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2. Introduction 

We reported previously [1] that the 𝐼𝑀𝑆𝑃𝐸 of a design containing a pair of twin points is almost 

always (a.a.) a pole-free, low-degree–truncated, rational, generalized function, in the coordinates 

of the twin-point separation, and that this 𝐼𝑀𝑆𝑃𝐸 includes a.a an essential discontinuity. After 

preliminaries in the present paper’s Sections 2 through 6, Section 7 provides a proof that the 

𝐼𝑀𝑆𝑃𝐸 is a low-degree–truncated, rational, generalized-function in the coordinates of either 

half-vector displacement between the loci of two design points, whether proximal or not. Sec. 8 

provides examples of the related essential discontinuities. 

 

3. Matrix identities 

For 𝑁x𝑁 matrix 𝑨, (𝑁 + 1)x(𝑁 + 1) invertible symmetric matrix 𝑳, and (𝑁 + 1)x(𝑁 + 1) 
symmetric matrix 𝑹, we have the following four identities. 
 

𝑡𝑟(𝑳−𝟏𝑹) = ∑ ∑ (𝐿−1)𝑖,𝑗
𝑁
𝑗=0 𝑅𝑗,𝑖

𝑁
𝑖=0 = ∑ (𝐿−1)𝑖,𝑗

𝑁
𝑖,𝑗=0 𝑅𝑖,𝑗. (MI3.1) 

(𝐿−1)𝑖,𝑗 =
[(−1)𝑖+𝑗|𝑳−𝒊,−𝒋|]

|𝑳|

T

=
(−1)𝑖+𝑗|𝑳−𝒋,−𝒊|

|𝑳|
=

(−1)𝑖+𝑗|𝑳−𝒊,−𝒋|

|𝑳|
, where 𝑳−𝒊,−𝒋 is matrix 𝑳 with Row 𝑖 and 

Column 𝑗 removed. [Eqs. 2-5 and 2-13 of Ref. 6].  (MI3.2) 

Leibniz formula: |𝑨| = ∑ [𝑠𝑔𝑛(𝜎)∏ 𝑎𝑖,𝜎𝑖
𝑁
𝑖=1 ]𝜎∈𝑆𝑁 , where the sum is over all permutations of the 

symmetric group 𝑆𝑁; 𝑠𝑔𝑛(𝜎) denotes the signature of 𝜎; and, in any of the 𝑁! summands, the 

factor ∏ 𝑎𝑖,𝜎𝑖
𝑁
𝑖=1  denotes the product of the entries at positions (𝑖, 𝜎𝑖), where 𝑖 ranges from 1 to 𝑁 

[Page 24 of Ref. 6].  (MI3.3) 

Laplace formula (a.k.a. cofactor expansion): For any given row index 𝑖, |𝑨| =
∑ 𝐴𝑖,𝑗(−1)

𝑖+𝑗|𝑨−𝒊,−𝒋|
𝑁
𝑗=1 , or for any given column index 𝑗, |𝑨| = ∑ 𝐴𝑖,𝑗(−1)

𝑖+𝑗|𝑨−𝒊,−𝒋|
𝑁
𝑖=1  [Page 

27 of Ref. 6].  (MI3.4) 

 

4. Assumptions and notation 

We use the assumptions and notation of [1,7], as listed and extended in this section. 

Vectors and matrices are typeset in a bold font, whereas scalars are not. 

𝑁 ≥ 2 point, D-factor designs for computer experiments are the subject of interest. 

Design: {𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝑵} = {(𝑥1,1, 𝑥1,2, ⋯ , 𝑥1,𝐷), (𝑥2,1, 𝑥2,2, ⋯ , 𝑥2,𝐷),⋯ , (𝑥𝑁,1, 𝑥𝑁,2, ⋯ , 𝑥𝑁,𝐷)}.  

Coincident design domain and prediction domain: [−1,1]𝐷 , i.e., −1 ≤ 𝑥𝑖,𝑗 ≤ 1. 

The loci of the two design points, with midpoint 𝒙𝒎, whose half-separation coordinates, ∆, are 

used for the expansions: 𝒙𝒎 ± ∆. 

Model function, with a constant trend: 𝑌(𝑥) = 𝛽0 + 𝑍(𝒙). 

Normalized objective function (from Eq. 2.9 of [7]): 𝐼𝑀𝑆𝑃𝐸 = 1 − 𝑡𝑟(𝑳−𝟏𝑹). (4.1) 

𝑁x𝑁 correlation matrix of design: 𝑽 = (

⋮ ⋮ ⋮

⋯ 𝑒−∑ 𝜃𝑘(𝑥𝑖,𝑘−𝑥𝑗,𝑘)
2𝐷

𝑘=1 ⋯
⋮ ⋮ ⋮

) , 1 ≤ 𝑖, 𝑗 ≤ 𝑁, 
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where 𝜽 ≡ [𝜃1, 𝜃2, ⋯ , 𝜃𝐷]
T
 are positive covariance parameters. 

(𝑁 + 1)x(𝑁 + 1) symmetric matrix 𝑳, with row and column indices 0 through 𝑁, follows: 

𝐿 ≡

(

 
 

0 | 1 ⋯ 1
− − | − − − − −−

1 |

⋮ | 𝑽

1 | )

 
 
.  

(𝑁 + 1)x(𝑁 + 1) symmetric matrix 𝑹, with row and column indices to account for integration 

over the prediction domain: 

𝑹 ≡
1

2𝐷
∫ ∫ ⋯∫

(

 
 
 
 

1 | 𝑣1 𝑣2 ⋯ 𝑣𝑁
−− | − −− −−− −−− −−−

𝑣1 | 𝑣1
2 𝑣1𝑣2 ⋯ 𝑣1𝑣𝑁

𝑣2 | 𝑣1𝑣2 𝑣2
2 ⋯ 𝑣2𝑣𝑁

⋮ | ⋮ ⋮ ⋱ ⋮

𝑣𝑁 | 𝑣1𝑣𝑁 𝑣2𝑣𝑁 ⋯ 𝑣𝑁
2 )

 
 
 
 

𝑑𝑥1𝑑𝑥2⋯𝑑𝑥𝐷
1

−1

1

−1

1

−1
,  

where 𝒗𝑖 ≡ 𝑒−∑ 𝜃𝑘(𝑥𝑖,𝑘−𝑥𝑘)
2𝐷

𝑘=1 . 

N.B. 𝑥𝑖,𝑘 is a design-point coordinate, while 𝑥𝑘 is an independent variable. 

The integrals, immediately above, were detailed in [8], as follows: 
 

𝑹 =

(

 
 
 
 

1 | ⋯ 𝑆1(𝒙𝒋, 𝜽) ⋯

− | − − − − − −−−−−−−−− −− −−
⋮ | ⋯ ⋮ ⋯

∙ | ⋮ 𝑆2 (
𝒙𝒊+𝒙𝒋

2
, 𝜽) 𝑒  

−∑ 𝜃𝑘(𝑥𝑖,𝑘−𝑥𝑗,𝑘)
2𝐷

𝑘=1
2 ⋮

⋮ | ⋯ ⋮ ⋯ )

 
 
 
 

, where 

𝑆ℓ(𝒙𝒊, 𝜽) = ∏ √
𝜋

16ℓ𝜃𝑘
{𝑒𝑟𝑓[√ℓ𝜃𝑘(1 + 𝑥𝑖,𝑘)] + 𝑒𝑟𝑓[√ℓ𝜃𝑘(1 − 𝑥𝑖,𝑘)]}

𝐷
𝑘=1 , ℓ = 1,2. 

Taylor-series expansions of 𝑒𝑥 and 𝑒𝑟𝑓(𝑥) have infinite radii of convergence. Such expansions 

are carried out, in this paper, in powers of √𝜃𝑘∆𝑘 or √𝜃𝑘𝛿𝑘, 𝑘 = 1,2,⋯ , 𝐷. 

Indices of the pair of points, in 𝑽 or 𝑹, whose half-separation coordinates are used for the 

Taylor-series expansions: 𝑁 − 1 and 𝑁. 

For a matrix 𝑨 with elements Taylor-series expandable in powers of √𝜃𝑘∆𝑘, 𝑘 = 1,2,⋯ , 𝐷;  

𝑨(𝒑) is defined as 𝑨, but including only 𝑝-degree terms (√𝜃𝑘∆𝑘)
𝑝
, 𝑘 = 1,2,⋯ , 𝐷. 

“𝑂(∆2)” is shorthand for the terms 𝑂(𝜃1∆1
2), 𝑂(𝜃2∆2

2),⋯ , 𝑂(𝜃𝐷∆𝐷
2 ). 

“𝑂(𝛿2)” is shorthand for the terms 𝑂(𝜃1𝛿1
2), 𝑂(𝜃2𝛿2

2),⋯ , 𝑂(𝜃𝐷𝛿𝐷
2). 

“Low-degree–truncated function” is defined in Proposition 1 of Section 6. 

“The landscape,” local region,” “post,” and “Nu approximant” are defined in Section 8. 
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5. Expanding in the dimensionless coordinates √𝜽𝒌∆𝒌,   𝒌 = 𝟏, 𝟐,⋯ ,𝑫 

The focus in this paper is on expansions in the coordinates of the half-vector displacement, ∆, 
between the loci of two arbitrarily chosen design points, 𝒙𝒎 ± ∆. 
 

Matrix 𝑽 

𝑽 can be divided into blocks 𝑽 ≡ (

𝑽𝑫 | 𝑽𝑬
−− | − −
∙ | 𝑽𝑭

). The (𝑁 − 2)x2 URH block is 

 

𝑽𝑬 = (

⋮ ⋮

𝑒−∑ 𝜃𝑘(𝑥𝑖,𝑘−𝑥𝑚,𝑘−∆𝑘)
2𝐷

𝑘=1 𝑒−∑ 𝜃𝑘(𝑥𝑖,𝑘−𝑥𝑚,𝑘+∆𝑘)
2𝐷

𝑘=1

⋮ ⋮

) =

(

 
 

⋮ ⋮

𝑎𝑖 [

1
+𝐴𝑖

+𝑂(∆2)
] 𝑎𝑖

⋮ ⋮

[

1
−𝐴𝑖

+𝑂(∆2)
]

)

 
 
,  

where 
 

𝑎𝑖 ≡ 𝑒
−∑ 𝜃𝑘(𝑥𝑖,𝑘−𝑥𝑚,𝑘)

2𝐷
𝑘=1    𝑖 = 1, 2,⋯ ,𝑁 − 2; and 

𝐴𝑖 ≡ 2∑ √𝜃𝑘(𝑥𝑖,𝑘 − 𝑥𝑚,𝑘)√𝜃𝑘∆𝑘
𝐷
𝑘=1 . N.B.: It is correct that √𝜃𝑘 appears twice, here. 

 

 

The 2x2 LRH block is 𝑽𝑭 =

(

 
 

1 [
1

+𝑂(∆2)]

[
1

+𝑂(∆2)] 1
)

 
 
.  

 

Then writing symmetric 𝑽, using index 𝑖 but not index 𝑗, 
 

𝑽 ≡

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 ⋯ 𝑉1,𝑖 ⋯ 𝑉1,𝑁−2 |     𝑎1 [

1
+𝐴1

+𝑂(∆2)
]      𝑎1 [

1
−𝐴1

+𝑂(∆2)
]

⋮ ⋱ ⋮ ⋮ ⋮ |          ⋮           ⋮

𝑉1,𝑖 ⋯ 1 ⋯ 𝑉𝑖,𝑁−2 |      𝑎𝑖 [

1
+𝐴𝑖

+𝑂(∆2)
]      𝑎𝑖 [

1
−𝐴𝑖

+𝑂(∆2)
]

⋮ ⋮ ⋮ ⋱ ⋮ |           ⋮           ⋮

𝑉1,𝑁−2 ⋯ 𝑉𝑖,𝑁−2 ⋯ 1 | 𝑎𝑁−2 [

1
+𝐴𝑁−2
+𝑂(∆2)

] 𝑎𝑁−2 [

1
−𝐴𝑁−2
+𝑂(∆2)

]

− − − −−− − −−−−−− − −−−−−−− | − −−−−−− −−−−−−−

𝑎1 [

1
+𝐴1

+𝑂(∆2)
] ⋯ 𝑎𝑖 [

1
+𝐴𝑖

+𝑂(∆2)
] ⋯ 𝑎𝑁−2 [

1
+𝐴𝑁−2
+𝑂(∆2)

] | 1            [
1

+𝑂(∆2)
]

𝑎1 [

1
−𝐴1

+𝑂(∆2)
] ⋯ 𝑎𝑖 [

1
−𝐴𝑖

+𝑂(∆2)
] ⋯ 𝑎𝑁−2 [

1
−𝐴𝑁−2
+𝑂(∆2)

] | [
1

+𝑂(∆2)
] 1

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.  

 (5.1) 
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Matrix 𝑳 
 

It follows that matrix 𝑳 can be expressed in similar, but more abbreviated, form as, 

 

𝑳 ≡

(

 
 
 
 
 
 
 
 
 
 
 
 

0 | 1 ⋯ 1 |      1      1
− | − − − − −−−−− −−− | − − − − −− −−−−−−
1 | 1 ⋯ 𝑉1,𝑁−2 |      ⋮      ⋮

⋮ | ⋮ ⋱ ⋮ | 𝑎𝑖 [

1
+𝐴𝑖

+𝑂(∆2)
] 𝑎𝑖 [

1
−𝐴𝑖

+𝑂(∆2)
]

1 | 𝑉1,𝑁−2 ⋯ 1 |      ⋮      ⋮

− | − − − − −−−−− −−− | − − − − −− −−−−−−−

1 | ⋯ 𝑎𝑖 [

1
+𝐴𝑖

+𝑂(∆2)
] ⋯ |      1      [

1
+𝑂(∆2)

]

1 | ⋯ 𝑎𝑖 [

1
−𝐴𝑖

+𝑂(∆2)
] ⋯ |      [

1
+𝑂(∆2)

]      1
)

 
 
 
 
 
 
 
 
 
 
 
 

.  

 

Matrix 𝑹 
 

Matrix 𝑹 can be divided into blocks as 𝑹 ≡

(

 
 

𝑹𝑨 | 𝑹𝑩 | 𝑹𝑪
−− | − − | − −

| 𝑹𝑫 | 𝑹𝑬
−− | − − | − −

| | 𝑹𝑭 )

 
 
, where 

 

𝑹𝑭 = (
𝑆2(𝒙𝒎 + ∆,𝜽) + 𝑂(∆

2) 𝑆2(𝒙𝒎, 𝜽) + 𝑂(∆
2)

𝑆2(𝒙𝒎, 𝜽) + 𝑂(∆
2) 𝑆2(𝒙𝒎 − ∆, 𝜽) + 𝑂(∆

2)
)  

 

 = (
𝑆2(𝒙𝒎, 𝜽) + ∆ ∙ 𝛁𝒙𝑆2(𝒙, 𝜽)|𝒙=𝒙𝒎 𝑆2(𝒙𝒎, 𝜽)

𝑆2(𝒙𝒎, 𝜽) 𝑆2(𝒙𝒎, 𝜽) − ∆ ∙ 𝛁𝒙𝑆2(𝒙, 𝜽)|𝒙=𝒙𝒎
) + (𝑂(∆2)), (5.2) 

 

and where ∆≡ (∆1, ∆2, ⋯ , ∆𝐷); " ∙ " denotes inner product; 𝛁𝒙 is the gradient operator defined as 

𝛁𝒙𝑓 ≡ ∑
𝛿𝑓

𝛿𝑥𝑘
𝒊𝒌

𝐷
𝑘=1 , where 𝒊𝒌,   𝑘 = 1,2,⋯ , 𝐷 is the standard unit vector in the direction of the 

𝑥𝑚,𝑘 coordinate; and (𝑂(∆2)) represents a 2x2 matrix of 𝑂(∆2) terms.  

 

6. Proposition 1: |𝑽| and |𝑳| are low-degree–truncated functions 

Proposition 1: Given a 𝐷-factor, 𝑁-point design that includes a pair of not-necessarily-proximal 

points with midpoint 𝒙𝒎, viz., 𝒙𝑵−𝟏 = 𝒙𝒎 + ∆ and 𝒙𝑵 = 𝒙𝒎 − ∆; and given the design’s 

corresponding Gaussian-correlation matrix, 𝑽, with elements 𝑉𝑖,𝑗 ≡ 𝑒
−∑ 𝜃𝑘(𝑥𝑖,𝑘−𝑥𝑗,𝑘)

2𝐷
𝑘=1 , 𝑖, 𝑗 =

1,2,⋯ ,𝑁; the expansion of |𝑽| in the dimensionless Cartesian components, √𝜃𝑘∆𝑘, contains no 
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constant or linear terms. In other words, |𝑽| is a low-degree–truncated function of minimum 

degree two. 
 

Proof: We use “Type-0” and “Type-1” arguments, defined by examples: 
 

Type-0 argument 

By the Leibniz formula of Matrix Identity MI3.1, a constant term in |𝑽| can only arise from a 

product of 𝑁 constants in the power-series of 𝑽, and thus |𝑽|(0) = |𝑽(𝟎)|. Then, because 𝑽(𝟎), 

based on Eq. 5.1.1, above, has two identical columns, |𝑽(𝟎)| = 0. Thus, |𝑽| contains no constant 

term. 
 

Type-1 argument 

Now consider whether |𝑽| can contain first-degree term in the √𝜃𝑘∆𝑘. If 𝑁 = 2, 𝑽 consists 

solely of the LRH 2𝑥2 block of Eq. 5.1, above, where there are no such terms, and the proof is 

complete. If 𝑁 > 2, refer to Eq. 6.1, immediately below, and consider the linear term 𝑎1𝐴1 in 

Row 𝑁 − 1 and Col. 1 of the full matrix 𝑽(𝟏). This term can appear in isolation in |𝑽| only via 

the signed product of itself and 𝑁 − 1 constants, each of the latter of which may be 1; 𝑎ℓ, ℓ =
1,⋯ ,𝑁 − 2; or 𝑉𝑖,𝑗 , 𝑖 = 2,⋯ ,𝑁 − 2  &  𝑗 = 1,⋯ ,𝑁 − 2. In Eq. 6.1, we highlight in green the 

specific 𝑎1𝐴1 term and proceed by crossing out its element’s row and column to leave 𝑽 with 

both Row 𝑁 − 1 and Col. 1 removed, which we define as 𝑽−(𝑵−𝟏),−𝟏
(𝟏) . The desired linear term in 

𝐴1 will appear as 𝑠𝑔𝑛[element at Row (𝑁 − 1) and Col. 1] ∙ |𝑽−(𝑵−𝟏),−𝟏
(𝟏)

|, where 𝑠𝑔𝑛 is the 

relevant signature of the term in the Laplace formula (cf. MI4) for |𝑽|. 
 

𝑽−(𝑵−𝟏),−𝟏 =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 1 𝑉1,2 ⋯ 𝑉1,𝑁−2 | [

𝑎1
+𝑎1𝐴1
+𝑂(∆2)

] [

𝑎1
−𝑎1𝐴1
+𝑂(∆2)

]

𝑉1,2 1 ⋯ 𝑉2,𝑁−2 | [

𝑎2
+𝑎2𝐴2
+𝑂(∆2)

] [

𝑎2
−𝑎2𝐴2
+𝑂(∆2)

]

⋮ ⋮ ⋱ ⋮ | ⋮ ⋮

𝑉1,𝑁−2 𝑉2,𝑁−2 ⋯ 1 | [

𝑎𝑁−2
+𝑎𝑁−2𝐴𝑁−2
+𝑂(∆2)

] [

𝑎𝑁−2
−𝑎𝑁−2𝐴𝑁−2
+𝑂(∆2)

]

− − − −− −−−−− − −−−−−− | − − −−−−− −−−−−−−

[

𝑎1
+𝒂𝟏𝑨𝟏
+𝑂(∆2)

] [

𝑎2
+𝑎2𝐴2
+𝑂(∆2)

] ⋯ [

𝑎𝑁−2
+𝑎𝑁−2𝐴𝑁−2
+𝑂(∆2)

] | 1 [
1

+𝑂(∆2)
]

[

𝑎1
−𝑎1𝐴1
+𝑂(∆2)

] [

𝑎2
−𝑎2𝐴2
+𝑂(∆2)

] ⋯ [

𝑎𝑁−2
−𝑎𝑁−2𝐴𝑁−2
+𝑂(∆2)

] | [
1

+𝑂(∆2)
] 1

}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

.  

  (6.1) 

To simplify the determination of |𝑽−(𝑵−𝟏),−𝟏
(𝟏) |, we drop the other 𝐴1’s and all 𝐴𝑖   𝑖 ≠ 1, as these 

would contribute second-degree-or-higher terms to |𝑽−(𝑵−𝟏),−𝟏
(𝟏)

|, and such terms are not of 

current interest. Thus, 
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| 𝑽−(𝑵−𝟏),−𝟏
(𝟏)

𝑵 | =

|

|

𝑉1,2 ⋯ 𝑉1,𝑁−2 | 𝑎1 𝑎1
1 ⋯ 𝑉2,𝑁−2 | 𝑎2 𝑎2
⋮ ⋱ ⋮ | ⋮ ⋮

𝑉2,𝑁−2 ⋯ 1 | 𝑎𝑁−2 𝑎𝑁−2
−−− − −− −−− | − − − − −−
𝑎2 ⋯ 𝑎𝑁−2 | 1 1

|

|

,  

 

and this is zero, because the ultimate expression has two identical rows or columns. Also, its 

contribution to linear terms of |𝑽| is zero. The same argument is true, mutatis mutandis, for any 

other 𝐴𝑖 in Eq. 6.1. Thus, |𝑽| contains no linear term in √𝜃𝑘∆𝑘, 𝑘 = 1,2,⋯ , 𝐷.    
 

A relevant corollary follows. 
 

Corollary: The expansion of |𝑳| in the dimensionless Cartesian components, √𝜃𝑘∆𝑘, contains no 

constant or linear terms. Proof: Follows from the same reasoning as that of Proposition 1.  

 

7. Proposition 2: 𝑰𝑴𝑺𝑷𝑬 is a low-degree–truncated (generalized) rational 

function with minimum-degree two 

Proposition 2: Given the design and correlation matrix in the statement of Proposition 1; then 

the normalized, integrated, mean-squared error of the design, 𝐼𝑀𝑆𝑃𝐸 = 1 − 𝑡𝑟(𝑳−𝟏𝑹 ); when 

expanded in the Cartesian components √𝜃𝑘∆𝑘 of either half-vector (or vector) between any two 

distinct design points; and when expressed as a rational, possibly generalized, function; contains 

neither constant nor linear terms in its numerator or denominator. 
 

Proof: From Eq. 4.1, Matrix Identities MI3.1 and MI3.2, and the symmetries of 𝑹 and 𝑳−𝟏, 
 

𝐼𝑀𝑆𝑃𝐸 = 1 − 𝑡𝑟(𝑳−𝟏𝑹) = 1 − ∑ (𝑳−𝟏)𝑖,𝑗
𝑁
𝑖,𝑗=0 𝑅𝑖,𝑗 =

|𝑳|−∑ (−1)𝑖+𝑗|𝑳−𝒊,−𝒋|𝑅𝑖,𝑗
𝑁
𝑖,𝑗=0

|𝑳|
.  

 

Because the Taylor-series expansions of 𝑒𝑥 and 𝑒𝑟𝑓(𝑥) are convergent, |𝑳−𝒊,−𝒋| and 𝑅𝑖,𝑗 can be 

expanded in power-series of √𝜃𝑘∆𝑘 into terms of order-zero, order-one, etc., as follows: 

|𝑳−𝒊,−𝒋| = |𝑳−𝒊,−𝒋|
(0)
+ |𝑳−𝒊,−𝒋|

(1)
+ |𝑳−𝒊,−𝒋|

(2)
+⋯ and 𝑅𝑖,𝑗 = 𝑅𝑖,𝑗

(0) + 𝑅𝑖,𝑗
(1) + 𝑅𝑖,𝑗

(2). Then, 
 

𝐼𝑀𝑆𝑃𝐸 =
|𝑳|−∑ (−1)𝑖+𝑗𝑁

𝑖,𝑗=0 {|𝑳−𝒊,−𝒋|
(0)
[𝑅𝑖,𝑗
(0)
+𝑅𝑖,𝑗

(1)
]+|𝑳−𝒊,−𝒋|

(1)
𝑅𝑖,𝑗
(0)
}+𝑂(∆2)

|𝑳|
.  (7.1) 

We explore |𝑳−𝒊,−𝒋|
(0)

 and |𝑳−𝒊,−𝒋|
(1)
, in turn. 

 

|𝑳−𝒊,−𝒋|
(0)
:  

 

Reducing the elements of Eq. 5.1 to just its constant terms, gives, 
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𝑳(𝟎) ≡

(

 
 
 
 
 
 

0 | 1 ⋯ 1 | 1 1
− − | − − − − − −−− | − − − −
1 | 1 ⋯ 𝑉1,𝑁−2 | ⋮ ⋮

⋮ | ⋮ ⋱ ⋮ | 𝑎𝑖 𝑎𝑖
1 | 𝑉1,𝑁−2 ⋯ 1 | ⋮ ⋮

− − | − − − − − −−− | − − − −
1 | ⋯ 𝑎𝑖 ⋯ | 1 1
1 | ⋯ 𝑎𝑖 ⋯ | 1 1 )

 
 
 
 
 
 

, with blocks 

 

𝑳(𝟎) ≡ (

𝑳𝑨
(𝟎)

| 𝑳𝑪
(𝟎)

−− | − −

∙ | 𝑳𝑭
(𝟎)

). We can draw conclusions about the values of various |𝑳−𝒊,−𝒋
(𝟎) |, 0 ≤

𝑖, 𝑗 ≤ 𝑁. 
 

When 𝑁=2, 𝑳(𝟎) ≡ (

0 | 1 1
− − | − − − −
1 | 1 1
1 | 1 1

). By inspection, when indices 𝑖 and 𝑗 are not both in 

Block 𝑳𝑭
(𝟎), there are two identical rows or columns, and |𝑳−𝒊,−𝒋

(𝟎) | = 0; whereas for indices 𝑖 and 𝑗 

both in Block 𝑳𝑭
(𝟎), |𝑳−𝒊,−𝒋

(𝟎) | is immune to intra-block changes in 𝑖 and 𝑗, and |𝑳−𝒊,−𝒋
(𝟎) | is a constant 

that we dub 𝐿𝑁 . It is clear that 𝐿2 = −1, but for the purpose of the proof at hand, this specific 

value is not needed. 
 

When 𝑁>2, the argument is the same. 
 

We conclude the following, for arbitrary 𝑁 ≥ 2: 

 When indices 𝑖 and 𝑗 are not both in Block 𝑳𝑭
(𝟎): |𝑳−𝒊,−𝒋

(𝟎) | = 0. (7.2) 

 Otherwise: |𝑳−𝒊,−𝒋
(𝟎) | = 𝐿𝑁 . (7.3) 

 

|𝑳−𝒊,−𝒋
(𝟏) |:  

 

Via a Type-1 argument, |𝑳−𝒊,−𝒋
(𝟏) | = 0. (7.4) 

Using Eqs. 7.2 through 7.4, Eq. 7.1 becomes 𝐼𝑀𝑆𝑃𝐸 =
|𝑳|− 𝐿𝑁 ∑ (−1)𝑖+𝑗[𝑅𝑖,𝑗

(0)
+𝑅𝑖,𝑗

(1)
]𝑁

𝑖,𝑗=𝑁−1 +𝑂(∆2)

|𝑳|
, so it 

remains to show ∑ (−1)𝑖+𝑗[𝑅𝑖,𝑗
(0) + 𝑅𝑖,𝑗

(1)]𝑁
𝑖,𝑗=𝑁−1 = 0. Examination of Eq. 5.2 leads to the 

conclusion that this sum is indeed zero.  

 

8. Simple 𝑫 = 𝑵 = 𝟐 examples with (𝜽𝟏, 𝜽𝟐) = (𝟏. 𝟎, 𝟏. 𝟎) 

From Proposition 2, the 𝐼𝑀𝑆𝑃𝐸 of a 𝐷-factor, 𝑁 ≥ 2 design, when expanded in the Cartesian 

components √𝜃𝑘∆𝑘 of either half-vector (or vector) between any two distinct design points is a 

low-degree-truncated rational function (properly “generalized function” - see two paragraphs, 

below) in those components, with minimum degrees two in both numerator and denominator.  
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We dub these degrees 𝑚ℓ and 𝑛ℓ, respectively, where the “ℓ” subscripts denote “lower.” We also 

truncate the numerator and denominator with maximum degrees that we dub 𝑚ℎ and 𝑛ℎ , 

respectively, where the “ℎ” subscripts denote “higher.” We introduce the resulting “[
𝑚ℓ,𝑚ℎ

𝑛ℓ,𝑛ℎ
] Nu 

approximant” of the 𝐼𝑀𝑆𝑃𝐸, in rough analogy to a Padé approximant, as follows: 
 

[
𝑚ℓ,𝑚ℎ

𝑛ℓ,𝑛ℎ
]
𝐼𝑀𝑆𝑃𝐸

(𝛿1, 𝛿2) ≡
(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙  𝑝𝑜𝑤𝑒𝑟  𝑚ℓ)+(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑡𝑜𝑡.  𝑝𝑜𝑤.  𝑚ℓ+1)+⋯+(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑡𝑜𝑡.  𝑝𝑜𝑤.  𝑚ℎ)

(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙  𝑝𝑜𝑤𝑒𝑟  𝑛ℓ)+(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑡𝑜𝑡.  𝑝𝑜𝑤.  𝑛ℓ+1)+⋯+(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑡𝑜𝑡.  𝑝𝑜𝑤.  𝑛ℎ)
.  

 

We now provide three, simple, 𝐷 = 𝑁 = 2, examples. For each example, 3D plots of the 𝐼𝑀𝑆𝑃𝐸 

are provided in the following four ways: 
 

(a) the exact 𝐼𝑀𝑆𝑃𝐸 of Eq. 1.1 plotted over the full prediction domain, −1 ≤
(𝑥𝑚,1 + ∆1) ≤ 1 and −1 ≤ (𝑥𝑚,2 + ∆2) ≤ 1, which we dub “the landscape;”  
 

(b) the same as (a), but with ∆𝑘 replaced with 𝛿𝑘 , and plots made over −0.1 ≤ 𝛿1 ≤ 0.1 

and −0.1 ≤ 𝛿2 ≤ 0.1, which we dub “the local region;”  
 

(c) [
2,2

2,2
]
𝐼𝑀𝑆𝑃𝐸

(𝛿1, 𝛿2); and 

 

(d) [
2,4

2,4
]
𝐼𝑀𝑆𝑃𝐸

(𝛿1, 𝛿2). 
 

The examples, except for the highly symmetric first one, show that the local regions are 

dominated by non-analytic, pole-free essential discontinuities at limit-zero-distance point 

separation (in this limit we can write alternatively “twin-point separation”), where the 𝐼𝑀𝑆𝑃𝐸 

takes on multiple values dependent upon the direction of approach of the twins. In the second 

and third examples these multiple values lie on a vertical line, which we dub a “post.” Because 

of this almost-always (a.a) multivaluedness, 𝐼𝑀𝑆𝑃𝐸 is properly considered as a.a. a “generalized 

function” [9]. Outside its local region, each 𝐼𝑀𝑆𝑃𝐸 connects smoothly with its corresponding 

landscape. 
 

Maple [10] was used for making 3D plots and for symbolic algebra. Small gaps in the 3D plots 

are artifacts of the plotting and should be disregarded. 
 

Greater detail and generalization, including connections with related Padé, Chisholm, and 

Canterbury approximants, shall be provided in Part IV of this series of papers. 

 

8.1 (𝒙𝒎,𝟏, 𝒙𝒎,𝟐) = (𝟎. 𝟎, 𝟎. 𝟎) 

The center of the two points is the origin. 
 

Landscape: A 3D 𝐼𝑀𝑆𝑃𝐸 landscape plot is shown as the left-hand plot of Fig. 8.1, below. The 

dominant feature is an origin-centered, dome-shaped, analytic, local maximum. 

Local region: The 𝐼𝑀𝑆𝑃𝐸 is shown as the center-left plot of Fig. 8.1. [
2,2

2,2
]
𝐼𝑀𝑆𝑃𝐸

(𝛿1, 𝛿2) ≅

5.96𝛿1
2+5.96𝛿2

2

8(𝛿1
2+𝛿2

2
)
, which factors to the constant shown in the center-right plot; whereas 

[
2,4

2,4
]
𝐼𝑀𝑆𝑃𝐸

(𝛿1, 𝛿2) ≅
(5.96𝛿1

2+5.96𝛿2
2
)−(24.21𝛿1

4+25.58𝛿1
2𝛿2
2+24.21𝛿2

4
)

8(𝛿1
2+𝛿2

2−2𝛿1
4−4𝛿1

2𝛿2
2−2𝛿2

4
)

, which does not factor. The latter 
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approximant is shown on the right-hand plot of Fig. 8.1. We expect successive, higher-order Nu 

approximants converge to the true local-region (center-left plot) 𝐼𝑀𝑆𝑃𝐸. 
 

8.2 (𝒙𝒎,𝟏, 𝒙𝒎,𝟐) = (𝟎. 𝟔, 𝟎. 𝟎) 
 

The center of the two points lies on the abscissa but not on the ordinate. The dominant feature is 

an origin-centered, dome-shaped, non-analytic, pole-free, local maximum with a post. Mentions 

of plots are to those in Fig. 8.2, below. A portion of this example first appeared in [11].  

Landscape: A 3D 𝐼𝑀𝑆𝑃𝐸 landscape plot is shown as the left-hand plot. 

Local region: The 𝐼𝑀𝑆𝑃𝐸 is shown on the center-left, and its post, shown in the center plot, has 

height numerically computed to be ≈ 1.19% of the local-region maximum. [
2,2

2,2
]
𝐼𝑀𝑆𝑃𝐸

(𝛿1, 𝛿2) ≅

7.7404𝛿1
2+7.6486𝛿2

2

8(𝛿1
2+𝛿2

2
)

, is shown in the center-right plot, and its post height is lim
𝛿1→0
𝛿2=0

𝐼𝑀𝑆𝑃𝐸2,2 (𝛿1, 𝛿2) −

lim
𝛿1=0
𝛿2→0

𝐼𝑀𝑆𝑃𝐸2,2 (𝛿1, 𝛿2) = 1.19% of the local-region maximum, notably matching the post height 

computed without expansion. [
2,4

2,4
]
𝐼𝑀𝑆𝑃𝐸

(𝛿1, 𝛿2) ≅
(7.7404𝛿1

2+7.6486𝛿2
2
)−(29.41𝛿1

4+57.61𝛿1
2𝛿2
2+28.19𝛿2

4
)

8(𝛿1
2+𝛿2

2−2𝛿1
4−4𝛿1

2𝛿2
2−2𝛿2

4
)

 is 

shown on the right-hand plot. Again, we expect that successive, higher-order Nu approximants 

converge to the true local-region (center-left plot) 𝐼𝑀𝑆𝑃𝐸. 
 

8.3 (𝒙𝒎,𝟏, 𝒙𝒎,𝟐) = (𝟎. 𝟔, 𝟎. 𝟐) 
 

In this example, we have the following: 

The center of the two points lies on neither the abscissa nor the ordinate. 

Plots similar to those of Fig. 8.2 are given in Fig. 8.3, below. 

Local region: [
2,4

2,4
]
𝐼𝑀𝑆𝑃𝐸

(𝛿1, 𝛿2) ≅

[
(7.9010𝛿1

2−0.0799𝛿1𝛿2+7.83461𝛿2
2
)

−(29.7764𝛿1
4+0.8765𝛿1

3𝛿2+58.4490𝛿1
2𝛿2
2+0.9399𝛿1𝛿2

3+28.7110𝛿2
4
)
]

8(𝛿1
2+𝛿2

2−2𝛿1
4−4𝛿1

2𝛿2
2−2𝛿2

4
)

, 

where the numerical values are truncated after four digits to the right of the decimal point. 

The post height is ≈ 1.31% of the local full-scale 𝐼𝑀𝑆𝑃𝐸. 
 

9. Summary 

We have demonstrated that |𝑽| and |𝑳| are low-degree–truncated functions and that the 𝐼𝑀𝑆𝑃𝐸 

objective function is almost always a low-degree–truncated, rational, generalized function. 

 

10. Research reproducibility 

We support the recommendations of ICERM’s Workshop on Reproducibility in Computational 

and Experimental Mathematics Workshop [12]. All data and figure-generation files used in this 

research are available to responsible parties, upon request to selden_crary (at) yahoo (dot) com. 
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Fig. 8.1. (𝑥𝑚,1; 𝑥𝑚,2) = (0.0,0.0). The 𝐼𝑀𝑆𝑃𝐸 in the landscape (leftmost) and local region (left of center) 

show a dome-shaped, post-free local maximum. (center) The absent, or zero-height, post is represented as 

a circular blue disk. (right of center) The [
2,2

2,2
] Nu approximant captures only the value of the maximum, 

while the [
2,4

2,4
] Nu approximant (right) demonstrates incipient convergence to the local-region 𝐼𝑀𝑆𝑃𝐸. 

 
 

 

Fig. 8.2. (𝑥𝑚,1; 𝑥𝑚,2) = (0.6; 0.0). The 𝐼𝑀𝑆𝑃𝐸 in the landscape (leftmost) and local region (left of 

center) show a local maximum with an essential discontinuity including a post (center) represented as a 

blue cylinder with height ≈ 1.19% of the local-region 𝐼𝑀𝑆𝑃𝐸 maximum. (right of center) The [
2,2

2,2
] Nu 

approximant captures the discontinuity and post height, while the [
2,4

2,4
] Nu approximant (rightmost) 

demonstrates the incipient convergence. 

 

 

 
 

Fig. 8.3. (𝑥𝑚,1; 𝑥𝑚,2) = (0.6; 0.2). The 𝐼𝑀𝑆𝑃𝐸 in the landscape (leftmost) and local region (left of 

center) show an essential discontinuity with a post (center) represented as a blue cylinder with height ≈

1.31% of the local-region 𝐼𝑀𝑆𝑃𝐸 maximum. (right-of-center) The [
2,2

2,2
] Nu approximant captures the 

discontinuity and post height, while the [
2,4

2,4
] Nu approximant (rightmost) demonstrates the incipient 

convergence. 
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