphericality 

(%) 

1 3 
single-

ton 

1,2  0.77076… 
 

    
0.763… 0 

3 0 

2 4 twin 
1,2  0.77082… 0     

0.982… 0 
3,4 0    

3 5 triplet 
1,2  0.77089… 0 0    

1.202… 0 
3 to 5 0 Table 5.1 

4 6 
quad-

ruplet 

1,2 0.77096… 0 0 0   
1.422… 49 

3 to 6 0 𝑟 < 0.00004 

5 7 
quin-

tuplet 

1,2 0.77103… 0 0 0 0  
1.643… 69 

3 to 7 0 𝑟 < 0.0002 

6 8 
sex-

tuplet 

1,2 0.77110… 0 0 0 0 0 
1.864… 59 

3 to 8 0 𝑟 <  0.001 
 

Table 5.4. The 𝐼𝑀𝑆𝑃𝐸-optimal designs, values of 𝐼𝑀𝑆𝑃𝐸, and 𝑅𝑀𝑆_𝑎𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙𝑖𝑡𝑦 are tabulated, above, 

for the series of designs discussed in the main text, with 𝑛 = 𝑑 + 2, 𝜃1 = 0.064, and 𝜃2 = 𝜃3 = ⋯ =
𝜃𝑑 = 0.00008. The loci of the triplet of central points is given, as indicated, in the earlier Table 5.1. The 

loci of the quadruplet of central points is vague, due to insufficient numerical precision, although we 

report, for the lowest-𝐼𝑀𝑆𝑃𝐸 design found, that the maximum radial distance 𝑟 of any central point from 

the origin was less than 0.00004, and the 𝑅𝑀𝑆_𝑎𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙𝑖𝑡𝑦 was 49%. The corresponding values for 

quintuplet-point and sextuplet-point designs are also given. Cells with green backgrounds are expected to 

change to much lower values, possibly consistent with zero, upon future analysis with higher-precision 

arithmetic. 
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We were led to the conjecture that, upon further optimization, the central points in each of these 

three cases, would be vertices of a uniform tetrahedron (a.k.a. a regular 4-cell), a regular 5-cell, 

and a regular 6-cell, respectively. Further, we conjectured that this trend generalized to the 

existence of optimal-design phases with central points on the vertices of a 𝑑-cell for the general 

case 𝑛 = 𝑑 + 2, within, of course, suitable ranges of the corresponding hyperparameters. 

 

6 Multiple-cluster optimal designs 

We report the discovery of a putatively 𝐼𝑀𝑆𝑃𝐸-optimal design with two pairs of twin points, 

what we dub a “duet twin.” This design’s parameters, hyperparameters, and 𝐼𝑀𝑆𝑃𝐸 were 

(𝑑, 𝑛; 𝜃1, 𝜃2; 𝐼𝑀𝑆𝑃𝐸) = (2, 17;  0.128, 0.006;  2.9108x10−10). The design search used 1,000 

random starts of the quadruple-precision program qMINOS [5], followed by refinement of the 

best design, using Maple [6] running with 40-digit precision. The resulting dot diagram is given 

in Fig. 6.1, below. A very long qMinos run with 10,000 random starts was made in order to 

generate the detailed histogram shown in Fig. 6.2. 62% of the designs found in this run had 

𝐼𝑀𝑆𝑃𝐸 values within 0.4% of the putative global minimum. 

 

 
 

Fig. 6.1. (left) The above (𝑑, 𝑛; 𝜃1, 𝜃2; 𝐼𝑀𝑆𝑃𝐸) = (2, 17; 0.128, 0.006;  2.9108x10
−10) 

design is the first putatively 𝐼𝑀𝑆𝑃𝐸-optimal design with two pairs of twin points. The 

circled “2”s with arrowheads denote respectively the twins’ centers and the bi-directions 

connecting proximal points. The arrowhead on the RHS (resp., LHS) is tilted slightly 

counter-clockwise (resp., clockwise) of vertical. The design is symmetric about reflection 

about the ordinate. Another duet-twin design with identical objective function can be 

generated by reflection about the abscissa. (right) In the course of finding the putatively 

optimal design on the LHS, we also discovered the locally optimal, quartet-twin design 

on the RHS, via manual forcing of symmetry followed by Maple [6] refinement using 60-

digit precision. This design is symmetric about reflection about the abscissa, as well as 

symmetric under inversion. A second quartet-twin design with identical objective 

function can be generated by reflection about the ordinate. 
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Fig. 6.2. Downhill searches of 10,000 random starts of the (𝑑, 𝑛; 𝜃1, 𝜃2) =
(2, 17;  0.128, 0.006) problem yielded this histogram of the occurrences of the 𝐼𝑀𝑆𝑃𝐸.  

 
7. Summary 

We have demonstrated three, two-factor, 𝐼𝑀𝑆𝑃𝐸-optimal phase diagrams, as well as a variety of 

isolated 𝐼𝑀𝑆𝑃𝐸-optimal designs, notably including a triplet-point design with the triplet’s inter-

point separations less than 10−33, as well as a duet–twin-point design. 
 

8. Research reproducibility 

We support the recommendations of ICERM’s Workshop on Reproducibility in Computational 

and Experimental Mathematics Workshop [8]. All data and figure-generation files used in this 

research are available to responsible parties, upon request to selden_crary (at) yahoo (dot) com. 
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