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Abstract

The paper deals with the asymptotical mean-square stability of
the linear θ-methods under variable stepsize and transformation ap-
proach for stochastic pantograph differential equations. A limiting
equation for the analysis of numerical stability is introduced by Kro-
necker products. Under the condition which guarantee the stability of
exact solutions, the optimal stability region of the linear θ-methods
under variable stepsize is given by using the limiting equation, i.e.,
θ ∈ (12 , 1], which is the same to the deterministic problems. Moreover
the linear θ-methods under the transformation approach are also con-
sidered and the result of the stability is improved for θ = 1

2 . Finally,
numerical examples are given to illustrate the asymptotical mean-
square stability under variable stepsize and transformation approach.

Keywords. Stochastic pantograph differential equations, Lin-
ear θ-methods, Asymptotical mean-square stability, Variable stepsize,
Transformation approach

1 Introduction

Stochastic differential systems, such as stochastic differential equation-
s (SDEs), stochastic delay differential equations (SDDEs), have attracted
much attention due to their applications in physical, dynamical systems, and
finance. Stochastic pantograph differential equations (SPDEs) are a special
kind of Itô-type SDDEs with unbounded memory and a generalization of
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deterministic pantograph equations, i.e.,{
x′(t) = ax(t) + bx(qt), t ≥ 0,

x(0) = x0,
(1.1)

where 0 < q < 1, and x0 ∈ R, a, b are constants. In recent years, many
authors have considered SPDEs{

dx(t) = [ax(t) + bx(qt)]dt+ [cx(t) + dx(qt)]dW (t), t > 0,

x(0) = x0,
(1.2)

where 0 < q < 1, a, b, c, d are constants, x0 ∈ R and W(t) is a standard
Wiener process.

Many important results have been discussed for the exact solutions. Baker
and Bukwar [1] gave the necessary analytical theory for existence and unique-
ness of a strong solution. Fan et al. [4] gave the Razumikhin-type theorems of
the αth moment asymptotical stability of exact solutions for linear stochastic
pantograph differential equations. Guo and Li [7] established Razumikhin-
type theorems on the αth moment polynomial stability of exact solutions for
the nonlinear stochastic pantograph differential equations. Yang et al. [25]
investigated the mean-square stability of nonlinear stochastic pantograph d-
ifferential equations, and an equivalent form of stochastic delay differential
equations with constant delay is introduced by the transformation approach.

Many authors investigated numerical solutions with constant stepsize to
SPDEs [3, 4]. Because the most difficult problem is the limited computer
memory, many authors applied variable stepsize and transformation approach
for the deterministic pantograph equations to solve the storage problem.
Recently, the linear θ-methods under variable stepsize have been discussed
for SPDEs in [22, 23], of which the strong order of convergence p = 1

2
is

given under the Lipschitz condition in [23] and the mean-square stability is

studied in [22]. Whereas, the stability region of θ in [22], i.e., θ ∈ ( |a|+|b|
2|a| , 1],

is a little stronger than deterministic problems in the sense that for c, d = 0,
the equation (1.2) is equivalent to the deterministic pantograph equations.
Therefore, we are interested in an optimal stability region of the linear θ-
methods.

For deterministic pantograph equations, many authors investigated the
numerical stability by the limiting equation, such as Liu [14], Xu [24], Liu
[17], Wang [20] and so on, which always provides an optimal stability result.
Up to the best of our knowledge, there is no such work for SPDEs. In
order to introduce the limiting equation for SPDEs, we, instead of the inner
product, employ the Kronecker product to obtain a matrix equation. Such
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a technique has been used in [21] for the asymptotical mean-square stability
and in [27] for the numerical stability. However, for SPDEs, the coefficients
in the matrix equation varies with the numerical process. Hence a limiting
equation is also in great need to introduce and an optimal stability region of
linear θ-methods is obtained for linear SPDEs.

Another approach, i.e., transformation approach, is also widely used
to overcome the storage problems for deterministic pantograph equations.
Moreover, there are some stability results under such an approach. Koto
[13] investigated the stability of Runge-Kutta methods. Liu [14] proved that
the linear θ-method is Λ-stable. However, up to the best of our knowledge,
there is no such work of the numerical solutions for SPDEs. Yang et al. [25]
proposed SPDEs is equivalent to SDDEs with constant delay by the trans-
formation approach. Hence we will discuss the asymptotical mean-square
stability of the linear θ-methods applying to the differential form proposed
in [25]. By using limiting equations again, we get the main result of this
paper, that is the stability region is the same to the deterministic problems
[14], i.e., θ ∈ [1

2
, 1].

The paper is organized as follows. In section 2, we gave some preliminar-
ies. In section 3, we investigate the asymptotical mean-square stability under
variable stepsize for linear SPDEs if θ ∈ (1

2
, 1]. In section 4, the asymptotical

mean-square stability is improved by transformation approach, i.e., θ ∈ [1
2
, 1].

We will provide some numerical examples in the section 5.

2 Preliminaries

Throughout this paper, let (Ω,F ,P) be a complete probability space
with a filtration {Ft≥0} satisfying the usual conditions. By the definition of
stochastic differential, the equation (1.2) can be expressed equivalently as

x(t) = x0 +

∫ t

0

ax(s) + bx(qs)ds+

∫ t

0

cx(s) + dx(qs)dW (s).

Definition 2.1. [22] An R-valued stochastic process x(t) : [0, T ] × Ω → R
is called a strong solution of equation (1.2), if it is a measurable, sample-
continuous process such that x|[0,T ] is (Ft)0≤t≤T−adapted, and x satisfies
equation (1.2), almost surely, and satisfies the initial condition x(0) = x0.
A solution x(t) is said to be path-wise unique if any other solution x̂(t) is
stochastically indistinguishable from it, i.e.

P{x(t) = x̂(t), for all 0 ≤ t ≤ T} = 1.
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Lemma 2.2. [1] If 0 < q < 1 and E|x0|2 <∞, then there exists a path-wise
unique strong solution to problem (1.2).

Lemma 2.3. [4] If the coefficient of equation (1.2) are satisfied

a < −|b| − 1

2
(|c|+ |d|)2, (2.1)

then the trivial solution is asymptotically mean-square stable, that is

lim
t→∞

E|x(t)|2 = 0.

For the convenience of discussion in the following sections, we review some
matrix knowledge in [9].

Definition 2.4. The Kronecker product of A = [aij] ∈ Cm,n and B = [bij] ∈
Cp,q is denoted by A⊗B and is defined to the block matrix

A⊗B ≡

 a11B · · · a1nB
...

. . .
...

am1B · · · ammB

 ∈ Cmp,nq.

Definition 2.5. With each matrix A = [aij] ∈ Cm,n, we associate the vector
vecA ∈ Cm,n defined by

vecA ≡ [a11, · · · , am1, a12, · · · , am2, · · · , a1n, · · · , amn]T .

Lemma 2.6. Let A ∈ Cm,n, B ∈ Cp,q, C ∈ Cm,q be given and let X ∈ Cn,p

be unknown. The matrix equation AXB = C is equivalent to the system of
qm equation in np unknown given by vec(AXB) = (BT ⊗ A)vecX.

Lemma 2.7. Let A ∈ Cn, B ∈ Cm, and the point set of eigenvalues be
denoted by σ(·). If λ ∈ σ(A) and µ ∈ σ(B), then λµ ∈ σ(A ⊗ B). Every
eigenvalue of A ⊗ B arises as such a product of eigenvalues of A and B. If
σ(A) = {λ1, · · · , λn}, and σ(B) = {µ1, · · · , µm}, then σ(A ⊗ B) = {λiµj :
i = 1, · · · , n, j = 1, · · · ,m}.

3 The linear θ-methods under variable step-

size

For the convenience of readers, we review some background information
of the linear θ-methods under variable stepsize for (1.2) in [22] as follows:

Here, the mesh H = {m; t0, t1 · · · , tn · · · } is defined as follows. Let T0 > 0
be given, t0 = T0 and tm = q−1T0. We choose m − 1 grid points t1 < t2 <
· · · < tm−1 in (t0, tm) and define other points by
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tkm+i = q−kti, for k = 1, 2, · · · , i = 0, 1, · · ·m− 1.

It is easy to see that the grid points tn satisfy qtn = tn−m for n ≥ 0 and the
variable stepsize hn = tn+1 − tn satisfies

hn = q−1hn−m, for all n ≥ 1, and lim
n→∞

hn =∞.

Furthermore, we suppose to have numerical solutions available till the point
T0, which is called initial data.

The linear θ-methods under variable stepsize of the equation (1.2) have
the form

xn+1 =xn + θhn(axn+1 + bxn−m+1) + (1− θ)hn(axn + bxn−m) (3.1)

+ (cxn + dxn−m)∆Wn,

where xn is an approximation to x(tn), θ is a parameter with 0 ≤ θ ≤ 1
and the increments ∆Wn := W (tn+1) − W (tn) are independent N(0, hn)-
distributed Gaussian random variables. Further, xn is Ftn-measurable at
the mesh-point tn. Since the strong convergence of numerical methods with
variable stepsize for linear SPDEs has been studied by Xiao et al. [22], we
will consider the asymptotical mean-square stability.

Definition 3.1. The linear θ-methods with variable stepsize for (1.2) are
said to be asymptotical mean-square stability, if for any given mesh H

lim
n→∞

E|xn|2 = 0.

From (3.1), we obtain

(1− aθhn)xn+1 =(1 + (1− θ)ahn)xn + θhnbxn−m+1 (3.2)

+ (1− θ)hnbxn−m + (cxn + dxn−m)∆Wn,

which has an equivalent form

M0nXn+1 = M1nXn +M2nXn∆Wn,

where Xn = (xn, xn−1, · · · , xn−m)T ,

M0n =


1− aθhn 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ,
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M1n =



1 + (1− θ)ahn 0 · · · 0 bθhn b(1− θ)hn
1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


,

M2n =


c 0 · · · 0 d
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

 .

It follows from (2.1) that 1− aθhn 6= 0, which yields that

Xn+1 = Mn
1Xn + M̃n

2Xn∆Wn,

where

Mn
1 = M−1

0nM1n =



1+(1−θ)ahn
1−aθhn 0 · · · 0 bθhn

1−aθhn
b(1−θ)hn
1−aθhn

1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


, (3.3)

M̃n
2 = M−1

0nM2n =


c

1−aθhn 0 · · · 0 d
1−aθhn

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

 .

Remark 3.2. Some sufficient conditions for the mean-square stability of the
linear θ-methods has been studied by the inner produce, since lim

n→∞
E|xn|2 =

0 is equivalent to lim
n→∞

E|XT
nXn| = 0. However, we are interested in an

optimal stability region of the linear θ-methods for linear SPDEs. In view
of the technique in [21] for the asymptotical mean-square stability and for
the numerical stability in [27], we replace the inner product E|XT

nXn| by the
equivalent kronecker product E|XnX

T
n |.

Noting that E | ∆Wn |= 0, E | ∆Wn |2= hn and Xn, Xn−m+1, Xn−m are
Ftn−measurable, hence

E(XnX
T
n ∆Wn) = E[XnX

T
nE(∆Wn|Ftn)] = 0,

E(XnX
T
n (∆Wn)2) = E[XnX

T
nE((∆Wn)2|Ftn)] = hnE(XnX

T
n ).
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Thus, we have

E(Xn+1X
T
n+1) = Mn

1 E(XnX
T
n )(Mn

1 )T + h
1
2
nM̃

n
2 E(XnX

T
n )(M̃n

2 )T (h
1
2
n )T , (3.4)

which with the notations Dn+1 = E(Xn+1X
T
n+1) and h

1
2
nM̃n

2 = Mn
2 is rewrit-

ten as
Dn+1 = Mn

1Dn(Mn
1 )T +Mn

2Dn(Mn
2 )T .

Hence, in view of Lemma 2.6, we obtain that

vec(Dn+1) = Anvec(Dn), (3.5)

with An = Mn
1 ⊗Mn

1 +Mn
2 ⊗Mn

2 .

Remark 3.3. Since Liu [14] proposed the limiting equation for deterministic
equations, many authors investigated the stability by the limiting equation.
Here, we introduce a limiting equation to obtain an optimal stability region
of linear θ-methods in this paper. In view of lim

n→∞
hn =∞, ones obtain that

lim
n→∞

Mn
1 = M1 =



−1−θ
θ

0 · · · 0 − b
a
− b(1−θ)

aθ

1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


, (3.6)

lim
n→∞

Mn
2 = M2 =

 0 · · · 0
...

. . .
...

0 · · · 0

 .

Hence the limit of the matrix An exists, which is given by A = M1⊗M1, and
the limiting equation of (3.5) is defined as

Zn+1 = AZn. (3.7)

It is ready to formulate our main results that, under the condition (2.1),
which is independent of q, the asymptotical mean-square stability condition
of the linear θ-methods is the same as the deterministic problem in the fol-
lowing theorem.

Theorem 3.4. Under the condition (2.1), if θ ∈ (1
2
, 1], then the linear θ-

methods with variable stepsize of the equation (1.2) are asymptotical mean-
square stability, i.e.,

lim
n→∞

E|xn|2 = 0.
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Proof. From the Remark 3.2, it is easy to see that lim
n→∞

E|xn|2 = 0 is equiva-

lent to lim
n→∞

Dn = 0. Referring to [17] we can know that lim
n→∞

Zn = 0 implies

lim
n→∞

Dn = 0, if two conditions are satisfied, i.e., Σ∞n=0‖An − A‖∞ < ∞ and

the algebraic multiplicity of the eigenvalue for A is 1.
The problem turns out to verify the conditions in [17]. Applying the

Cauchy radical test to (3.3) and (3.6), we know

Σ∞n=0|
1 + (1− θ)ahn

1− aθhn
+

1− θ
θ
| = Σ∞n=0|

1

(1− aθhn)θ
| <∞,

Σ∞n=0|
bθhn

1− aθhn
+
b

a
| = Σ∞n=0|

1

(1− aθhn)θ
| <∞,

Σ∞n=0|
b(1− θ)hn
1− aθhn

+
b(1− θ)
aθ

| = Σ∞n=0|
1

(1− aθhn)θ
| <∞,

which yields Σ∞n=0‖Mn
1 −M1‖∞ <∞. By a similar calculation, Σ∞n=0‖Mn

2 −
M2‖∞ < ∞. Hence from the properties of Kronecker product of matrix, we
obtain Σ∞n=0‖An − A‖∞ <∞.

For the eigenvalue for A, we only need to consider the eigenvalues of M1,
which is given by the roots of the equations

|λI −M1| = (λ+ 1−θ
θ

)(λm + b
a
) = 0,

where I is the identity matrix of order m+ 1. Namely the eigenvalues are

λm = θ−1
θ

, λk = m

√
| b
a
|ei 1

m
(arg(− b

a
)+2kπ), k = 0, · · · ,m− 1.

Therefore, by Lemma 2.7, the algebraic multiplicity of the eigenvalue for A
is 1.

It follows from condition (2.1) and θ ∈ (1
2
, 1] that ρ(M1) < 1, which

together with Lemma 2.7 implies that ρ(A) < 1. Hence the proof is complete.

From Theorem 3.4, the stability region of linear θ-methods is the same as
the deterministic problems, i.e., θ ∈ (1

2
, 1]. Furthermore, the stability region

of θ is improved by the transformation approach for deterministic pantograph
equations. Hence, we will investigated asymptotical mean-square stability
under transformation approach in the next section.
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4 The linear θ-methods under transformation

approach

In this section, we are interested in the asymptotical mean-square stability
under transformation approach. Applying the time-scale transformation ap-
proach to (1.2) by y(t) = x(et), the stochastic process y(t) satisfies stochastic
delay differential equations with a constant delay{

dy(t) = et[ay(t) + by(t− τ)]dt+ e
1
2
t[cy(t) + dy(t− τ)]dB(t), t ≥ t0,

y(0) = x(et), t ≤ t0,

(4.1)
where τ = − ln q and W (et), the time-changed Wiener process, has a differ-

ential form dW (et) = e
1
2
tdB(t) with a standard Brownian motion B(t) with

respect to the filtration {Fet}t≥t0 . Hence, the linear θ-methods under the
transformation approach of the equation (4.1) have the form:

yn+1 =yn + θhetn+1(ayn+1 + byn−m+1) (4.2)

+ (1− θ)hetn(ayn + byn−m) + e
1
2
tn(cyn + dyn−m)∆Bn,

where h = − ln q
m

, θ ∈ [0, 1], yn is an approximation to y(tn) and the incre-
ments ∆Bn := B(tn+1)−B(tn) are independent N(0, h)-distributed Gaussian
random variables. Moreover, we assume that yn is Fetn -measurable at the
mesh-point tn.

Remark 4.1. The strong convergence of (4.2) comes directly from the dis-
cussion in [19] for the linear θ-methods for SDDEs with a variable coefficients.
However, the stability analysis is much harder, since the one-sides condition
and linear growth condition are hardly satisfied at the same time.

Definition 4.2. The linear θ-methods under transformation approach are
said to be asymptotically stable in the mean-square sense, if lim

n→∞
E|yn|2 = 0

holds for any h > 0, where yn is the solution of (4.2).

From (4.2), we can get

(1− aθhetn+1)yn+1 = (1 + (1− θ)ahetn)yn + θhetn+1byn−m+1

+ (1− θ)hetnbyn−m + e
1
2
tn(cyn + dyn−m)∆Bn, (4.3)

which has an equivalent form

N0nYn+1 = N1nYn +N2nYn∆Bn,
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where Yn = (yn, yn−1, · · · , yn−m+1, yn−m)T ,

N0n =


1− aθhetn+1 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ,

N1n =



1 + (1− θ)ahetn 0 · · · 0 bθhetn+1 b(1− θ)hetn
1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


,

N2n =


ce

1
2
tn 0 · · · 0 de

1
2
tn

0 0
. . . 0 0

...
... · · · ...

...
0 0 · · · 0 0

 .

It follows from (2.1) that 1− aθhetn+1 6= 0, which yields that

Yn+1 = Nn
1 Yn + Ñn

2 Yn∆Bn,

where

Nn
1 = N−10n N1n =



1+(1−θ)ahetn
1−aθhetn+1

0 · · · 0 bθhe/tn+1

1−aθhetn+1

b(1−θ)hetn
1−aθhetn+1

1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


,

(4.4)

Ñn
2 = N−10n N2n =


ce

1
2 tn

1−aθhetn+1
0 · · · 0 de

1
2 tn

1−aθhetn+1

0 0
. . . 0 0

...
... · · · ...

...
0 0 · · · 0 0

 .

Noting that E | ∆Bn |= 0, E | ∆Bn |2= h, and Yn, Yn−m+1, Yn−m are
Ftn−measurable, hence

E(YnY
T
n ∆Bn) = E[YnY

T
n E(∆Bn|Ftn)] = 0,

E(YnY
T
n (∆Bn)2) = E[YnY

T
n E((∆Bn)2|Ftn)] = hE(YnY

T
n ).
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Therefore, in view of Remark 3.2, we have

E(Yn+1Y
T
n+1) = Nn

1 E(YnY
T
n )(Nn

1 )T + h
1
2 Ñn

2 E(YnY
T
n )(Ñn

2 )Th
1
2 .

Denoting Un+1 = E(Yn+1Y
T
n+1), Ñ

n
2 h

1
2 = Nn

2 and using Lemma 2.6, we obtain
that

vec(Un+1) = Qnvec(Un), (4.5)

wheere Qn = Nn
1 ⊗Nn

1 +Nn
2 ⊗Nn

2 . In view of lim
n→∞

etn =∞, ones obtain that

lim
n→∞

Nn
1 = N1 =



−1−θ
θeh

0 · · · 0 − b
a
− b(1−θ)

aθeh

1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


, (4.6)

lim
n→∞

Nn
2 = N2 =

 0 · · · 0
...

. . .
...

0 · · · 0

 .

Hence the limit of matrix Qn exist, which is given by Q = N1 ⊗ N1, By
Remark 3.3, the limiting equation of (4.5) is defined as Wn+1 = QWn.

Compared with Theorem 3.4, the asymptotical mean-square stability re-
gion of linear θ-methods under the transformation approach is improved by
θ ∈ [1

2
, 1] in the following theorem.

Theorem 4.3. Under the condition (2.1), if θ ∈ [1
2
, 1], then the linear θ-

methods with transformation approach of the equation (1.2) are asymptoti-
cally stable in the mean-square sense.

Proof. Similarly to the argument of Theorem 3.4, we will verify the conditions
in [17] firstly. It is easily seen that Σ∞n=0‖Qn−Q‖∞ <∞. For the eigenvalue
of Q, we only need to consider the eigenvalues of N1, which is given by the
roots of the equations

|µI −N1| = (µ+
1− θ
θeh

)(µm +
b

a
).

Namely the eigenvalues are

µm = θ−1
θeh
, µk = m

√
| b
a
|ei 1

m
(arg(− b

a
)+2kπ), k = 0, · · · ,m− 1.
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Therefore, by Lemma 2.7, the algebraic multiplicity of the eigenvalue for Q
is 1.

Compared with the result in Theorem 3.4, the condition is improved by
|1−θ
θeh
| < 1 for all θ ∈ [1

2
, 1]. Hence, the proof is complete.

The linear θ-methods with transformation approach are asymptotically
stable in the mean-square sense for 1

2
≤ θ ≤ 1, which is the same to the

deterministic problems. Similarly to the deterministic pantograph equations,
the condition is improved by transformation approach.

5 Numerical experiments

In this section, we will present several numerical examples to illustrate
the asymptotical mean-square stability under variable stepsize and the trans-
formation approach. We consider the following linear stochastic pantograph
differential equation

dx(t) = [ax(t) + bx(qt)]dt+ [cx(t) + dx(qt)]dW (t), (5.1)

with initial condition x(0) = 1. The data plotted in all figures are obtained
as the mean-square data for 4000 trajectories, that is ωi : 1 ≤ i ≤ 4000,
E|xn|2 = 1

4000
Σ4000
i=1 |xn(ωi)|2.

Case 1: we choose the coefficients as a = −3, b = 0.5, c = 1, d = 1, θ = 0.6.
From figure 1, we can see that the asymptotical mean-square stability with
different q is hold under variable stepsize and the transformation approach.
Especially for q = 0.4, the coefficients satisfy the condition (2.1), but do not
satisfy the condition in [26]. It is easy to see form Figure 1 that the asymp-
totical mean-square stability is still hold, which is coincide with Theorem 3.4
and Theorem 4.3. That is, the stability condition is independent of q under
variable stepsize and the transformation approach.

Case 2: we use the set of parameters I: a = −3, b = 0.5, c = 1, d = 1, q =
0.5 and II: a = −4, b = 1, c = 1, d = 1, q = 0.5. It is easy to see that
the asymptotical mean-square stability is hold with different θ in Figure 2,
which is coincide with Theorem 3.4. Especially, comparing with the range of
θ in [22], i.e., θ ∈ ( |a|+|b|

2|a| , 1], we can easily get 0.6 /∈ ( |a|+|b|
2|a| , 1]. However, the

asymptotical mean-square stability is still hold for θ = 0.6 in Figure 2 , which
implies the asymptotical mean-square stability region of linear θ-methods is
improved by θ ∈ (1

2
, 1] under variable stepsize.

Case 3: we choose the coefficients as a = −5, b = 1, c = 1, d = 1, q = 0.6.
Under m = 2, 5, 10, 20, it is easy to see from the Figure 3 that the linear
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θ-methods with θ = 1
2

are asymptotical mean-square stability for transforma-
tion approach but not for variable stepsize. We can know that the condition
is improved by transformation approach, which is coincide with Theorem 3.4
and Theorem 4.3. The figure implies us the condition may be necessary.
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(a) variable stepsize
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(b) transformation approach

Figure 1: The asymptotical mean-square stability with different q
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(a) a = −3, b = 0.5, c = 1, d = 1, q = 0.5
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Figure 2: The asymptotical mean-square stability for different θ under vari-
able stepsize
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