LOCAL WELL-POSEDNESS OF COMPRESSIBLE RADIATION
HYDRODYNAMIC EQUATIONS WITH DENSITY-DEPENDENT
VISCOSITIES AND VACUUM
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ABSTRACT. In this paper, we consider the Cauchy problem for three-dimensional isen-
tropic compressible radiation hydrodynamic equations with density-dependent viscos-
ity coefficients. When the viscosity coefficients are given as power of density (p° with
0 > 1), we establish the local-in-time existence of classical solutions containing a vac-
uum for large initial data. Here, we point out that the initial layer compatibility
conditions are not necessary.

1. INTRODUCTION

It is well known that the radiation effects become remarkable in some regime when the
temperature is high, e.g., in the high-temperature plasma physics [33] and the models
of gaseous stars in astrophysics [16], so it is necessary to take the radiation effects into
consideration in the classical hydrodynamics framework. For the physical background of
radiation hydrodynamics, we refer to Pomraning [29] and Mihalas [27]. The couplings
between fluid field and radiation field involve momentum source and energy source de-
pending on the specific radiation intensity governed by the so-called photon (radiation)
transfer equation. From a microscopic point of view, the radiation field is composed of
photons. At any time t, six variables are required to specify the position of the photon in
phase space, namely, three position variables and three momentum variables. In general,
we denote the three position variables by the vector x = (x1, z2,x3). The three momen-
tum variables are equivalently replaced by the frequency v and the travel direction §2 of
the photon. Then the distribution function f = f(¢,x,v,Q) can be defined such that

dn = f(t, z,v, Q)dzdrdQ,

where dn is the number of photons (at time ¢) at z, v, Q) in the six-dimensional differential
volume dzdrd(). It is conventional in radiative transfer context to introduce the specific
radiation intensity I = I(¢, z, v, Q) instead of the distribution function f(¢,x,v, ). The
specific radiation intensity is defined by

I(t7 x’ V’ Q) = Chuf(t7 x’ V? Q)?

where c¢ is the vacuum speed of light, h is Planck constant.
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We know that there are three basic interactions between photons and matter, namely
emission, absorption, and scattering, then the radiation field can be described by a
transport equation with a collision source term (see [29])

Ay =0e — 0ol + / / (KIO'SI/ — O';I) dY'dv/, (1.1)
0 S2 \V

where I = I(t,z,v,Q),I' = I(t,z,1/,Q), t > 0 is the time, € R? is the Euler spatial
coordinate, v,/ > 0 are the frequency of photons, €2, Q' € 52 are the travel direction of
photons, S? C R? denotes the unit sphere in R3. o, > 0 is the rate of energy emission due
to spontaneous process; o, > 0 denotes the absorption coefficient; oy is the “differential
scattering coefficient” such that the probability of photon being scattered from v/ to v
contained in dv, from €’ to Q contained in df2, and traveling a distance ds is given by
os(V — v, Q- Q)drvdQds. Therefore, the time rate of outscattering and inscattering
within the volume element are

outscattering = / / os(v— v, Q- Q)I(t, 2, v, Q)dY AV,
0 S2

inscattering = / / os(V = v, Q- QI(t,z,0,Q)AV AV
0 S2

Taking radiation contribution into account, we consider the following isentropic Navier-
Stokes-Boltzmann equations:

1
EI¢-|~Q~VI:AT,
pt + div(pu) = 0, (1.2)
1
<pu + CQFT> +div(pu @ u+ P,) + VP, = div T,
t
where the unknown functions p(t,z), u(t,z) = (u'(t,z),u*(t,z),u3(t,z)) represent the

density and the velocity, respectively. P, is the material pressure with the following
equation of state for polytropic fluid:

P, =Ap", ~v>1,
where A > 0 is a constant. The viscous stress tensor T is given by
T = u(p)(Vu+ (Vu) ") + A(p) div u s, (1.3)
where p(p) and A(p) are viscosity coefficients with the form
pp) = ap’,  Ap) = Bp’, (1.4)
for some constant § > 1, and « and [ are constants satisfying the physical constraints

a>0, 2a+382>0.
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F,. and P, are the radiation flux and the radiation pressure tensor, respectively, which
are defined by

F, —/ / I(t,z, v, 2)QdQdy,
0 S2

N (15)
P, :/ / I(t,z,v,2)Q ® QdQdv.
0 52

One of the motivation that we study the radiation system (1.2) lies on the fact that
Navier-Stokes equations can be, to some extent, regarded as the non-radiation limit of
the radiation Navier-Stoke-Boltzman system (1.2). In fact, from the “induced processes”
and the local thermal equilibrium assumption, o, and o, can be written as

(t,z,v,p) =K,B(v) 1—1—027[
0.6 ) ) 7p - a 2hV3 )

c2B(u)> | (1.6)

O'a(t,ib,l/, ,0) =K, <1 + 2hv3

where B(v) is a function of v which denotes the energy density of black body radiation,
K, = K,(t,z,v,p) > 0. With this change, when o5 = 0, system (1.2) can be reduced to

1 —

SL+Q-VI= K. (I - B)),

c

pt + div(pu) =0, (1.7)

1 [ _
(pu)t +div(pu @ u) + VP = div T + — / Kq(I — B(v))QdQdv,
C 0 S2

from which we can see that the impact of radiation on dynamical properties of the
fluid vanishes when I = B(v), i.e., the system serves as the Navier-Stokes equations.
Actually, the rigorous justification of this limit was shown by Ducomet-Nec¢asové in [9],
where they provided two different types of singular limits: one is the equilibrium diffusion
limit which corresponds to the compressible Navier-Stokes equations with I = B(v); the
other asymptotic regime corresponds to a non-equilibrium diffusion limit, where the

radiation transfer equation is approximated by a diffusion equation.

Using (1.3)-(1.5) and (1.2),, system (1.2) can be rewritten as

1
SL4Q-VI= A,
C

pt + div(pu) =0, (1.8)
1 o0
(pu); + div(pu @ u) + VP, = —p°Lu + Vp° - S(u) — / A, QdQdv,
cJo S2
where

Lu = —aAu — (a+ p)Vdivu,
{ S(u) = a(Vu+ (Vu) ") + Bdivuls.
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In this paper, we consider the Cauchy problem of (1.8) with the following initial data
and far field behavior:

(Ia P u)|t:0 = (IO7 P0, u0)7

1.9
(I,p,u) = (0,0,0) as|z] =00, t>0, (1,Q)ecR" xS (1.9)

We notice that vacuum can be allowed in our case.

For the compressible Navier-Stokes equations without radiation effects, the local exis-
tence and uniqueness of classical solutions has been obtained by Nash and Serrin [28, 30]
in the absence of vacuum. Matsumura-Nishida [25, 26] studied the global existence of
classical solutions under the condition that the initial data are suitably small. When
the initial density need not to be positive and may vanish in some open sets, the global
existence of weak solutions was first established by Lions in [23] for large initial data
(see also Feireisl et al. [12] ).

Due to the radiation effect, things become more complicated for both inviscid and
viscous fluids. For the Euler-Boltzmann equations of inviscid fluids, Jiang-Zhong [34]
obtained the local existence of C! solutions for Cauchy problem in multi-dimensional
space. Jiang-Wang [15] proved that some C! solutions will blow up in finite time.
Blanc-Ducomet [2] considered the Cauchy problem and showed the existence of global
weak solutions. For the Navier-Stokes-Boltzmann equations of viscous fluids, Chen-
Wang [4] proved the local existence of classical solutions for Cauchy problem away from
vacuum. Ducomet-Necasova obtained the large time behavior of strong solution in one
dimensional space [8] and showed the global existence and uniqueness of smooth solution
for small initial data near the radiative equilibrium [10]. We notice that the above results
were obtained in the absence of vacuum. When vacuum appears, some difficulties arise,
e.g., the degeneracy of the momentum equation. Li-Zhu studied the formulation of
singularities to classical solutions with compactly supported density [19] and established
the local well-posedness of strong solution containing a vacuum in homogeneous Sobolev
space for general initial data satisfying initial compatibility conditions [20, 22] . They also
investigated the existence and uniqueness of local regular solutions for Euler-Boltzmann
equations [21]. We mention that the above results are all for the case of constant viscosity
coeflicients.

However, from a physical point of view, both the viscosity coefficients and the radi-
ation coefficients may depend on the temperature [6, 7, 11]. For isentropic flow, this
dependence on temperature is reduced to the dependence on density by Boyle and Gay-
Lussac law. This is why we study the isentropic Navier-Stokes-Boltzmann equations
with density dependent viscosities satisfying (1.4). As far as we know, there are fewer
results for this case due to some essential difficulties. Wang [32] proved the local exis-
tence of strong solutions for the viscosity coefficients linearly depending on the density
(i.e., 6 = 1 in (1.4)). Our goal in this paper is to establish the local-in-time existence
and uniqueness of classical solutions to (1.8)-(1.9) when the viscosity coefficients satisfy
(1.4) with § > 1, which has more singular structure and stronger degeneracy as well as
stronger nonlinear source terms than the linear case.

The main difficulties and strategies in studying the local well-posedness of classical
solutions can be summarized as follows.
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Compared with some other coupled systems of fluid models, for example, the
MHD equations, the Navier-Stokes-Maxwell equations, and the Navier-Stokes-
Poisson equations, etc., which are coupled with a parabolic or an elliptic equa-
tion, our system is a system of fluid equations coupled with a non-linear integro-
differential hyperbolic equation, which makes things more complicated. Accord-
ing to the coupling between the density, the velocity and the radiation intensity,
we need to find a suitable linearized structure, which is the very first step towards
the proof of existence result.

The vacuum leads to double degeneracy: the degeneracy of the time evolution
of velocity and the degeneracy of viscosity in momentum equation (1.8),. It is
well known that it is difficult to determine and control the velocity near vac-
uum, which is the key point in the vacuum related problems. Recently, for
the degenerate Navier-Stokes equations, Li-Pan-Zhu [18] successfully controlled
the behavior of velocity by introducing some new variables and making use of
the “quasi-symmetric hyperbolic”—“degenerate elliptic” structure, which can be
expected to be generalized to the radiation version in this paper.

Difficulties also arise due to the non-local terms, the nonlinear terms, and the
coupled cross terms between radiation field and fluid field, which bring us some
trouble in obtaining the uniform a prior: estimates. We shall make full use of the
reformulated structure with the aid of some physically reasonable assumptions
on the radiation coefficients.

The time continuity of higher order derivative is not trivial. We need to establish
the time weighted energy estimates of t%ut € L*(0,T; H?) by using the refor-
mulated structure and Lemma 2.6. It should be pointed out that our work is
carried out in the inhomogeneous Sobolev space, and the initial layer compati-
bility conditions are no longer needed.

We also have some technical difficulties, for example, since the Poincaré type
inequality will no longer be valid for the Cauchy problem because of the un-
boundedness of the domain, we need to adopt some other techniques, such as the
Gagliardo-Nirenberg inequality and the Sobolev interpolation inequality instead.
For the estimates of radiation terms, it is not easy to get due to the complexity of
the multiple integrals, we also need to use some tools like Minkowski’s inequality,
etc.

rest of this paper is organized as follows. In §2, we collect some notations and

elementary inequalities, introduce some reasonable assumptions on the radiation coef-
ficients, and the main result is stated in the end of this section. In §3, after intro-
ducing some new variables and the “quasi-symmetric hyperbolic”—“degenerate elliptic”
structure, we reformulate the original problem (1.8)-(1.9) into (3.1) and establish the
corresponding local existence result. The main theorem, Theorem 2.1, is proved in §4.

2. PRELIMINARIES AND MAIN RESULT

In this section, we first give some notations and some elementary inequalities which
will be used throughout this paper, and then we introduce some assumptions on the
radiation coefficients and state our main result.
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2.1. Notations and elementary inequalities. We first give some notations.

(1) The following notations are adopted for the homogeneous and inhomogeneous
Sobolev spaces (see [13]).

1y = I zogesy s 1L, = 11z

Db = {f € Li, (®?) : |V¥fl; < +00},

D*=D" | flpe = fllprsy = IVE flar k> 2,

D' = {f € L5®): |flps = I/l pr sy = [Vl < +00}

(2) For simplicity, we also use the following notations:

I 9lx = 11 x + llgllx

15,2, D, e ssmagoesn = 15672 Miaoas |, e o

The following well-known Gagliardo-Nirenberg inequality and Sobolev interpolation
inequality can be found in [17, 24].

Lemma 2.1. [17] For p € [2,6],q € (1,400) and r € (3,400), there exists a constant
C > 0 depending only on q,r, such that for any f € D' and g € LN DY, we have

6—p 3p—6
2 2
[fl, <ClAL™ IVAL™
q(r—3) 3r

1910 < Clglg™ ™" [Vgl2

Lemma 2.2. [24] For s’ € [0,s], there exists a constant Cs > 0 depending on s, such
that for any v € H®, we have

’ /

1—s s
[ulls < Csllully = [lulls"

The following Minskowski’s inequality will be used in the estimates of the radiation
terms.

Lemma 2.3 (Minkowski’s inequality [1] ). For 1 <p < ¢ < +00, we have
H Hf(7 xQ)HLP(Xﬂ HL‘I(XQ) < H ||f(331, ) HL‘I(X2) HLP(XI) :
The following lemma is used to get the compactness information of solutions.

Lemma 2.4 (Aubin-Lions Lemma [31]). Let Xo C X C X; be three Banach spaces.
Suppose that Xg is compactly embedded in X and X is continuously embedded in Xi.
Then the following statements hold.
(1) If J s bounded in LP([0,T]; Xo) for 1 < p < 400, and % is bounded in
LY([0,T); X1), then J is relatively compact in LP([0,T]; X);
(2) If J is bounded in L>°([0,T]; Xo) and %{ is bounded in LP([0,T]; Xy) forp > 1,
then J is relatively compact in C([0,T]; X).

The following Moser-type calculus inequalities can be found in Majda [24].
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Lemma 2.5. [24] Let r,a and b be constants such that

[N

r a b
Vs > 1, if f,g € WS N WSL(R?), then it holds

IV3(f9) = £Vl < Cs (IVF1al Vo gls + 1V flblgla)

IV3(f9) = £Vl < Cs (IVF1al Vo gls + V¥ flalgls)

where Cs > 0 is a constant depending only on s, and V°f (s > 1) is the set of all 8§f
with |¢| = s. Here ¢ = ((1,(2,(3) € R? is a multi-index.

and 1<a, b, r<+oo.

(2.1)

The following lemma is used to obtain the time weighted estimates like t%ut €
L>(0,T; H?), etc.

Lemma 2.6. [3] If f(t,z) € L?([0,T]; L?), then there exists a sequence sj such that
sp— 0, and sg|lf(sp,z)3—=0, as k— 4oo.

2.2. Hypothesis on the radiation quantities. The general form of radiation coef-
ficients is usually not known, since it is difficult to evaluate these physical coefficients
in quantum mechanics. Physically speaking, the radiation coefficients can be written as
O¢ = pOe¢,0q = PO, 05 = pos, and then A, can be written as A, = pA,, where

A, =G, — 7,1 +/ / (3,681’ — EQI) dYdv'. (2.2)
0 S2 14

Next, we will introduce some physically reasonable assumptions on the radiation coeffi-
cients G, 7, and o which are similar as in [20, 32, 34].

H1(Differential scattering coefficient) Let o0, = 55,(v/ — v, - Q)p = p7, and
ol =a.(v—=1v,Q-Q)p = pa,, where the functions 75 > 0 and &, > 0 satisfy

IRV
[e.o] (o.9] >\2 (o.9]

[ ([ o) [ [ sastar <o
0 S2 0 S2 0 S2

where A\ =1 or 1/2, Aa =1 or 2, and o > 0 is a fixed constant.

V2 2 1yt M
7) T, 2ddr ) dQdv < a,

(2.3)

H2(Emission and absorption coefficients ) Let 0, = 0,(t, z, 1,8, p) = po,(t,z,v,Q, p)
and o, = o.(t,z,v,Q, p) = poe(t,z,v,Q, p), where 7, > 0,5, > 0. Let p = p%, then
we assume that for s =0,1,2, 3,
%l mzae wsescoyarey < MAIels)(L + Il
1@e)ell rnre @+ xszicqomm2y < Mlells) (1 + lleelly),
1Tall Loz et xs2ic0,1: ) < Mlells) (X + llell,),
1@a)tll Loorr2 @+ xs2:000.13:m2)) < MIlllz) (1 + [letlly),

(2.4)



8 HAO LI AND YACHUN LI

and . \
Hae(W 5P ) - Ee('a B P )||L10L2(R+ x52;C([0,T];L2))
< M ([ )ls) L+ 1" = ¢22), 25)
L

<M ([[(eh)y) At le" = ¢,
where M = M (-) denotes a strictly increasing function from [0, +00) to [1,4+00).

Remark 2.1. We point out that we do have some physical models with radiation coef-
ficients satisfying these assumptions. For instance (see 21, 29, 34]),

(i) A particular expression of absorption coefficient o, is given as

1 Cy (v—1p)\>
Ua(taxal/797p7 0) = Clpgii exp - < ) ,

2

where 0 is the temperature, vy is the fized frequency, and C;(i = 1,2) are positive

constants. For the polytropic gas, i.e., Py, = Rpd = Ap”, where A, R are positive
-1

constants. Then we know that pz = C302 with Cs = (VA)"'VR, and

2
oa(t,z, v, p) = Cvlc'?)ppliT’Y exp <_C’QC’3p12’Y <V I/ VO) )
0

= Paa(ﬂﬂ?v v, va)a

saitisfying
t Q
lim Z2 TS P) b0, p) =0,
p—0 P p—0
t O
lim Zalb 0 o a0 p) = 0.
p—r+00 P p—+00

(ii) The Compton scattering kernel is given by

Cup(1+ %) Czv*(1—¢)?
1+ Csv(1 - ¢))? (1 " (L+&)[1+Csr(1 — f)])

"5(”"1+c5u<1—5>>’

= pES(V — V/7£)>

os(v =1 €)=

where & = Q- , C;(i = 4,5) are positive constants, and 0(-) is the delta function.

It is not difficult to verify that the o, and o5 in the above models satisfy the assump-
tions H1 and H2.

Remark 2.2. From (2.4) and (2.5), one can easily know that for s =0,1,2,3,

2
S—

loell L2 @+ xs2co.as)y < Mells) lells™ 1+ llell,), 26)

_2
loall Loonr2 @+ xszoqorymey < Mlells) lells™ (1 +1lell,),
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and
( Hae(-,-,-,-,cpl)—05(-7-,-,-,@2 Mm@ xszicqorize)
<M (||[(e", %) VIPlET (1+ 6" — 9?)a), 27
[oa sy 0") = 0als s 09 | poop ot wsico.r122))
L <M (N D)) el @+ et — o).

2.3. Main result. Before stating the main result, let us first give the definition of
regular solutions.

Definition 2.1 (Regular solutions). Let T' > 0 be a finite constant. (I,p,u) is called a
regqular solution to (1.8)-(1.9) if

(1) (1, p,u) satisfies the Cauchy problem (1.8)-(1.9) in the sense of distribution;

(2) I<L*R"xS%C(0,T);H?), I €L*R" xS%C([0,T]; H?));

(3) p=0, pz €C(0.TLH), (7 ) €C(0,T); H?);

(4) p'T €C(O,THH?), ()T )i € C(0,T); H?);

(5) we (o, T HY)NL=([0, T B), p’z Viue L*([0,T); L?),
up € C(0,T); HY) 1 L2([0,T]; D?);

(6) w+u-Vu= —/ /52 (E_r)%A ) QdQdv, when p(t,z) =0,

for some constant s’ € [2,3).
We are now in position to state our main result.
Theorem 2.1. Let §,~ be positive such that
1 < <min{y,5/3}. (2.8)
Assume that the initial data (Io, po,uo) satisfy

6-1 y-1
Iy € L*(RT x S* H?),  pg >0, <p02 Py ,uo> € H?, (2.9)

then there exists a unique reqular solution (I, p,u) to (1.8)-(1.9) in (t,z,v,Q) € [0, Ti] x
R3 x RT x S2. Moreover, (I, p,u) is also a classical solution for t € (0,T.].

Remark 2.3. We point out that our range of parameter § is smaller than the correspond-
ing case for isentropic Navier-Stokes equations in [14]. This is caused by the appearance
of the radiation terms.

Remark 2.4. We can find the following class of initial data (Iy, po,uo) satisfying the
condition (2.9):
I € L*(R* x 8% GF(R?)),  pola) =

x

T "0 € R

1 24946 2
wherem>max{ + R }

2'2(6 —1)" 2(y — 1)
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3. REFORMULATION AND LOCAL-IN-TIME WELL-POSEDNESS

As we said in the introduction, we first need to reformulate our problem to figure out
the intrinsic special structure of the system and to prove the well-posedness of strong
solutions to the reformulated problem.

By introducing new variables ¢ = pé%l and ¢ = {/@p%l, problem (1.8)-(1.9) can

be rewritten as
1
-L;+Q-VI=A,,
c
o—1 .
wr+u-Vp+ Tgpdlvu: 0,
y-1

1 1 [ -
ur +u - Vu + VTQZ)VQZ) +@?Lu = V¢?* - Q(u) — = / A, QdQdv,
0 52

c
(L, ¢, ¢, u)|t=0 = (Lo, $o, P, uo) ,
(| (L, p,0,u) = (0,0,0,0), as |z| = +oo, t>0,

6—1

o—1 y—1
where (t,2,1,Q) € RT x R? x RT x S2, @9 = py? , do = 2@;;02 , Q(u) is given by

and A, is defined in (2.2). Letting U = (¢, u)", problem (3.1) can be reduced to

1
(2, +0Q.-VI=4,
&

0—1
gpt—l—u-V(p—l—Tgpdivu:O,

3 ) (3.2)
Ui+ Aj(U)Uy, = —*F(U) + G(p,U) + H(I, ),
j=1
(Iv P, U)|t=0 — (-[07 2B UO) )
L (I,,U) = (0,0,0), as [z]—=+o0, t2=0,
where Uy = (¢o,u0) ",
W T e
A;(U) = =123, (3.3)

—1 T :
Toge; Wl

and e; = (015,025, 03;) is the Kronecker symbol with 6;; = 1,7 = j and 6;; = 0,7 # j. It is
easily noticed that A;(j = 1,2,3) are all symmetric matrices. The source terms F,G, H
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are respectively given by

0 0
F(U):<Lu>7 G(QO’U):<V(,02'Q(U)>’

L[> [ T
H(I,p) = <0,—/ AerQdy> .
C 0 S2

The following is concerned with the local existence and uniqueness of strong solutions
to Cauchy problem (3.2).

(3.4)

Theorem 3.1. Let (2.8) hold. Assume that the initial data (1o, vo, Po, uo) satisfy
Iy € LQ(R+ X 52;H3), ©o, oo > 0, (goo,(;ﬁo,uo) S H3. (35)

Then there exists a unique strong solution (I, @, ¢,u) to (3.2) in (0,T,] x R3 x RT x 52
satisfying

I L*R" x S%4C([0,T.); H?)), I € L*(RT x S*,C([0,Ty]; H?)),

p € C([0,TL); H?), ¢ € C([0,To]; H?),

¢ € C([0,T.); H?), ¢ € C([0,T.]; H?), (3.6)
we O([0, T H) n L>((0, T.]; H?),  ¢V'u € L*([0,T.); L?),

u € C([0,T.); HY) N L*([0, T2]; D),

for any constant s’ € [2,3).

The proof of Theorem 3.1 can be divided into the following steps:

e Linearization. First, we linearize the original nonlinear problem (3.2) and add
an artificial viscosity n>Lu to remove the degeneracy of viscosity of the original
problem. The linearized problem (3.7) is solved in Lemma 3.1 by using standard
arguments.

e Uniform estimates and vanish viscosity limit. Then, we derive the uniform a pri-
ori estimates which are independent of the artificial viscosity coefficient 7, based
on which, the corresponding degenerate linearized problem (3.45) can be solved
by taking vanishing viscosity limit.

e Iteration and convergence. Finally, we construct the suitable approximate solu-
tions by using the linearized problem (3.45) and prove the convergence to obtain
the strong solution to the original nonlinear problem (3.2).

3.1. Linearized problem with an artificial viscosity. In order to solve the nonlinear
problem (3.2), we first consider the following linearized problem (3.7) with an artificial
viscosity, and then establish the corresponding uniform a priori estimates.
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3.1.1. Linearization and solvability. The linearized problem to be studied reads as:
1
c

L+Q-VI=A,,

0—1
g0t+v-Vg0+deivv:0,

3 , (3.7)
Ui+ D Aj(V)Usy = —(0* + ") F(U) + G, V) + H(L, ),
j=1
(Ia 2 U)|t=0 = (IUa #0, UO) y
( (I, ,U) = (0,0,0), as |z] = +oo, t2>0,
where -
Zr =0, — 0,1 + / / (1,0'3)( — 0;I> do’dv/,
0 g2 \V
V = (¥,v)", (x,w,v) are known functions and v = (v',v%,0?) is a known vector,
satisfying (x,w, V)(0,2) = (Io, o, Up) with Uy = (¢o,ug) " and
x € LARY x S%,0([0,T); H®)), xi € LA(RY x S%,0([0,T]; H?)),
(W,w) € C([OvT]7H3)7 (wta¢t) € C([OaT]aH2)> (3 8)

v e C([0,T); H) N L¥([0,T}; H?),  wV*v € L*([0,T]; L?),
v € C([0,T); HY) 0 L*([0,T]; D?),
for any constant s’ € [2,3).
The global well-posedness of strong solutions (I, ¢, ¢,u) to (3.7) can be obtained as
below by using standard arguments ([5, 17]) for any fixed n > 0.

Lemma 3.1. Assume that the initial data satisfy (3.5). Then for any fixred n > 0 and
T > 0, there exists a unique strong solution (I, ¢, ¢, u) to (3.7) satisfying

I e L*(RT x S%C([0,T]; H3)), I, € L*R' x 5%, C([0,T]; H?)),
(0,0) € C(I0,T]; H?), (1, ¢1) € C([0,T]; H?),

we C(0,T); H) N L=([0,T); H?), ©V*u e L*([0,T]; L?),

u € C([0,T]; H') n L*([0,T]; D?),

(3.9)

for any constant s’ € [2,3).

3.1.2. Uniform a priori estimates of solutions. Let (I, ¢, $,u) be a strong solution to
(3.7) in (0,7] x R3 x Rt x §2, with initial data satisfying (3.5). We will establish the
uniform a priori estimates for (I, ¢, ¢, u), which are independent of 7. First, we choose
a positive constant ¢y independent of 7 such that

2+ [(p0, d0)loo + [1(00, d0)ll3 + [[Hol| 2R+ x 52;13) + [[uoll3 < co. (3.10)
Then we assume that there exist 7% € (0,7] and positive constants ¢;(i = 1,---,5)
such that

1<e<cr <ca<e3<cy<ocs,



ISENTROPIC COMPRESSIBLE RADIATION HYDRODYNAMIC EQUATIONS 13

and

sup |Ixllz2txs2;m3) < 1, sup  |[xell L2t xs2,m2) < c2,
0<t<T* 0<t<T*

*

sup (@, D)2 + [[0]2) + / WwVu3dt < &,
0<t<T* 0

(3.11)

T*
sup (|(w, ) B + [0[30) + / WV hu3dt < &,
0<t<T* 0

T*
sup  ([l(wr vl + loel?) + / or 2 pedt < 2,
0<t<T* 0

where 7% and ¢; (i = 1,...,5) depend only on ¢y and the fixed constants A, «, 3,7,6,T,
and will be determined later. Hereinafter, we use C' > 1 to denote a generic constant,
which may change in different places.

Now we state some a priori estimates.

Lemma 3.2. Let (I,¢,U) be the unique strong solution to (3.7). Then there exists a
time T1 such that
1+ ol + llel3 < O, (3.12)
ldllf < Ccs, el < Cct, '
for 0 <t < Ty = min{T*, (1 + c4)"2}.

Proof. According to (3.7), and using the standard energy estimates, we deduce that
t t
lells <C (Lol + [ Clellalila + ¥ ola)ds ) exp (€ [ ulaas)

t 1/2
1
<C (co + At + t2 </ |wV4v|gds) ) exp(Ceyt) (3:13)
0

SCC(%
for 0 <t < Ty = min{T*, (1 + c4)~2}. It follows from (3.7), that for 0 <t < T}

lel2 SC(|vl6| Vels + |wloo|Vol2) < Oc,
el pr SC(IV0ls| Vels + [vloo| V]2 + [Vewl3| Vols + |wloo|V0l2) < O,
|tlp2 <Clv- o+ divelpz: < O([v]l2|Vell2 + [|lw]2] Voll2) < Oc.
O

Lemma 3.3. Let (I,¢,U) be the unique strong solution to (3.7). Then there exists a
time Ty such that

11| L2(r+ x 52;0([0,10);H3)) < C'co, (314
el p2 g+ x 520 (0,1 12)) < CM (co)eh™ e, '

for 0 <t < Ty =min{T1, (1 4+ M(co)che1)™2} and 1 =2/(6 — 1).
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Proof. Multiplying (3.7); by 2cI and integrating over R3, we conclude that

d oo
Lz <c <|1|2|a€\2—/<aa+/ / g;dgydy/> Pd
dt B 52
o0 v 2 9 1/2
1Tl Il e sz ( Ja R dQ’dz/> (3.15)
0o Js2'V

o0
<c(g+ioh+dc [ |
0 S2

where we have used the fact that o, > 0 and o/, > 0.
Applying the operator 85%(1 <|¢] < 3) to (3.7);, we have

2
VK‘ 7,2 dQ’dy’) :

lag.rt + Q- VT + (aa + / / a;dQ’du’> ST
C 0 92
=— (ag(gaf) — aaa§f) - / / 7. (8§(g0lf) - gplaggf) dQ’dy/ (3.16)
0 52

+ 850, +/ / Z/Esc'?g(cplx)dﬂldy’.
0 S2 UV

Multiplying (3.16) by 28§I(1 < [¢| < 3) and integrating over R3, we get

1 o
d/|8§]|2dx—|—/ <0a+/ / O‘;dQ,dl/) (951)%dx
cdt 0 S2

=— / <8§(aa1) — Ua8§:I> A5 Idx
- * —/ Cro by _  Alac 1 1,19¢
//0 /S 5 (633(90 -y 8x1> AV 85 1dx (3.17)
+ / S0 05Idx + / ( / / ] 5@39% ((plx)dQ/d;/> dSIdx
0 S
4
£ Z Ria
i=1
with the natural correspondence for R; (i = 1,2,3,4), which can be treated one by one

as follows. Using Holder’s inequality, Gagliardo-Nirenberg inequality and Lemma 2.5,
we estimate R;(1 = 1,2,3,4) as follows:
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Ry SCWUa!ooUlz\VIb, if K| =1,
Ry <C(IV?0al2lI|oo + [Voals|VI[6) V2|2, if [¢] =2,
Ry <C(|V30al2/I|o0 4 |V0aloo|V21|2)| V3o, if [¢| =3,
Ry <Cl¢'[3|1|6|VI]a, if [¢| =1,
Ry <C(IV2¢@!2I|oe + [V |3 VI6) V2|2, if (] =2,
Ry <C(IVP@ ol oo + [V oo V2 [2) VP, if [¢] = 3,
R3 <C(|Voel3 +[VI[3), if [¢]=1,

<C(|V%acl3 + [V?I[3), if [¢| =2,
R3 <C(|VPacl3 + IV?I[3), if [¢| =3,

(o.9] 1/7 B
Ro<CloTls [ [ L (ol IVlslxda + ol Txlo)aetar

<CIVIallolls Il e oo ( / /
c<1v113+c3lc%/ L1zl \as|2dQ’dz/>, i ¢ = 1.
S2 1%

v
o

1/2
|as K dQ’du’)

o0 v
Ry <C|851 ), / /S L3196 alx oo + 1921 Vs + [l [ 72X ) A

. 1/2
SC’VQHQHSDZ”2||X||L2(R+><SQ;H2) </ / />
<o rde [ [ |5 mfavas), =2

R, <cra<1|2< / / Y (193 alxloe + [V 6|V x13)ddv/

> v
+/ / ,as(lwlls|v2x|6+|<p|go|v3x|2)d9'dy’|)
0o Js2V

- 1/2
14
<C|VI|2ll e I3l xll 2+ x.52:09) </ / ,>
0 S2 1%

o0 2
<C (yv31|§+cglc§/ / ‘Z/‘ |os|2dQ’du’>, if |¢] = 3.
0 s2 1V

Plugging the above estimates for R; (i = 1,2, 3,4) into (3.17) and summing up all {(1 <
|| < 3), combining with (3.15), and using (2.6)-(2.7), we then obtain
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d
13 sc( (Noall oo sy + 1) 1113 + ol

0
2 2
+ ¢y
0o Js2

SC(M(Co)cf;rl“[”%‘irHUeH:%,‘i‘C(Q)ZC% LI rasﬁdsz'du'). (3.18)
0 S

= Clo? dQ’du’)
Integrating (3.18) over RT x S? and using Gronwall’s inequality, we conclude that
11172 @+ x 52:0(0, 122
<C ((HIO”%Q(RerSQ;H?’) + MQ(CO)CEUH)TZ + C(QJZC%T2) exp (CM(CO)CéJrlTZ))
<Ccp, (3.19)
for 0 <t < Th = min{T1, (1 + M(cp)che1) 2}
According to the equation (3.7),, for 0 <t < Ty, we arrive at
[ el L2 (r+ x 52010, 720 12))
SC<||I||L2(R+XSQ;C([O,TQ};H?’)) + [loell L2+ x 52:0([0,1); H2))

+ loall L2 (r+ xs2;0(0,): 520 1 L2 (R+ x52;0([0,10]: H2))

o v |2 1/2 (3.20)
NN - ( 14 |as|2dQ’dy’>
o Js2lV

+ H<Pl||2\IHL2(R+xS?;C([o,T2];H2))/0 /52 U;dQ’d:/)

<CM(co)ch™ey.

Next, we will establish the a priori estimates for U.

Lemma 3.4. Let (I,¢,U) be the unique strong solution to (3.7). Then there exists a
time T3 such that

t
U1+ [ Ve Peulbas < o
" . (3.21)
U3 + 4]0 +/ ug| %1 ds < CM?(co)cS,
0

for 0 <t < Ty =min{Ty, (1 4+ M(co)chea)™)}.
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Proof. We denote U, = 9;U. Applying the operator a5 to (3.7)5, we obtain

3
U+ ), A;(V)0;05U + (¢* + n*)F(95U)
j=1
3
== > (3(A;(V)00) = 4;(V)9,050 ) = (95 (9 + ) F(U)) = (&2 + ) F(95U) )

j=1

+Ve? - Q(50) + (85(Ve? - Qv) — Vi - Q(0w)

! / 95(A,)QdQdv.

C 0 S2
(3.22)

Multiplying (3.22) by 28§U(\§| < 2) and integrating over R3, it is shown that

d

alaﬁiUlg + 20|V @? + 2V (95u) |5 + 2(a + B) |V % + 1* div(d5u) |3

3
_ / (050) T div A(V)9SUde — 2y / (a,g(Aj(V)ajU) - Aj(V)ajagU) ASUdz
j=1

12 / V(e ) (aV(35u) + (o + 8) div(@5u)l) - uda
-2 / (a§((<p2 + 02 Lu) — (¢* + n2)L(a§u)) - OSudz (3.23)
+ 2/V<p2 - Q(0%) - OSudx + 2/ <8§(V<p2 -Q(v)) — V2 - Q(@gv)) - OSudz

_2 / / I5(A,)Q - IudQdrdz
C 0 S2

7

A

= E Ji7
i=1

3
with the natural correspondence for J; (i =1,2,---,7) and div A(V) = Z(Aj)l"

.
j=1
Now we first estimate J; (i = 1,2,---,6) one by one. It follows from the Gagliardo-
Nirenberg inequality, Holder’s inequality and Young’s inequality that

J1 <C|VV|e|05U 5 < Cea| U3,

Jo <C|05(A;(V)O;U) — Aj(V)9;05U2|05U |2 < C|VV || VU5 < Cey| VU3, it [¢] <1,
Jo SC(IVV|o|V2U |2 + [V?V[3|VU[6) VU2 < Ces| VU3, if [¢] = 2,

Js <CloV (95u) 2| Veploo|5ula < %wz + 12V (85u)[5 + Ccp|dSul3,

« .
J1 SC|VlsolpLul2|d5ulz < 35 V¥ +?V2ufy + Ocg|ogul3, if ¢ <1,
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J4 SC/(|V2<,02LU| + V2V Lu|)|Vu|dz

<C (lpV2?uls|VZ0l3| Lulz + [Vl | Lula| VZuls + [V ul2| VZul2)

<C (IV(eV2u)|2| V2@l3| Luls + V|2 Lula| VZulz + [0V ula|Vuls)

<C ((IVeloo | VZulz + [0V ul2) V203 Lula + (IVel2| Lula + [¢VPula) [VZul2)
_33|w + PV ul; + Ccg|VRulz, i [C] =2,
5 <Clploc| Veploo | Voll1[85ul2 < Cc3|0%ula,
Jo <C(l¢loo| V2|2l VUloo + [V 3| V0l2) [Vula < Ccf|Vaula, if [¢] <1,
Jo <C (|60 V2 l2| VUloo + [VZ0l2| Viploo| V0l o

+ [loo| V23| V20l6 + V|2 [VP0]o| VPula) < O} VPul, if [¢] = 2.

For J7, using the definition of A,., we have

1 o0
Jr=—= / / 955 .0%u - QdQdvda
C S2

1 [o.¢] o0
+ - / / / <aa+ / / a’SdQ’du’) 5195w - QdQdvda
c 0 Js2 0 Jsz

v / / <8§(Ea1) —aaagl) 85u - QdQdvda
S2

// // /asaCIdeu’aCU Qdeydx—ZJﬁ,
S2 S2 i=1

with the natural correspondence for J7;(i = 1,2, 3,4) which are estimated as follows.

Jr1 SC||05Fe|| 11 (m+ x 52,1205 ul2 < CM (co)col0Sula,

J72 <C]8<u]2/ / (‘Ua‘LOO / / dQ dl/> 8<I‘2deV

<C|05ulz (17all L2+ xs2:100) + 1) 105 || 2+ xs2:02) < CM (co)c§|0Sul2,
Jrs <C|O5ula || VBall 2+ xs2,100) I | n2(R+ x52,12) < CM (co)cg|0Sula,  if |¢] <1,

(3.24)

Jr3 <C|85uls <||V25aHL2(R+ x52:22) |1 || L2 @+ x 52;22)

+ HVﬁaHL2(R+Xs2;L3)”VI!!L2(R+x52;L6)>
<CM (co)cgldgula, i [¢] =2,
Jra SC|05ul2]|05T || p2m+ x52,2) < Ceo|sula,
where we used the Hypothesis H1 and H2.

Substituting J;(i = 1,---,7) into (3.23) and summing up all |[¢| < 2, we obtain

d
ZIUIZ + Ve +mVulz < C (M (co)el|U])3 + i) » (3.25)
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which, along with the Gronwall’s inequality, yields
t
U113 +/ V@2 +n2V3ul3ds < C (cf + cjt) exp (CM?(cp)cit) < Ccf, (3.26)
0

for 0 <t < T3 = min{Ty, (1 + M(co)chea) 74}
For |85U|; with |¢| < 1, according to the equation (3.7)5, one has

P2 < C(|v]oo VOl2 + [¥]oo| Vul2) < Cé3,
bt p1 < C(IV0loo| Vo2 + [0]oc| V2|2 + [¥]oo] VPul2 + [Vib|3|Vuls) < Cc3,

-1 1 [ _
lugle = |—v - Vu — ’YTquS — (cp2 + nZ)Lu + V- Q(v) — c/ / A,QdQdy
0o Js2

2

< C( ([vl6IVuls + [¢]ec| Vo2 + [0% + 1|00 VP2 + 0|00 V|0 VUl2)

+Tellr @+ xs2,22) + (1Tall 2@t xs2i00) + 1) ||I||L2(R+><S2;L2))

< CM(co)cs.
(3.27)

Similarly, we have

C

1 1 [~ [ =
lug| pr = ‘—v Vu— L2V — (02 + ) Lu+ Ve - Qu) — - / A,QdQdv
2 0 SQ Dl

<C(1VolsIVauls + [oloe | Voula + [$1sc V20 + [VYloo | V]2 + [Vipoc il ]2

+ V@2 + 1210 V2 + 112 VPula + (lol3 + [Vll2) IV ol + [ VTell 1 (gt 521009

+ IVZall L2t xs2:000) 1T || L2+ x52:22) + (1Tl L2 (@t x 52,200y + 1) HVIHL2(R+xs2;L2)>
<C (M(co) + o[/ + 1P V%ul; ) |
which implies that

¢ ¢
/0 ug|Frds < C/O (MQ(co)cg + AV + 772V3u\%) ds < Ccp, (3.29)

for 0 <t <1T;3. O

(3.28)

Lemma 3.5. Let (I,p,U) be the unique strong solution to (3.7). Then we have

¢
]U|2D3 +/0 V@2 4+ n2Viul3ds < C’c%,

. (3.30)
a2 + |12 + / fuglods < CM2(co)el
0

for 0 <t <T;.



20 HAO LI AND YACHUN LI

Proof. From the proof in Lemma 3.4, for |(| = 3, we also have
d .
£|3§U|3 +2aly/9? + 1PV (95u) 3 + 2(a + B) [V @2 + 12 div(d5u) 3
3
_ / (050) T div A(V)aSUde — 2y / (8§(Aj(V)ajU) - Aj(V)ajagU) AU dz
j=1
2 / V(e + ) (a9 (@5u) + (o + B) div(@§u)ly) - ud

=2 [ (85 + ) Lu) — (¢ + )L (06 )) - B

+ 2/Vap2 - Q(0%) - OSudx + 2/ (6§(V<p2 -Q(v)) — V2 - Q(@gv)) - OSudz

14
2 o —
- / / 05(A,)Q - dudQdvdz £ Y T, (3.31)
¢J Jo Js2 i—8
with the natural correspondence for J;(i = 8,9,---,14) which can be treated one by

one as follows. Using Holder’s inequality, Young’s inequality and Lemma 2.5, we first
estimate J;(i = 8,9,---,12) as follows.

Js <C|IVV oo V3ul3 < Ccs|V3ul3,
Jy <C|85(A;(V)9;U) — A;(V)9;05U |2|05U |2
<OV [ VU |2 + [V oo VUR) VU2 < Clea| T3U B + ),
[0
J10 <CleV (95u) 2| Vgl o O5ulz < 351V 0?2 + 12Vhul3 + Ccglo5ul3,
I <C [ (1eullLull 7] + oV Lul[ V6l 7
+ VIV Lul V2] + |V Lul [V V0] ) da
<C(IV2 Lol V2uls oV uls + VL3 Vulal o Vuls
+ IV VPul} + |9V ul2| Vel VPul,

S% Vet itV lg C(‘VS‘P@’VZUDWSUD + V203 V3ul5 + [Vl [ VPul3
+ 1V plel Veplool 2y *|Vuly’® + [Viploo | V0lsl [ V7ul)
§%|\/mv4u|% + O (V32 + cb)
iz <C (|90 |Vula + [ V%ulel V2 ¢ls + [Viploclo ¥ hula) [Vl

«
< Ver 0PVl + C(W%\% + Vo2 )IV20f3 + [Vel3 [VP0l2| Viul2

+ [V loc Vel | V]2 )

«
< SV H PVl + C(E Vol + ).
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For Jy3, we have
3 <C [ ((I9%1IV2QM)| + [°IIVQ) 9%l + V5 - Qu)o6u) da

£ J131 + Jiz2 + Ji3s3.

with the natural correspondence for Jy3;(i = 1,2, 3). Using Holder’s inequality, Young’s
inequality, we first get

Jis1 + Jis2
SC(|V3¢|2\90V3U\6!V20\3 + [Vloo| V0|3 VP ul2| V206
+ V20|30 V3 ul6| VPulz + |VS0|go|V3U|2’V3U|2>

< V@ 2Vl + C (IV0BIV20l3 + (IV%613 + [Viplacl V20ls) V7ul
+ (IVel2V0l2 + [Viploo| V20l V205 + !V?’@!QIV%I:&IV%@\oo)|V3UI2>
< IVE+ PVl + O(EIVAul} + o).
Next we turn to estimating Ji33. Denote ¢ = ¢+ %+ ¢ with ¢F e R3(i = 1,2,3)
the three multi-indexes satisfying |(*| = 1. after Integrating by parts, we obtain

(3.32)

3 3
Jigz = — /Zag_chog 95 Q(v)dSudx — /Z(aﬁ-élvqﬁ - Q(v))05+ udx
i=1

=1

3 3
AN T+ > S
- 1331 1332
=1 =1

with the natural correspondence for Jis3; and Jisq, (i = 1,2,3). We first consider the
case 7 = 1. It follows from the Holder’s inequality and Young’s inequality that

2 3 1
Ty == [0 08 Qo) - O6uda
< C(|V30la| V20l3loVPuls + |Vl V0l V0[5 VP uls)
< SV F PVl + C (e VPuls + cf),

Jig30 = —2/6§2+C3V<pg0 -Q(v) - 8§+<1udx - 2/8§2V908§3g0 -Q(v) - 6§+Cludx (3.33)

—2 [0V - Qo) 957 ude — 2 [ VBt Qo) 257 udo

4
§ : 1z
J1332a
=1

[I>
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with the natural correspondence for J11§32(z' =1,2,3,4) which are estimated as follows.
o < CIVPela|VoluclVula < Ve + 1PV ul3 + Oct,
T =2 [ o' (969605 - Qo)) - Shuds

= C/ (IV2ul[Vol(IV20l? + [Vl [V20l) + [V2ul V20 V20| [V]) do

< C (V2013 V20l6| V2 ula| Voloo + [V2ul2 | Vuloo [ Viloo + [Vula| V20l3| V2016 Vo)

< C (ci|VPul3 + i) .
Similarly to Jis,, we have

i + Jizsn < C (Al VPul3 + ).
Then we obtain
Tz < V@ PV + C (e[ VPulf + ).

Similarly we can get the same estimates for Jig3; and Jigsy (i = 2,3). With all these
estimates, we arrive at

3
Jizz < Elmv‘*uy% + C (cj|V3ul3 + ¢f) - (3.34)
Summing up (3.32) and (3.34), we obtain
Ta .
Jiz < ﬁ\mv‘*uy% + O (ci|V3ul3 + c}) - (3.35)

Now we are left with estimating Ji4. It follows from (3.24) and Lemma 2.5 that
J1a Scfvguh<HV35eHL1(R+x52;L2) + (L+11(a, VFa)ll L2t xs2:5)) IV Il 2@t x52;22)

+ IVGall n2r+ x52:100) IV T | 22 R+ x52,12) + V38 all L2+ x 52, 12) HI||L2(R+x52;Loo))

<C(M?(co)ch|V3ul3 + cf).

(3.36)

Substituting the estimates for J;(i = 8,---,14) into (3.31) and and summing up all
|| = 3, we have
d

ZIVUL+ V(@ + 1) Vil < C(M?(co)ed|VPulj + cf). (3.37)

Applying Gronwall’s inequality to (3.37), we arrive at
t
\V3U|3 +/ V@2 +n2Viuf2ds < C(c2 + cjt) exp(CM?(cp)cit) < Ccg, (3.38)
0
for 0 <t <1Tj.

Now it remains to prove the second estimate in (3.30) of Lemma 3.5. We already
know, from (3.28) in the proof of Lemma 3.4, that

lug|pr < C (M(co)cg +eol /P + n2v3uy2) < OM(co)c2. (3.39)
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For the D? norms, according to equations (3.7); and (3.7),, one has
|éelp2 <Clo- Vo + ¢ divulp: < C([v]l2]Vll2 + [ ]2]Vull2) < Ccs,

|ug| p2 =

SC(Hng\HVqu + V212 Véloo + [V loo| V2812 + 9]0 [ V762

+ (leloo + IV0ll2) (lulls + [[0]13) + 1v/92 + 72lol /2 + 72V ul

—1
—U-Vu—fyTwV¢ (@ +1n?)Lu+ V2 - —/ /AQdey
5'2

23

D2

+ VGl mrxs2,L2) + (1 + [1(Vas VT0) || L2t x52,22)) ||VI||L2(R+xs2;H1)>

<C (M(co)c?1 + colV/ @2 + 772V4u|2> :
which implies that
Ty Ty
/ |ug|3)2ds < C’/ (MQ(co)ci + AV + 772V4u\%) ds < Ccp.
0 0
The proof of Lemma 3.5 is finished.

From the above estimates in Lemmas 3.2-3.5, we know that

1+ |2 + llell3 < Ccp,

11 p2(r+xs2m3) < Cco, | Tell 2+ xs2,m2) < CM(co)eh e,
U@+ [ IV A s < 0,
Ul [ Ve Pvhuges < 06
NUNE + llell3 + |ele + /Ot [ue|31p2ds < C M (co)ch,

for 0 <t < Ty = min{Ts, (1 + M(co)chcs) ~*}. Noticing that

T3 = min{T™, (1 + ¢4) "2, (1 + M (co)cher) 2, (1 + M(co)ches) ™

= min{T™, (1 + M (co)ches) ™},
then we can define the constants ¢;(i = 1,---,5) and T™ as follows:

=C"2¢, o =3 =c4y = C’M(co)co c] = C2M(co) l+2,
¢ = O M(co)c = C7M*(co)eg 2,
T* = min{T, (1 4+ M(co)ches) ™.

(3.40)

(3.41)

(3.42)

(3.43)
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Thus it turns out that

sup ||| p2mtxs2;a3) < €1, sup [ It 2w+ xs2;m2) < c2,
0<t<T* 0<t<T*

T*
sup (el + 1U13) + [ lovPuldae < &
0<t<T™* 0
T (3.44)

sup (Jolbs +[UB:) + [ oV tulfat < &
0<t<T* 0

T*
sup (IVHIR + el + foufbe) + [ ulupeds < &,
0<t<T* 0

for 0 <t <T™*

3.2. Passing to the limit as 7 — 0. The purpose of this section is to obtain the local
existence of the following degenerate linearized problem without an artificial viscosity
when ¥0, QSO > 07

1 ~
“L+Q-VI= A,
C

0—1
got+v-V<p+deivv:O,

3
j=1

(L‘Pa U)|t=0 - (1078007 UU),
(I,p,U) — (0,0,0), as |z|] = 400, t>0.

Theorem 3.2. Assume that the initial data satisfy (3.5). Then there exist a time
T* > 0 and a unique strong solution (I,¢,U) to (3.45) satisfying (3.9) in (t,z,v,Q) €
(0,7%] x R x R* x S2. Moreover, (I,p,U) also satisfies the estimates in (3.44).

Proof. From Lemma 3.1 and (3.43)-(3.44), we know that for every fixed n > 0, there exist
a time T™ independent of 7 and a unique strong solution (I",¢",U") to the linearized
problem (3.7) in (0,7*] x R? x RT x S? satisfying the uniform a priori estimates in
(3.44). By using the Aubin-Lions Lemma, one can obtain the corresponding compactness
of solutions. For any R > 0, there exists a subsequence of solutions (still denoted by
(I, ", UM) for simplicity), which converges to a limit (I, ,U) in the following sense:

I" =T in L*R' x §% C([0,T*); H*(Bg))), as n—0,

. 2 (3.46)
(", U") = (¢,U) in C([0,T*]; H*(Bg)), as n—0,

where Bp is a ball centered at the origin with radius R. Furthermore, based on the
uniform estimates in (3.44), we also know that there exists a subsequence of solutions
(still denoted by (I, ", U™M) for simplicity), which converges to (I, ¢, U) in the following
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sense:
I" 5T weakly* in L2(RT x S§2%; L°°([0,T*]; H?)),

J”ift weakly* in LQ(R+ x §% L>°([0,T*); H?)),
(", U") = (p,U)  weakly* in L>([0,T*]; H?),

(3.47)
(@i, 0f) = (pr,00) weakly* in L¥([0,T7]; H?),
ul >y weakly® in L°([0,T]; HY),
ul — uy weakly in L%([0,T*]; D?).
Combining (3.47) and (3.46), we have
VA" — oV weakly in L2([0,T*]; L?). (3.48)

Using (3.46)-(3.48), one can easily show that (I,¢,U) is a weak solution in the sense of
distribution to the linearized problem (3.45), and satisfies

I e L*(RT x 8% L>°([0,T*); H?)), I € L*(RT x 8%, L>=([0,T*]; H?)),
(0, ¢) € L0, T H?), (1, ¢e) € L([0,T7); H?),

we L®([0,T*; H) N L=2([0, T*); H?), ©Viu e L*([0,T*]; L?)

ug € L>=([0,T*); H') n L*([0, T*]; D?),

(3.49)

for any constant s’ € [2,3).

In order to show that the weak solution (1, p,U) is also a strong solution, we need to
prove the time continuity of solutions. We first prove the time continuity of ¢. Using
the classical Sobolev embedding, we have

¢ € C([0,T*]; H*) N C([0, T*]; H3-weak).
According to the proof of Lemma 3.2, we get

lim sup [|p[ls < [[olls,
—0

which implies that ¢ is right continuous at ¢ = 0 in H3. Therefore, one can obtain
¢ € C([0,T*]; H?) by using the time reversibility of the equation (3.45),.

Using the fact that wVov € L2([0,T*]; H3) and (wVv), € L?([0,T*]; H'), we derive
wVov € C([0,T*); H?). This, together with (3.45),, leads to ¢ € C([0,T*]; H?). The
time continuity of ¢ and I can be obtained similarly.

For the time continuity of u, from (3.44) one has
u e C([0,T*]; H?) N C([0, T*]; H3-weak).

It follows from Lemma 2.2 that for any constant s’ € [2,3),

1—5’ s’
lulls < Cllullg = flulls

which, along with the uniform estimates in (3.44), yields « € C([0,T*]; H*). It also
follows from (3.44) that

©*Lu € L*([0,T*]; H), (¢*Lu); € L*([0,T*]; L?),
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which, together with the Aubin-Lions lemma, implies that p?Lu € C([0,T*]; H'). Then
we obtain from (3.45), that u; € C([0,T*]; H').

For the uniqueness of solutions, one can use the same arguments as in the proof of
Lemma 3.1, we omit the details here. The proof of Theorem 3.2 is finished. O

3.3. Local well-posedness of nonlinear problem: proof of Theorem 3.1. In this
section, based on the previous linearized result, we will use the classical iteration scheme
to establish the local-in-time existence. We first assume that

2+ |poloo + Holl L2 (r+ x52;m3) + I(0, Uo) |3 < co.

Let (19, %, ¢°, u") be the solution to the following problem in (0, +00) x R3 x Rt x §2:
(1

Wi+ Q- VW =0,
c

X, +ug- VX =0,
Y, +up-VY =0,

(3.50)
Z,— X2NZ =0,
(M/v X7 Y7 Z)‘t:() - (IO7 ©o0, ¢07 U()),
(W, X,Y,Z) — (0,0,0,0), as |z| = +oo, t>0.
Then, we can choose T** € (0,7*] and constants ¢;(i = 1,--- ,5) such that
sup [0 2 xs2msy < e1,  sup P\l p2 e xs2m2) < c2,
0<t<T** 0<t<T*
T
sup (16013 + 101) + [ 10Vttt < &,
0<t<T* 0
T (3.51)
sup_ (16 0"+ %) + [ [0V OB <
0<t<T** 0
0 . 0y(2 0112 02 ™ 012 2
sup (||(¢t7ut)”1 + ez + ‘¢t|D2) +/ ’ut|DlmD2dS < ¢;.
0<t<T** 0

We now give the detailed proof of Theorem 3.1.

Proof. Denote U* = (¢* uF)(k = 0,1,---). If we assume in (3.45) that (y,w,V) =
(I°,0°, U%), then we can obtain a strong solution (I', !, U') of (3.45). For any given
(I*, o*, U*), we can construct the approximate sequence of solutions (I¥+1 F+1 [k+1)



ISENTROPIC COMPRESSIBLE RADIATION HYDRODYNAMIC EQUATIONS 27
by solving the following problem:
1
AR VR V) LA LY
c

-1
ALk kO ok Qiy gk = o,
3
Utk:-H + ZAj<Uk>U£j+l _ —<g0k+1)2F(Uk+1) + G(gok—H, Uk:) + H(Ik-i-l,@k-l—l)
j=1
(Ik+17 (pk+17 Uk+1)‘t:0 = (I07 ©0, UO) )
(1M ML UM —(0,0,0), as fz = +oo, >0,

)

(3.52)
where

o0
v k
A’,? _ o—f“ _ U§+llk+1 + /2 (—af“[’ _ (U;)k+llk+1) a'dr/,
s

1 00 . T
H(IFHL oty = (o,— / / AdeQdu) ,
Cc Jo S2
A = ghtl kil /OO/ (5,551”““ — E;I’““) dQ'dv/,
0 g2 \V

Uf—i_l = O'e(t,l', v, Qa (§0k+1)l)a 0§+1 = O'a(t,l', v, Qa ((pk—‘_l)l)

E';'H =Tc(t,z,v,Q, (npk+1)l), E];'H =0q4(t,z, v, Q, (gok+1)l),
k+1 k+1\1
og )

I

/)k+1 _——

, (Us US(QDkJrl)l k+1 _ — k+1)l_

:ES(SO y Oq —Ua(QD

It is not difficult to see that the sequence of solutions (I*, ¥, U¥) satisfy the uniform
a priori estimates in (3.44) for 0 < t < T™*. Next, we want to obtain the strong
convergence of the approximate solution sequence (/ ko ok U k) Let

FRHL gkl gk —k4l k+1 k

I =1 —1 » P =¥ — ¢,

—=k+1 —k+1 _ L —k+1 B

u = (¢ 7uk+1), with ¢ = Pl gF gL = Bk

We obtain from (3.52) that

1 _
Jf“ + Q.- VIt 4 ( k1 / / DRHLAO dy ) =1,
SQ

ARV viv L N VAL +T(g0 divu* =t + o* diva®) = 0,

g —kt1 — ket 1
+ZA UNT,, + (") FT) (3.53)
j=1

3

= =Y AT - B 4 ) PO
j=1

+ G, UM + G(h, T + BT ),
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where L, is given by

Ll :(U§+1 o 0,]66) o ]k(0.53+1 / / k+1 )k) Ide/dV/
SQ

/ / 7" + Ilk(ofjerl — as))) dQ'd/,
S2

and H(T,7"+1) = (0, L), with

1 [ >0 -
Ly=—1 / / ((g’;H _oh) - <a’;+1 4 / / ag) IHldQ’dy’) QdQdy

c Jo S2 0 52
1 o0

S / / IF (@ —E80d0dy
CcJo S2

1 / / / / Lo (I)FH10d0 dv/ dQdv.
CcJo S2 .Jo S22V

k+1

First, we estimate |[@*T|o. Multiplying (3.53), by 2" !, integrating over R?, and using

Young’s inequality, one has

d _ _ _ _ _ _ _
B < O (IVa @ + (196 oz + Va2 + [V o) 1)
< AEOIF G + e ([T 3 + 16t Var B+ B¢) |
(3.54)
¢
for some A¥(t) satisfying / Ak(s)ds < Cct, and C. is a positive constant depending on €.
0

Now we estimate \7k+1|L2(R+X52;L2). Multiplying (3.53), by I and integrating
over RT x S2 x R3, we arrive at

k1
||I 172 (Rt xs52:22)

< c(/ / (1055 — GBI s + |PH ok — okolT* ) d2dw
2

k —tk+1
/ /S/ /S 2 (16" ool T" o + 1111 = ()12) T2

+ T T¥ oo | ("D = (05)!2 u’““y )dQ’du’dey)

—k+1
< Clg* s + EHI [ ®R+xs2:02) T CellI ||L2(1R+xs2;L2)v
(3.55)

where we used the Hypothesis H1 and (2.6)-(2.7).
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Now we turn to the estimate of |Uk+1 |2. Multiplying (3.53), by 2T and integrating
over R?, we have

k+1|

|U 5 —|—2a|<pk+1VUk+1|% —|—2(a+5)|<,0k+1 d1vuk+1|2

3
_ / T T div AUHT M ae —2 Y / T 4;T"0;U*da
—2 / V(2. (aVﬂkH + (a+p) divﬂk“]lg) g
_ 2/(,Ok+l((,0k+1 + (Pk> Lk wF e + 2/V<¢k+l(¢k+l + (pkz)> . Q(uk) B T

+ 2/V(<pk)2 . (Q(uk) _ Q(uk—l)) -Uk+1dx + 2/H(Ik+1,g0k+1) . Uk+1dﬁl,’

21
= Z Ji7
i=15
(3.56)
with the natural correspondence for J;(i = 15,16, --- ,21). Now we first estimate J;(i =
15,16, ---,20) one by one. It follows from Gagliardo-Nirenberg inequality, Holder’s

inequality and Young’s inequality that

k+1 9 k+1|

Jis <C|VU*||U
Jig <C|VU*|o|U

5<ClU
o|T |2 < C|T

29

k+1 ——k+1,9

|2+e|Uk|%,
Jir Sc/|wk+1vuk+1||v¢k+1||uk+1|dx < 2o LY Ot R T2
s SCI o (JH 1T g L3 + i* Lub oo [0+

<Cl e (IV (1T o Lty + [V (V2 [

§’¢k+1‘2((’¢k+lvﬂk+l|2 + [V o T+ 2) [V 20|

+ (196" 2| V2 o+ Vb))
§32| k+1v—k+1|2+0(|(pk+1 2(1 + || V2uF|J?)
+ @RIV + [V IV + (Vi )

T <C [ [ )] (920 V| V) o

SC(‘(pk—H|2(‘V2uk’3|(pk+1uk+l‘6 + ‘(kaZUk’OOmk—i-lb + ’(Pk+1Vﬂk+1’2‘vuk|oo)
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+ / B " — o+ <p’f+1\|vuk|yvuk+1dg;>
SC|¢k+1l2 <W2uk|3 (|(pk+1vﬂk+1|2 i |v(pk‘oomk+1’2)
(@ s (IVeF I V26 + 5T b )

+ |Vuk|oo (|4pk+1Vﬂk+1|2 + |¢k+1’2|VHk+1|oo) )

(6%
§3—2|4pk+1V6k+1|§ + C<’¢k+1 2 (1 + |vuk;’ + |Vﬂk+1|zo + ||V2Uk||%)
+ (@ (1VeHE + V6P IV 13 + 1659 b 3) )

Joo <e|"VaF |2 + C|Vk | |a 2.

We are left with the estimating of the last term Jy; in (3.56). Recalling the definition
of Lo and using the Hypothesis H1 and H2, we have

Ja1 :2/L2 -ﬂk+1d$

__2 / / / <— <a§+1+ / / a;> IkHdQ’dy’)Q-uk“deydx
¢ 0 Js2 0 Js2
2 o
_2 / / / (@ —ab) + 1HEE — k) @7+ dadvda
C 0 S2
2 / / / / / e T gk a0 dy dQdvda
¢ o JszJo Js2zV

_ _ _ _ ket
§C|Uk+1|2<\|05+1 —Tell @i wsziezy + L+ 176  2@exszm) T 2@ cs2i02)
+ |lohtt - 5§||L2(R+x52;L2)||IkHL2(R+xs2;H2))

—k+1
<C (P B+ @B+ 1T s )

Substituting J;(i = 15,---,21) into (3.56) , we conclude that
‘Uk""l‘Z ‘ k—HVﬂk—H‘g
=k+19 <k+1 7k _ —
SBk( T+ C <‘90k+1\2 + |1 HL2(R+xS2;L2)) te (’U 5+ [@"5 + |<kauk|%> ;

(3.57)
t
for some BF(t) satisfying / BF(s)ds < C 4 C.t.
0
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From (3.54)-(3.55) and (3.57), we obtain

d [ sk+1 . e .
DT o s + BB+ T B) + alg 1 v+

+k+1

_ —k+1
<EX) (19" B+ 10

|§ + |7 (3.58)

||%2(R+><SQ;L2)>
+ Ce (1" + [ + [T B+ 1T e xsmuzn) )
for some E¥(t) satisfying fg E¥(s)ds < C + C.t. Denote
T () = sup [T s sz + sup B3+ sup [T 3.
s€[0,t] s€0,t] s€0,t]

It thus follows from (3.58) that

t
Fk’+1<t)+a/ ’@k+1VEk+1’%d$
0
t
_ —k _ —k
<Ce / (16598 B + 1T s sy o) + 185 + [0°13) ds exp(Ct) (3.59)

t

_ —k — —k

<Ce (/ | *VTF|3ds + ¢ Sl[lp] (HI ||%2(R+X52;L2) + [+ U |§) exp(C’J)) .
0 se(0,t

Then by choosing € > 0 and 0 < T}, < T™* suitably small such that
4Ce < min(a, 1), (14 Ty)exp(CTy) < 2,

we finally arrive at

o0

T
> (I“k“(T*) + a/ ](pkHVukH\%dt) < C < +o0, (3.60)
k=1 0

which, together with the uniform estimates in (3.44), yields
I" T inL*(RT x 82, L>=([0,Ty]; H?)), (361)
(", U") = (¢, U)  in L=([0, T.]; H?). '

By virtue of the uniform estimates in (3.44), we also know that the approximate
solution sequence (I*,¢* UF) has the same compactness as in (3.47), with the limit
(I,,U) a weak solution to (3.2) in the sense of distribution and satisfying regularities

I L*(RT x 8%, L2([0,T.]; H?)), I, € L*(RT x §% L>([0,T.]; H?)),
(0, 9) € L=([0, T.); H?), (o1 d0) € L=([0,T.); H?),

we L0, T.); H) N L¥([0,T.); H?), ¢Viue L*([0,T.); L?),

ug € L°°([0, To]; HY) N LA([0, T..); D?),

(3.62)

for any constant s’ € [2, 3).
The time continuity and uniqueness of solutions can be obtained by using similar
arguments as in Section 3.2. We omit the details here. ([l
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4. PROOF OF THEOREM 2.1

With Theorem 3.1 at hand, we are ready to give the proof of Theorem 2.1. The proof
will be divided into two steps.

Step 1. The existence of regular solutions to (1.8)-(1.9).
Step 2. The regular solution that we obtained is indeed a classical one for ¢ € (0, T%].

From Theorem 3.1 we know that there exists a unique strong solution (I, ¢, ¢, u) to
(3.2) satisfying (3.6), which, along with the Sobolev embedding implies that

(p.0) € CHI0, L] x R®),  (u,Vu) € C((0, 2] x R?),

4.1
(I, 1) € L*(RT x S%;,C(]0, T] x R?)). (4.1)

Since p = 4,0% and 1 < 0 < min{~,5/3}, it is easy to get
p(t,z) € CH([0, T3] x RY), (4.2)

and

9

ap 2 s 3
%(t,x) =5 1% 1(t,z) € C(]0,T] x R?).

Then, after multiplying (3.1), by g—g, one can directly derive the continuity equation.
The momentum equation (1.8); can be obtained by multiplying (3.1), by p. According
to the continuity equation, we also know that p(t,x) > 0 provided the initial density
po > 0. By taking the limit as p — 0 on both side of (3.1),, we can find that the velocity
u can be governed by the following nonlinear equation:

1 [ —
u+u-Vu=—- / / (lim AT> QdQdv, when p(t,x) = 0.
¢Jo Jsz \r20

|

Therefore, (I, p,u) is a regular solution to the Cauchy problem (1.8)-(1.9) in the sense
of Definition 2.1. Step 1 is proved,

To show step 2, we still need the time continuity of of u; and div T. For uy, it suffices
1
to get the boundedness of Ht§v2UtHLoo(0’T*;L2) in the following lemma.

Lemma 4.1. Let (I, ¢, ¢,u) be the unique reqular solution to Cauchy problem (3.2).
Then it holds that for 0 <t < T,

t
V2|3 +/ s|pV3us|3ds < C, (4.3)
0

where C'is a constant depending on A, «, 5,7, 0, Tk.
Proof. Differentiating (3.1), with respect to time ¢, we get

-1
Up + chLut =—2ppiLu — (u - Vu), — %V (¢2)t + (V<p2 . Q(u))t

1 [ —
-2 /0 /S (A, 9000

(4.4)
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Applying the operator a5 (I¢] = 2) to (4.4), multiplying by dSuy over R3, and integrating
by parts, we obtain

£ 2105+ al eV (@u)l3 + (o + Bl div(Due) B
- / Vel <O¢V(8§ut) +(a+f) div(agutmg)  uyda

- / (9567 L) — L)) - el

—2 / IS (pwiLu) - OSusdr — / A% (u - V) - Oupdx — 2 / KV (¢?), - Hurda

+ / O5(V® - Q) - Hupdr — - / / 05 (), - il
S2

1=22
(4.5)
with the natural correspondence for J;(i = 22,23,---,28). Using Holder’s inequality
and Young’s inequality, we first estimate J;(¢ = 22,23,---,27) one by one as follows:

oz <CleVdutla| Veploo| Vs < 32!<PV3CW\2 + CO|Vol2 [Vul3,
Jaz <C (!Vsol2 V22 + [0V url6| V2 0ls + [0V 2| Vol oo ) [V 2
<3 Vi3 + C(1+|V2ul3)
Joa < <|V2Ut|2 (IVelalledlal Vull + [oViuls| Verls + ¢V ula|¢tfoo)
+ V2l V21|l ¢ V%l )
_32 |<,0V3ut]2 + C (V3 + [oViul3 + 1),
Jos <C (|luell2l|Vullz + [Vtloo|VZusl2) [VZuila < C (14 [Vuel3),

Jog = — %1 / 85V (6%),05u,dz

<C / (<rv3¢r\¢t| + V29|V r| + VS| [V2he]) [ Ve | + !V%tHW?’ut\)dx
<C ((|¢t]2|V3@l2 + |V20l6| Ve |3 + [Vloo| VEe|2) [ V2ur|2 + [V t]2]| VP 2)
< <|90V3Ut|2|90|oo L V200 + [V ut|2>

<% 2 oViuw2 + C (IV2uel3 + 1),

Jor :/ (ag(VSDZ - Q(u)e) + 05(V(9?)¢ - Q(“))> - Furde
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<C| V|3 Vu:|3 + |V? \V/ V3 V3 V3
[Voll3IVEuels + [Vu2 ([ Vell2(|oViulz + |l@dll2| Viul2) + [ Vouls|le: |2

+ eVl (IVell2| Vs + \V3U2H<PtH2)> +/3§(V¢2)t‘Q(U)'3§Utd$

(0}
SqgleViuls + C (14 V2l + [oVhul3)

where the term /8§(th2)t - Q(u) - OSudz was estimated, after integrating by parts, as

/ (V) - Qu) - e
<OIV?ula| Vuloo | orll2]| Vo2 + C / P05V - Qu) - Hupda

<C|V?ul2|Vulssotll2l Vell2 + CloViur|2| V2| V|
+ CIV201l2| Voloo |V uel2 + OV 2|0 Vg 6| Vul 3
_32|<,0V3ut]2 + C(1 + |Vul3).

For Jog, by using the Hypothesis H1 and H2, we have

Ty =t / / / $(Ge)e — (TSI ) Q- O urd2vds
SQ

- / / / (aa+ / / a’SdQ’du’) IS L - AupdQdvda
S2 S2
/ / / $ (501 t—(aaaq))nagutdadudx
- = / / / / / —,Esﬁélgdﬁ’du’(l-8§utd9dudx
C 0 s2.Jo S2 V

SC\Vzutb(\|V2(5e)tHL1(R+xs2;L2) + 1@a)ell 2 ®+ x52,10) IV || 2R x52,12)
+ V2Ll 2w xs2:02) + V2 (Fa )| L2mt xs2i000) 1l L2 @+ .52 200

+ V2T all L2 xs2,20) | Tl 2@+ xs2505) + [VTal L2t xs2,200) [ VIl 2 (r x52,12)
+ |V(5a)t||L2(1R+xs2;L6)||VI||L2(R+xs2;L3))
SC‘Vzutb(H(Ee)tHLl(R+xS2;H2) + 1 (Ga)ell L2+ xs2;m2) 1 | L2 R+ x 52;12)

+ (1+ IVl 2w szt el 2w sszin) )
C (1+|Vwl3).
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Substituting J;(i = 22, - - ,28) into (4.5) and and summing up all [{| = 2, we get
d
%\V%t@ + alpV3u|3 < C(IV2u)3 + | VAulg +1). (4.6)

Multiplying (4.6) by s and integrating with respect to s over [7,t] for 7 € (0, 1), it yields
t

|V 23 + a/ s|pV3us|3ds < 7|V2u|3 + C. (4.7)
T

Recalling the definition of regular solutions, we have
V2uy € L*([0, T.]; L?), (4.8)
which, together with (4.4) yields
uy € L([0, Ty]; L?). (4.9)
Using Lemma 2.6, we know that there exists a sequence s; such that
sp— 0, and sg|VZu(-,s6)|3 = 0, ask — +oo.

After choosing 7 = s — 0 to (4.7), we conclude that
t
t|V2ug)3 +/ s|eV3u)3ds < C. (4.10)
0

The proof of Lemma 4.1 is finished. O

Now we continue the proof of step 2. Using the Sobolev embedding
LA([0,T.); HY nWh2([0, To]; HY) — C([0, T.]; LY), g € (3,6], (4.11)
we obtain from Lemma 4.1 that
tug € C([0, T,]; Wh),

which follows u; € C((0, 7] x R3).
Since div T = pH, where H = ©? Lu—V?-Q(u), it suffices to prove the time continuity
of H. According to (3.1),, we know that

tH € L>=([0, T.]; H?).
From the fact that H; € L?([0,T.); L?) and (4.11), it follow
tH € C([0,T.] x R?),

which implies H € C((0, T}] x R?) and thus the time continuity of div T, which, together
with (4.1)-(4.2), finishes the proof of step 2. Theorem 2.1 is proved.
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