References
  1. Li YC Bai & WZ Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients.J Med Virol. 2020 Feb 27. doi: 10.1002/jmv.25728.
  2. Glass WG, Subbarao K, Murphy B, Murphy PM. Mechanisms of host defense following severe acute respiratory syndrome‐coronavirus (SARS‐CoV) pulmonary infection of mice. J Immunol . 2004; 173: 4030‐ 4039.
  3. Zhao W, Zhong Z, Xie X, Yu Q, Liu J Relation Between Chest CT Findings and Clinical Conditions of Coronavirus Disease (COVID-19) Pneumonia: A Multicenter Study . AJR Am J Roentgenol. 2020 Mar 3:1-6. doi: 10.2214/AJR.20.22976.
  4. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395: 497‐ 506.
  5. Yu F, Du L, Ojcius DM, Pan C, Jiang S. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes Infect. 2020. https://doi.org/10.1016/j.micinf.2020.01.003.
  6. Song Z, Xu Y, Bao L, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses. 2019; 11: 59. https://doi.org/10.3390/v11010059
  7. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395: 565‐ 574.
  8. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade‐long structural studies of SARS. J Virol . 2020. https://doi.org/10.1128/JVI.00127‐20
  9. Yuan Y, Cao D, Zhang Y, et al. Cryo‐EM structures of MERS‐CoV and SARS‐CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun. 2017; 8:15092.
  10. Hulswit RJ, de Haan CA, Bosch BJ. Coronavirus spike protein and tropism changes. Adv Virus Res. 2016; 96: 29‐ 57.
  11. Li YC, Bai WZ, Hirano N, Hayashida T, Hashikawa T. Coronavirus infection of rat dorsal root ganglia: ultrastructural characterization of viral replication, transfer, and the early response of satellite cells. Virus Res. 2012; 163: 628‐ 635.
  12. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus‐infected pneumonia in Wuhan, China. JAMA . 2020.
  13. Khan S, Ali A, Siddique R, Nabi G. Novel coronavirus is putting the whole world on alert. J Hosp Infect. 2020. https://doi.org/10.1016/j.jhin.2020.01.019
  14. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395(10223): 507‐ 513.
  15. Li K, Wohlford‐Lenane C, Perlman S, et al. Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis. 2016; 213: 712‐ 722.
  16. Talbot PJ, Ekandé S, Cashman NR, Mounir S, Stewart JN. Neurotropism of human coronavirus 229E. Adv Exp Med Biol . 1993; 342: 339‐ 346.
  17. Dubé M, Le Coupanec A, Wong AHM, Rini JM, Desforges M, Talbot PJ.Axonal transport enables neuron‐to‐neuron propagation of human coronavirus OC43. J Virol. 2018; 92, https://doi.org/10.1128/JVI.00404‐18
  18. Zhou X, Huang F, Xu L, et al. Hepatitis E virus infects neurons and brains. J Infect Dis. 2017; 215(8): 1197‐ 1206.
  19. Li YC, Bai WZ, Hirano N, et al. Neurotropic virus tracing suggests a membranous‐coating‐mediated mechanism for transsynaptic communication. J Comp Neurol. 2013; 521: 203‐ 212.
  20. Mengeling WL, Boothe AD, Ritchie AE. Characteristics of a coronavirus (strain 67N) of pigs. Am J Vet Res. 1972; 33(2): 297‐ 308.
  21. Andries K, Pensaert MB. Immunofluorescence studies on the pathogenesis of hemagglutinating encephalomyelitis virus infection in pigs after oronasal inoculation. Am J Vet Res. 1980; 41(9): 1372‐ 1378.
  22. To KF, Lo AW. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS‐CoV) and its putative receptor, angiotensin‐converting enzyme 2 (ACE2). J Pathol. 2004; 203: 740‐ 743.
  23. Tang JW, To KF, Lo AW, Sung JJ, Ng HK, Chan PK. Quantitative temporal‐spatial distribution of severe acute respiratory syndrome‐associated coronavirus (SARS‐CoV) in post‐mortem tissues. J Med Virol. 2007; 79: 1245‐ 1253
  24. George PM, Wells AU. Pirfenidone for the treatment of idiopathic pulmonary fibrosis. Expert Rev Clin Pharmacol. 2017 May;10(5):483-491. doi: 10.1080/17512433.2017.1295846. Epub 2017 Mar 7.
  25. Lancaster LH, de Andrade JA et al. Pirfenidone safety and adverse event management in idiopathic pulmonary fibrosis. Eur Respir Rev. 2017 Dec 6;26(146). pii: 170057. doi: 10.1183/16000617.0057-2017. Print 2017 Dec 31.
  26. Chung MP, Park MS et al. Safety and Efficacy of Pirfenidone in Advanced Idiopathic Pulmonary Fibrosis: A Nationwide Post-Marketing Surveillance Study in Korean Patients.Adv Ther. 2020 Apr 15. doi: 10.1007/s12325-020-01328-8. [Epub ahead of print]