References
1. World Health Organization. Report of the WHO-China Joint
Mission on Coronavirus Disease 2019 (COVID-19 ; 2020. Available from:
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
(accessed February 29, 2020).
2. World Health Organization. Coronavirus disease 2019 (COVID-19)
Situation Report – 48 2020. Available from:
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200308-sitrep-48-covid-19.pdf?sfvrsn=16f7ccef_4
(accessed March 8, 2020).
3. del Rio C, Malani PN. COVID-19—New Insights on a Rapidly Changing
Epidemic. JAMA . 2020.
4. Read JM, Bridgen JR, Cummings DA, Ho A, Jewell CP. Novel coronavirus
2019-nCoV: early estimation of epidemiological parameters and epidemic
predictions. medRxiv . 2020.
5. Bauch CT, Lloyd-Smith JO, Coffee MP, Galvani AP. Dynamically modeling
SARS and other newly emerging respiratory illnesses: past, present, and
future. Epidemiology . 2005;16(6):791-801.
6. Park J-E, Jung S, Kim A, Park J-E. MERS transmission and risk
factors: a systematic review. BMC Public Health . 2018;18(1):574.
7. Biggerstaff M, Cauchemez S, Reed C, Gambhir M, Finelli L. Estimates
of the reproduction number for seasonal, pandemic, and zoonotic
influenza: a systematic review of the literature. BMC Infectious
Diseases . 2014;14(1):480.
8. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the
Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a
Report of 72 314 Cases From the Chinese Center for Disease Control and
Prevention. JAMA . 2020.
9. Taubenberger JK, Morens DM. 1918 Influenza: the mother of all
pandemics. Emerging Infectious Diseases . 2006;12(1):15-22.
10. World Health Organization. Cumulative Number of Reported
Probable Cases of Severe Acute Respiratory Syndrome (SARS) 2020.
Available from: http://www.who.int/csr/sars/country/en/ (accessed
February 28, 2020).
11. World Health Organization. Middle East respiratory syndrome
coronavirus (MERS-CoV) 2020. Available from:
https://www.who.int/emergencies/mers-cov/en/ (accessed February
28, 2020).
12. Cetron M, Landwirth J. Public health and ethical considerations in
planning for quarantine. The Yale journal of biology and
medicine . 2005;78(5):329-34.
13. Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N,
et al. The Psychological Impact of Quarantine and How to Reduce It:
Rapid Review of the Evidence. Available at SSRN 3532534 . 2020.
14. Jernigan DB. Update: Public Health Response to the Coronavirus
Disease 2019 Outbreak — United States. MMWR - Morbidity &
Mortality Weekly Report . 2020;69:216-9.
15. World Health Organization. Considerations for quarantine of
individuals in the context of containment for coronavirus disease
(COVID-19) ; 2020. Available from:
https://www.who.int/internal-publications-detail/considerations-for-quarantine-of-individuals-in-the-context-of-containment-for-coronavirus-disease-(covid-19)
(accessed February 29,2020).
16. Health WHODoM, Abuse S, Organization WH, Health WHODoM, Health SAM,
Evidence WHOMH, et al. Mental health atlas 2005 . Geneva: World
Health Organization; 2005. ISBN: 924156296X
17. Habibi R, Burci GL, de Campos TC, Chirwa D, Cinà M, Dagron S, et al.
Do not violate the International Health Regulations during the COVID-19
outbreak. The Lancet . 2020;395(10225):664-6.
18. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting
Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement.Journal of Clinical Epidemiology . 2009;62(10):1006-12.
19. World Health Organization. Global research on coronavirus
disease (COVID-19) . Available from:
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov
(accessed February 12, 2020).
20. World Health Organization. Environmental health in
emergencies. Available from:
www.who.int/environmental_health_emergencies/disease_outbreaks/en/
(accessed February 25, 2020).
21. Veritas Health Innovation Melbourne Australia. Covidence systematic
review software.
22. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan
M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised
studies of interventions. BMJ . 2016;355:i4919.
23. Pitman R, Fisman D, Zaric GS, Postma M, Kretzschmar M, Edmunds J, et
al. Dynamic Transmission Modeling: A Report of the ISPOR-SMDM Modeling
Good Research Practices Task Force Working Group–5. Medical
Decision Making . 2012;32(5):712-21.
24. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello
P, et al. GRADE: an emerging consensus on rating quality of evidence and
strength of recommendations. BMJ (Clinical research ed) .
2008;336(7650):924-6.
25. Schünemann H, Brożek J, Guyatt G, Oxman A. GRADE handbook for
grading quality of evidence and strength of recommendations. Updated
October 2013 2013. Available from:
www.guidelinedevelopment.org/handbook
(accessed February 25, 2020).
26. Pang X, Zhu Z, Xu F, Guo J, Gong X, Liu D, et al. Evaluation of
control measures implemented in the severe acute respiratory syndrome
outbreak in Beijing, 2003. JAMA . 2003;290(24):3215-21.
27. Park HC, Lee SH, Kim J, Kim DH, Cho A, Jeon HJ, et al. Effect of
isolation practice on the transmission of middle east respiratory
syndrome coronavirus among hemodialysis patients: A 2-year prospective
cohort study. Medicine . 2020;99(3):e18782.
28. Wang TH, Wei KC, Hsiung CA, Maloney SA, Eidex RB, Posey DL, et al.
Optimizing severe acute respiratory syndrome response strategies:
lessons learned from quarantine. American Journal of Public
Health . 2007;97 Suppl 1:S98-100.
29. Hsieh YH, King CC, Chen CW, Ho MS, Lee JY, Liu FC, et al. Quarantine
for SARS, Taiwan. Emerging Infectious Diseases .
2005;11(2):278-82.
30. Becker NG, Glass K, Li Z, Aldis GK. Controlling emerging infectious
diseases like SARS. Mathematical Biosciences . 2005;193(2):205-21.
31. Chau PH, Yip PS. Monitoring the severe acute respiratory syndrome
epidemic and assessing effectiveness of interventions in Hong Kong
Special Administrative Region. Journal of Epidemiology &
Community Health . 2003;57(10):766-9.
32. Day T, Park A, Madras N, Gumel A, Wu J. When is quarantine a useful
control strategy for emerging infectious diseases? American
Journal of Epidemiology . 2006;163(5):479-85.
33. Fraser C, Riley S, Anderson RM, Ferguson NM. Factors that make an
infectious disease outbreak controllable. Proceedings of the
National Academy of Sciences of the United States of America .
2004;101(16):6146-51.
34. Gumel AB, Ruan S, Day T, Watmough J, Brauer F, van den Driessche P,
et al. Modelling strategies for controlling SARS outbreaks.Proceedings of the Royal Society of London - Series B: Biological
Sciences . 2004;271(1554):2223-32.
35. Gupta AG, Moyer CA, Stern DT. The economic impact of quarantine:
SARS in Toronto as a case study. Journal of Infection .
2005;50(5):386-93.
36. Hsieh YH, King CC, Chen CW, Ho MS, Hsu SB, Wu YC. Impact of
quarantine on the 2003 SARS outbreak: a retrospective modeling study.Journal of Theoretical Biology . 2007;244(4):729-36.
37. Lloyd-Smith JO, Galvani AP, Getz WM. Curtailing transmission of
severe acute respiratory syndrome within a community and its hospital.Proceedings of the Royal Society of London - Series B: Biological
Sciences . 2003;270(1528):1979-89.
38. Mubayi A, Zaleta CK, Martcheva M, Castillo-Chavez C. A cost-based
comparison of quarantine strategies for new emerging diseases.Mathematical Biosciences & Engineering: MBE . 2010;7(3):687-717.
39. Nishiura H, Patanarapelert K, Sriprom M, Sarakorn W, Sriyab S, Ming
Tang I. Modelling potential responses to severe acute respiratory
syndrome in Japan: the role of initial attack size, precaution, and
quarantine. Journal of Epidemiology & Community Health .
2004;58(3):186-91.
40. Peak CM, Childs LM, Grad YH, Buckee CO. Comparing nonpharmaceutical
interventions for containing emerging epidemics. Proceedings of
the National Academy of Sciences of the United States of America .
2017;114(15):4023-8.
41. Pourbohloul B, Meyers LA, Skowronski DM, Krajden M, Patrick DM,
Brunham RC. Modeling control strategies of respiratory pathogens.Emerging Infectious Diseases . 2005;11(8):1249-56.
42. Wang W, Ruan S. Simulating the SARS outbreak in Beijing with limited
data. Journal of Theoretical Biology . 2004;227(3):369-79.
43. Yip PS, Hsieh YH, Xu Y, Lam KF, King CC, Chang HL. Assessment of
intervention measures for the 2003 SARS epidemic in Taiwan by use of a
back-projection method. Infection Control & Hospital
Epidemiology . 2007;28(5):525-30.
44. Zhang XS, Pebody R, Charlett A, de Angelis D, Birrell P, Kang H, et
al. Estimating and modelling the transmissibility of Middle East
Respiratory Syndrome CoronaVirus during the 2015 outbreak in the
Republic of Korea. Influenza & Other Respiratory Viruses .
2017;11(5):434-44.
45. Wen-Tao WU D-NL, Li LI, et al. Analysis of the role of different
intensity prevention and control measures in the current epidemic of
novel coronavirus (2019-nCoV) infected pneumonia in Wuhan based on SIR
model. New Medicine . 2020;30(1):78-82.
46. Yue Y, Yue C, Keji L, Xinyue L, Boxi X, Yu J, et al. Modeling and
Prediction of New Coronavirus Pneumonia Based Time-delay Dynamic System.Scientia Sinica Maathematica . 2020.
47. Jefferson T, Del Mar CB, Dooley L, Ferroni E, Al-Ansary LA, Bawazeer
GA, et al. Physical interventions to interrupt or reduce the spread of
respiratory viruses. Cochrane Database of Systematic Reviews .
2011(7):CD006207.
48. Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary
estimation of the basic reproduction number of novel coronavirus
(2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the
early phase of the outbreak. International Journal of Infectious
Diseases . 2020.
49. Zhou T LQ, Yang ZM, et al. . Preliminary prediction of the basic
reproduction number of the Wuhan novel coronavirus 2019-nCoV[J].Chinese Journal of Evidence-based Medicine (preprint) .
2020;20(3):1-6.
50. Gartlehner G, Affengruber L, Titscher V, Noel-Storr A, Dooley G,
Ballarini N, et al. Single-reviewer abstract screening missed 13 percent
of relevant studies: a crowd-based, randomized controlled trial.Journal of Clinical Epidemiology . 2020.