REFERENCES
Arthur JF, Shen Y, Gardiner EE, Coleman L, Murphy D, Kenny D, et al. (2011). TNF receptor-associated factor 4 (TRAF4) is a novel binding partner of glycoprotein Ib and glycoprotein VI in human platelets. J Thromb Haemost 9: 163-172.
Begonja AJ, Gambaryan S, Geiger J, Aktas B, Pozgajova M, Nieswandt B, et al. (2005). Platelet NAD(P)H-oxidase-generated ROS production regulates alphaIIbbeta3-integrin activation independent of the NO/cGMP pathway. Blood 106: 2757-2760.
Benavente-Garcia O, & Castillo J (2008). Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem 56: 6185-6205.
Bobe R, Wilde JI, Maschberger P, Venkateswarlu K, Cullen PJ, Siess W, et al. (2001). Phosphatidylinositol 3-kinase-dependent translocation of phospholipase Cgamma2 in mouse megakaryocytes is independent of Bruton tyrosine kinase translocation. Blood 97:678-684.
Caccese D, Pratico D, Ghiselli A, Natoli S, Pignatelli P, Sanguigni V, et al. (2000). Superoxide anion and hydroxyl radical release by collagen-induced platelet aggregation–role of arachidonic acid metabolism. Thromb Haemost 83: 485-490.
Carrim N, Walsh TG, Consonni A, Torti M, Berndt MC, & Metharom P (2014). Role of focal adhesion tyrosine kinases in GPVI-dependent platelet activation and reactive oxygen species formation. PLoS One 9: e113679.
Cho MJ, Liu J, Pestina TI, Steward SA, Thomas DW, Coffman TM, et al. (2003). The roles of alpha IIb beta 3-mediated outside-in signal transduction, thromboxane A2, and adenosine diphosphate in collagen-induced platelet aggregation. Blood 101: 2646-2651.
Comalada M, Camuesco D, Sierra S, Ballester I, Xaus J, Galvez J, et al. (2005). In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kappaB pathway. Eur J Immunol 35:584-592.
Coughlin SR (2001). Protease-activated receptors in vascular biology. Thromb Haemost 86: 298-307.
Crespy V, Morand C, Manach C, Besson C, Demigne C, & Remesy C (1999). Part of quercetin absorbed in the small intestine is conjugated and further secreted in the intestinal lumen. Am J Physiol 277:G120-126.
Dai X, Ding Y, Zhang Z, Cai X, & Li Y (2013). Quercetin and quercitrin protect against cytokineinduced injuries in RINm5F beta-cells via the mitochondrial pathway and NF-kappaB signaling. Int J Mol Med 31: 265-271.
Furie B, & Furie BC (2008). Mechanisms of thrombus formation. N Engl J Med 359: 938-949.
Gee JM, DuPont MS, Rhodes MJ, & Johnson IT (1998). Quercetin glucosides interact with the intestinal glucose transport pathway. Free Radic Biol Med 25: 19-25.
Hertog MG, Feskens EJ, Hollman PC, Katan MB, & Kromhout D (1993). Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342: 1007-1011.
Hubbard GP, Wolffram S, Lovegrove JA, & Gibbins JM (2004). Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. J Thromb Haemost 2: 2138-2145.
Jackson SP, Schoenwaelder SM, Yuan Y, Salem HH, & Cooray P (1996). Non-receptor protein tyrosine kinases and phosphatases in human platelets. Thromb Haemost 76: 640-650.
Jang JY, Min JH, Chae YH, Baek JY, Wang SB, Park SJ, et al.(2014). Reactive oxygen species play a critical role in collagen-induced platelet activation via SHP-2 oxidation. Antioxid Redox Signal 20: 2528-2540.
Jo HY, Kim Y, Nam SY, Lee BJ, Kim YB, Yun YW, et al. (2008). The inhibitory effect of quercitrin gallate on iNOS expression induced by lipopolysaccharide in Balb/c mice. J Vet Sci 9: 267-272.
Krotz F, Sohn HY, Gloe T, Zahler S, Riexinger T, Schiele TM, et al. (2002). NAD(P)H oxidase-dependent platelet superoxide anion release increases platelet recruitment. Blood 100: 917-924.
Lee D, Fong KP, King MR, Brass LF, & Hammer DA (2012). Differential dynamics of platelet contact and spreading. Biophys J 102:472-482.
Li X, Jiang Q, Wang T, Liu J, & Chen D (2016). Comparison of the Antioxidant Effects of Quercitrin and Isoquercitrin: Understanding the Role of the 6”-OH Group. Molecules 21.
Ma JQ, Luo RZ, Jiang HX, & Liu CM (2016). Quercitrin offers protection against brain injury in mice by inhibiting oxidative stress and inflammation. Food Funct 7: 549-556.
Moers A, Nieswandt B, Massberg S, Wettschureck N, Gruner S, Konrad I, et al. (2003). G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nat Med 9: 1418-1422.
Munnix IC, Strehl A, Kuijpers MJ, Auger JM, van der Meijden PE, van Zandvoort MA, et al. (2005). The glycoprotein VI-phospholipase Cgamma2 signaling pathway controls thrombus formation induced by collagen and tissue factor in vitro and in vivo. Arterioscler Thromb Vasc Biol 25: 2673-2678.
Muzaffar S, Shukla N, Lobo C, Angelini GD, & Jeremy JY (2004). Iloprost inhibits superoxide formation and gp91phox expression induced by the thromboxane A2 analogue U46619, 8-isoprostane F2alpha, prostaglandin F2alpha, cytokines and endotoxin in the pig pulmonary artery. Br J Pharmacol 141: 488-496.
Muzitano MF, Cruz EA, de Almeida AP, Da Silva SA, Kaiser CR, Guette C, et al. (2006). Quercitrin: an antileishmanial flavonoid glycoside from Kalanchoe pinnata. Planta Med 72: 81-83.
Nieswandt B, & Watson SP (2003). Platelet-collagen interaction: is GPVI the central receptor? Blood 102: 449-461.
Offermanns S (2006). Activation of platelet function through G protein-coupled receptors. Circ Res 99: 1293-1304.
Pallazola VA, Davis DM, Whelton SP, Cardoso R, Latina JM, Michos ED, et al. (2019). A Clinician’s Guide to Healthy Eating for Cardiovascular Disease Prevention. Mayo Clin Proc Innov Qual Outcomes 3: 251-267.
Panche AN, Diwan AD, & Chandra SR (2016). Flavonoids: an overview. J Nutr Sci 5: e47.
Pignatelli P, Pulcinelli FM, Lenti L, Gazzaniga PP, & Violi F (1998). Hydrogen peroxide is involved in collagen-induced platelet activation. Blood 91: 484-490.
Sanchez de Medina F, Vera B, Galvez J, & Zarzuelo A (2002). Effect of quercitrin on the early stages of hapten induced colonic inflammation in the rat. Life Sci 70: 3097-3108.
Senis YA (2013). Protein-tyrosine phosphatases: a new frontier in platelet signal transduction. J Thromb Haemost 11: 1800-1813.
Serafini M, Peluso I, & Raguzzini A (2010). Flavonoids as anti-inflammatory agents. Proc Nutr Soc 69: 273-278.
Stefanini L, Roden RC, & Bergmeier W (2009). CalDAG-GEFI is at the nexus of calcium-dependent platelet activation. Blood 114:2506-2514.
Stegner D, Klaus V, & Nieswandt B (2019). Platelets as Modulators of Cerebral Ischemia/Reperfusion Injury. Front Immunol 10: 2505.
Tonks NK, & Neel BG (1996). From form to function: signaling by protein tyrosine phosphatases. Cell 87: 365-368.
Varga-Szabo D, Braun A, & Nieswandt B (2009). Calcium signaling in platelets. J Thromb Haemost 7: 1057-1066.
Watanabe N, Nakajima H, Suzuki H, Oda A, Matsubara Y, Moroi M, et al. (2003). Functional phenotype of phosphoinositide 3-kinase p85alpha-null platelets characterized by an impaired response to GP VI stimulation. Blood 102: 541-548.
Wojtala A, Bonora M, Malinska D, Pinton P, Duszynski J, & Wieckowski MR (2014). Methods to monitor ROS production by fluorescence microscopy and fluorometry. Methods Enzymol 542: 243-262.
Wright B, Spencer JP, Lovegrove JA, & Gibbins JM (2013). Insights into dietary flavonoids as molecular templates for the design of anti-platelet drugs. Cardiovasc Res 97: 13-22.
Yamamoto J, Ijiri Y, Ikarugi H, Otsui K, Inoue N, & Sakariassen KS (2018). Prevention of thrombotic disorders by antithrombotic diet and exercise: evidence by using global thrombosis tests. Future Sci OA 4: FSO285.
Yeung J, Li W, & Holinstat M (2018). Platelet Signaling and Disease: Targeted Therapy for Thrombosis and Other Related Diseases. Pharmacol Rev 70: 526-548.
Zhi K, Li M, Bai J, Wu Y, Zhou S, Zhang X, et al. (2016). Quercitrin treatment protects endothelial progenitor cells from oxidative damage via inducing autophagy through extracellular signal-regulated kinase. Angiogenesis 19: 311-324.
Zielinski T, Wachowicz B, Saluk-Juszczak J, & Kaca W (2001). The generation of superoxide anion in blood platelets in response to different forms of Proteus mirabilis lipopolysaccharide: effects of staurosporin, wortmannin, and indomethacin. Thromb Res 103:149-155.