References
Arbore G, Kemper C, & Kolev M (2017). Intracellular complement - the complosome - in immune cell regulation. Mol Immunol 89: 2-9.
Arbore G, West EE, Rahman J, Le Friec G, Niyonzima N, Pirooznia M, et al. (2018). Complement receptor CD46 co-stimulates optimal human CD8+ T cell effector function via fatty acid metabolism. Nat Commun 9: 4186.
Arbore G, West EE, Spolski R, Robertson AA, Klos A, Rheinheimer C, et al. (2016). T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells. Science 352: aad1210.
Bao X, Meng G, Zhang Q, Liu L, Wu H, Du H, et al. (2017). Elevated serum complement C3 levels are associated with prehypertension in an adult population. Clin Exp Hypertens 39: 42-49.
Bekassy ZD, Kristoffersson AC, Rebetz J, Tati R, Olin AI, & Karpman D (2018). Aliskiren inhibits renin-mediated complement activation. Kidney Int 94: 689-700.
Cao Y, Zhang X, Wang L, Yang Q, Ma Q, Xu J, et al. (2019). PFKFB3-mediated endothelial glycolysis promotes pulmonary hypertension. Proc Natl Acad Sci U S A 116: 13394-13403.
Cavero T, Arjona E, Soto K, Caravaca-Fontán F, Rabasco C, Bravo L, et al. (2019). Severe and malignant hypertension are common in primary atypical hemolytic uremic syndrome. Kidney Int 96: 995-1004.
Chan CT, Sobey CG, Lieu M, Ferens D, Kett MM, Diep H, et al.(2015). Obligatory role for B cells in the development of angiotensin II-dependent hypertension. Hypertension 66: 1023-1033.
Chen L, Fukuda N, Matsumoto T, & Abe M (2020a). Role of complement 3 in the pathogenesis of hypertension. Hypertens Res: 43:255-262.
Chen L, Fukuda N, Shimizu S, Kobayashi H, Tanaka S, Nakamura Y, Matsumoto T, Abe M (2020b). Role of complement 3 in renin generation during the differentiation of mesenchymal stem cells to smooth muscle cells. Am J Physiol Cell Physiol. [Epub ahead of print]
Chen S, Wang Z, Zhang L, Lu G, Zhou C, Wang DW, et al. (2015). Association between polymorphism in the human cathepsin L (CTSL1) promoter with hypertension in the Uygur, Kazak and Han populations in China. J Coll Physicians Surg Pak 25: 640-643.
Chen XH, Ruan CC, Ge Q, Ma Y, Xu JZ, Zhang ZB, et al. (2018). Deficiency of complement C3a and C5a receptors prevents angiotensin II–induced hypertension via regulatory T cells. Circ Res 122:970-983.
Coles B, Lewis R, Anning PB, Morton J, Baalasubramanian S, Morgan BP, et al. (2007). CD59 or C3 are not requred for angiotensin II‐dependent hypertension or hypertrophy in mice. Immunology 121: 518-528.
Engström G, Hedblad B, Berglund G, Janzon L, & Lindgärde F (2007). Plasma levels of complement C3 is associated with development of hypertension: a longitudinal cohort study. J Hum Hypertens 21:276-282.
Gottschalk C, & Kurts C (2015). The debate about dendritic cells and macrophages in the kidney. Front Immunol 6: 435.
Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. (2007). Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 204:2449-2460.
Ikeda K, Fukuda N, Ueno T, Endo M, Kobayashi N, Soma M, et al.(2014). Role of complement 3a in the growth of mesangial cells from stroke-prone spontaneously hypertensive rats. Clin Exp Hypertens 36: 58-63.
Iyer A, Woodruff TM, Wu MC, Stylianou C, Reid RC, Fairlie DP, et al. (2011). Inhibition of inflammation and fibrosis by a complement C5a receptor antagonist in DOCA-salt hypertensive rats. J Cardiovasc Pharmacol 58: 479-486.
Ji H, Pai AV, West CA, Wu X, Speth RC, & Sandberg K (2017). Loss of resistance to angiotensin II-induced hypertension in the Jackson Laboratory recombination-activating gene null mouse on the C57BL/6J background. Hypertension 69: 1121-1127.
Koenderman L, Buurman W, & Daha MR (2014). The innate immune response. Immunol Lett 162: 95-102.
Kolev M, Dimeloe S, Le Friec G, Navarini A, Arbore G, Povoleri GA, et al. (2015). Complement regulates nutrient influx and metabolic reprogramming during Th1 Cell responses. Immunity 42:1033-1047.
Kolev M, & Kemper C (2017). Keeping it all going-complement meets metabolism. Front Immunol 8: 1.
Kolev M, West EE, Kunz N, Chauss D, Moseman EA, Rahman J, et al.(2020). Diapedesis-induced integrin signaling via LFA-1 facilitates tissue immunity by inducing intrinsic complement C3 expression in immune cells. Immunity 52: 513-527
Krishnan SM, Sobey CG, Latz E, Mansell A, & Drummond GR (2014). IL‐1β and IL‐18: inflammatory markers or mediators of hypertension? Br J Pharmacol 171: 5589-5602.
Kwan W-h, van der Touw W, Paz-Artal E, Li MO, & Heeger PS (2013). Signaling through C5a receptor and C3a receptor diminishes function of murine natural regulatory T cells. J Exp Med 210: 257-268.
Lalli PN, Strainic MG, Yang M, Lin F, Medof ME, & Heeger PS (2008). Locally produced C5a binds to T cell-expressed C5aR to enhance effector T-cell expansion by limiting antigen-induced apoptosis. Blood 112: 1759-1766.
Larsen CP, Wilson JD, Best-Rocha A, Beggs ML, & Hennigar RA (2018). Genetic testing of complement and coagulation pathways in patients with severe hypertension and renal microangiopathy. Mod Pathol 31:488-494.
Lin ZH, Fukuda N, Jin XQ, Yao EH, Ueno T, Endo M, et al. (2004). Complement 3 is involved in the synthetic phenotype and exaggerated growth of vascular smooth muscle cells from spontaneously hypertensive rats. Hypertension 44: 42-47.
Liszewski MK, Elvington M, Kulkarni HS, & Atkinson JP (2017). Complement’s hidden arsenal: New insights and novel functions inside the cell. Mol Immunol 84: 2-9.
Liszewski MK, Kolev M, Le Friec G, Leung M, Bertram PG, Fara AF, et al. (2013). Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation. Immunity 39:1143-1157.
Lubbers R, van Essen MF, van Kooten C, & Trouw LA (2017). Production of complement components by cells of the immune system. Clin Exp Immunol 188: 183-194.
Mbewe-Campbell N, Wei Z, Zhang K, Friese RS, Mahata M, Schork AJ, et al. (2012). Genes and environment: novel, functional polymorphism in the human cathepsin L (CTSL1) promoter disrupts a xenobiotic response element (XRE) to alter transcription and blood pressure. J Hypertens 30: 1961-1969.
McCarthy CG, Goulopoulou S, Wenceslau CF, Spitler K, Matsumoto T, & Webb RC (2014). Toll-like receptors and damage-associated molecular patterns: novel links between inflammation and hypertension. Am J Physiol Heart Circ Physiol 306: H184-196.
Merle NS, Church SE, Fremeaux-Bacchi V, & Roumenina LT (2015). Complement system part I - molecular mechanisms of activation and regulation. Front Immunol 6: 262.
Montaniel KR, & Harrison DG (2016). Is hypertension a bone marrow disease? Circulation 134:1369-1372.
Naito AT, Sumida T, Nomura S, Liu M-L, Higo T, Nakagawa A, et al.(2012). Complement C1q activates canonical Wnt signaling and promotes aging-related phenotypes. Cell 149: 1298-1313.
Negishi E, Fukuda N, Otsuki T, Katakawa M, Komatsu K, Chen L, et al. (2018). Involvement of complement 3 in the salt-sensitive hypertension by activation of renal renin-angiotensin system in spontaneously hypertensive rats. Am J Physiol Renal Physiol 315: F1747-F1758.
Noris M, & Remuzzi G (2009). Atypical hemolytic-uremic syndrome. N Engl J Med 361: 1676-1687.
Norlander AE, Madhur MS, & Harrison DG (2018). The immunology of hypertension. J Exp Med 215: 21-33.
Panneton V, Chang J, Witalis M, Li J, & Suh WK (2019). Inducible T-cell co-stimulator: Signaling mechanisms in T follicular helper cells and beyond. Immunol Rev 291: 91-103.
Pasqua T, Pagliaro P, Rocca C, Angelone T, & Penna C (2018). Role of NLRP-3 inflammasome in hypertension: A potential therapeutic target. Curr Pharm Biotechnol 19: 708-714.
Perez-Gomez MV, & Ortiz A (2020). Aliskiren and the dual complement inhibition concept. Clin Kidney J 13: 35-38.
Plasse RA, Nee R, & Olson SW (2020). Aliskiren as an adjunct therapy for atypical hemolytic uremic syndrome. Clin Kidney J 13:39-41.
Prochnicki T, & Latz E (2017). Inflammasomes on the crossroads of innate immune recognition and metabolic control. Cell Metab 26:71-93.
Raij L, Dalmasso AP, Staley NA, & Fish AJ (1989). Renal injury in DOCA-salt hypertensive C5-sufficient and C5-deficient mice. Kidney Int 36: 582-592.
Regal JF, Laule CF, McCutcheon L, Root KM, Lund H, Hashmat S, et al. (2018). The complement system in hypertension and renal damage in the Dahl SS rat. Physiol Rep 6: e13655.
Ricklin D, Mastellos DC, Reis ES, & Lambris JD (2018). The renaissance of complement therapeutics. Nat Rev Nephrol 14: 26-47.
Ruan CC, & Gao PJ (2019). Role of complement-related inflammation and vascular dysfunction in hypertension. Hypertension 73: 965-971.
Ruan CC, Ge Q, Li Y, Li XD, Chen DR, Ji KD, et al. (2015). Complement-mediated macrophage polarization in perivascular adipose tissue contributes to vascular injury in deoxycorticosterone acetate–salt mice. Arterioscler Thromb Vasc Biol 35: 598-606.
Ryan JJ, & Archer SL (2015). Emerging concepts in the molecular basis of pulmonary arterial hypertension: part I: metabolic plasticity and mitochondrial dynamics in the pulmonary circulation and right ventricle in pulmonary arterial hypertension. Circulation 131: 1691-1702.
Sen S, Tarazi RC, Khairallah PA, & Bumpus FM (1974). Cardiac hypertrophy in spontaneously hypertensive rats. Circ Res 35:775-781.
Seniuk A, Thiele JL, Stubbe A, Oser P, Rosendahl A, Bode M, et al. (2020). B6.Rag1 knockout mice generated at the Jackson Laboratory in 2009 show a robust wild-type hypertensive phenotype in response to Ang II (Angiotensin II). Hypertension 75: 1110-1116.
Strainic MG, Liu J, Huang D, An F, Lalli PN, Muqim N, et al.(2008). Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity 28: 425-435.
Strainic MG, Shevach EM, An F, Lin F, & Medof ME (2013). Absence of signaling into CD4+ cells via C3aR and C5aR enables autoinductive TGF-β1 signaling and induction of Foxp3+regulatory T cells. Nat Immunol 14: 162.
Sumida T, Naito AT, Nomura S, Nakagawa A, Higo T, Hashimoto A, et al. (2015). Complement C1q-induced activation of β-catenin signalling causes hypertensive arterial remodelling. Nat Commun 6: 12.
Timmermans SA, Abdul-Hamid MA, Potjewijd J, Theunissen RO, Damoiseaux JG, Reutelingsperger CP, et al. (2018). C5b9 formation on endothelial cells reflects complement defects among patients with renal thrombotic microangiopathy and severe hypertension. J Am Soc Nephrol 29: 2234-2243.
Timmermans SA, Abdul-Hamid MA, Vanderlocht J, Damoiseaux JG, Reutelingsperger CP, van Paassen P, et al. (2017). Patients with hypertension-associated thrombotic microangiopathy may present with complement abnormalities. Kidney Int 91: 1420-1425.
Timmermans SA, Wérion A, Damoiseaux JG, Morelle J, Reutelingsperger CP, & van Paassen P (2020). Diagnostic and risk factors for complement defects in hypertensive emergency and thrombotic microangiopathy. Hypertension 75:422-430.
Van Laecke S, Van Biesen W. (2017). Severe hypertension with renal thrombotic microangiopathy: what happened to the usual suspect? Kidney Int. 91:1271-1274.
Walter SV, & Hamet P (1986). Enhanced DNA synthesis in heart and kidney of newborn spontaneously hypertensive rats. Hypertension 8:520-525.
Ward PA (2016). Complement: an unfinished symphony. Am J Physiology Renal Physiol 311: F66-67.
Weiss S, Rosendahl A, Czesla D, Meyer-Schwesinger C, Stahl RA, Ehmke H, et al. (2016). The complement receptor C5aR1 contributes to renal damage but protects the heart in angiotensin II-induced hypertension. Am J Physiol Renal Physiol 310: F1356-1365.
Wenzel U, Turner JE, Krebs C, Kurts C, Harrison DG, & Ehmke H (2016). Immune mechanisms in arterial hypertension. J American Soc Nephrol 27: 677-686.
Wenzel U, Wiech T, & Helmchen U (2015). Effects of hypertension on renal vasculature and structure. In Oxford Textbook of Clinical Nephrology. eds Turner N., Goldsmith D.J., Himmelfarb J., & Remuzzi G. Oxford University Press: Oxford, pp 1750-1759.
Wenzel UO, Bode M, Kohl J, & Ehmke H (2017). A pathogenic role of complement in arterial hypertension and hypertensive end organ damage. Am J Physiol Heart Circ Physiol 312: H349-H354.
Wenzel UO, Bode M, Kurts C, & Ehmke H (2019). Salt, inflammation, IL-17 and hypertension. Br J Pharmacol 176: 1853-1863.
West EE, & Kemper C (2019). Complement and T cell metabolism: Food for thought. Immunometabolism 1: e190006.
West EE, Kunz N, & Kemper C (2020). Complement and human T cell metabolism: Location, location, location. Immunol Rev (ahead of print)
Whelton PK, Carey RM, Aronow W, Casey Jr D, Collins K, Dennison Himmelfarb C, et al. (2017). Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am College Cardiol 71: 1269-1324.
Yiu JH, Dorweiler B, & Woo CW (2017). Interaction between gut microbiota and toll-like receptor: from immunity to metabolism. J Mol Med 95: 13-20.
Zhang C, Li Y, Wang C, Wu Y, Cui W, Miwa T, et al. (2014a). Complement 5a receptor mediates angiotensin II–induced cardiac inflammation and remodeling. Arterioscler Thromb Vasc Biol 34:1240-1248.
Zhang C, Li Y, Wang C, Wu Y, & Du J (2014b). Antagonist of C5aR prevents cardiac remodeling in angiotensin II-induced hypertension. Am J Hypertension 27: 857-864.
Zipfel PF, & Skerka C (2009). Complement regulators and inhibitory proteins. Nat Rev Immunol 9: 729-740.