References
  1. Dallas AC. Characterization of Pareto and power function distribution. Annals of the Institute of Statistical Mathematics. 1976; 28 , 491–497. https://doi.org/10.1007/BF02504764.
  2. Meniconi M, Barry DM. The power function distribution: A useful and simple distribution to assess electrical component reliability. Microelectronics Reliability. 1996; 36 , 1207–1212. https://doi.org/10.1016/0026-2714(95)00053-4.
  3. Ahsanullah M, Shakil M, Kibria BMG. A characterization of the power function distribution based on lower records. Prob Stat Forum. 2013;6 , 68-72. https://www.researchgate.net/publication/264760011.
  4. Chang SK. Characterizations of the power function distribution by the independence of record values. Journal of the Chungcheong Mathematical Society. 2007; 20 , 139–146. http://www.koreascience.or.kr/article/JAKO200717069750355.
  5. Dorp JR, Kotz S. The standard two-sided power distribution and its properties: with applications in financial engineering. The American Statistician. 2002; 56 , 90–99. https://doi.org/10.1198/000313002317572745.
  6. Saleem M, Aslam M, Economou P. On the Bayesian analysis of the mixture of power function distribution using the complete and the censored sample. Journal of Applied Statistics. 2010; 37 , 25–40. https://doi.org/10.1080/02664760902914557.
  7. Zaka A, Akhter AS. Methods for estimating the parameters of the power function distribution. Pakistan Journal of Statistics and Operation Research. 2013; 9 , 213–224. https://doi.org/10.18187/pjsor.v9i2.488
  8. Tahir M, Alizadeh M, Mansoor M, Cordeiro GM, Zubair M. The Weibull-Power function distribution with applications. Hacettepe University Bulletin of Natural Sciences and Engineering Series b: Mathematics and Statistics. 2014; 45 , 245-265. 10.15672/HJMS.2014428212
  9. Hanif S, Al-Ghamdi SD, Khan K, Shahbaz MQ. Bayesian estimation for parameters of power function distribution under various priors. Mathematical Theory and Modeling. 2015; 5 , 45-67. https://www.researchgate.net/publication/294428604.
  10. Shahzad MN, Asghar Z. Transmuted power function distribution: A more flexible distribution. Journal of Statistics and Management Systems. 2016; 19 , 519–539. https://doi.org/10.1080/09720510.2015.1048096.
  11. Shaw WT, Buckley IR. The alchemy of probability distributions: Beyond Gram-Charlier expansions and a skew-kurtotic-normal distribution from a rank transmutation map. 2009; arXiv preprint arXiv: 0901.0434.
  12. Okorie IE, Akpanta AC, Ohakwe J, Chikezie DC. The modified Power function distribution. Cogent Mathematics. 2017; 4 , 1319592. https://www.tandfonline.com/doi/full/10.1080/23311835.2017.1319592.
  13. Marshall AW, Olkin I. A new method for adding a parameter to a family of distributions with application to the Exponential and Weibull families. Biometrika. 1997; 84 , 641-652. https://www.jstor.org/stable/2337585.
  14. Haq MA, Usman RM, Bursa N, Ozel G. McDonald Power function distribution with theory and applications. International Journal of Statistics and Economics. 2018; 19(2) , 89-107. http://www.ceser.in/ceserp/index.php/bse/article/view/5505.
  15. Ibrahim M. The Kumaraswamy Power function distribution. Journal of Statistics Applications and Probability. 2017; 6(1) , 81-90. doi: 10.18576/jsap/060107.
  16. Jabeen R, Zaka A. Estimation of parameters of the continuous uniform distribution: Different classical methods. Journal of Statistics and Management Systems. 2019; doi: 10.1080/09720510.2019.1639948.
  17. Zaka A, Akhter AS, Jabeen R. The Exponentiated Generalized Power function distribution: Theory and Real Life Applications. Advances and Applications in Statistics. 2020; 61(1) , 33-63. doi: 10.17654/AS061010033
  18. Lehman EL. The power of rank tests. Annals of Mathematical Statistics. 1953; 24 , 28-43. https://www.jstor.org/stable/2236347.
  19. Eugene N, Lee C, Famoye F. Beta-Normal distribution and Its Applications. Communications in Statistics - Theory and Methods. 2002;31(4) , 497-512. doi: 10.1081/STA-120003130.
  20. Glaser R. Bathtub and Related Failure Rate Characterizations. Journal of the American Statistical Association. 1980; 75 , 667-672. https://www.jstor.org/stable/2287666.
  21. Dubey SD. Some percentile Estimators for Weibull parameters. Journal of Technometrics. 1967; 9(1) , 119-129. https://www.tandfonline.com/doi/pdf/10.1080/00401706.1967.10490445.
  22. Marks NB. Estimation of Weibull parameters from common percentiles. Journal of applied Statistics. 2005; 32(1) , 17-24. https://doi.org/10.1080/0266476042000305122.
  23. Zea LM, Silva RB, Bourguignon M, Santos AM, Cordeiro GM. The beta exponentiated Pareto distribution with application to bladder cancer susceptibility. International Journal of Statistics and Probability. 2012; 1 , 8–19. doi: 10.5539/ijsp.v1n2p8.
  24. Lee ET, Wang JW. Statistical Methods for Survival Data Analysis. 3rd edition. Wiley: New York. 2003. doi: 10.1002/0471458546.
  25. Haq MA, Hamedani GG, Elgarhy M, Ramos PL. Marshall-Olkin Power Lomax distribution: Properties and Estimation Based on Complete and Censored Samples. International Journal of Statistics and Probability. 2020;9(1) , 48-62. doi: 10.5539/ijsp.v9n1p48.
  26. Aarset MV. How to identify a bathtub hazard rate. IEEE Transactions on Reliability. 1987; 36(1) , 106–108. doi: 10.1109/TR.1987.5222310.
  27. Dey S, Alzaatreh A, Zhang C, Kumar, D. A new extension of generalized exponential distribution with application to ozone data. Ozone: Science and Engineering. 2017; 39(4) , 273–285. https://doi.org/10.1080/01919512.2017.1308817.
  28. Haq MA, Usman RM, Hashmi S, Al-Omeri AI. Marshall-Olkin length-biased exponential distribution and its applications. Journal of King Saud University Science. 2019; 31(2) , 246–251. https://doi.org/10.1016/j.jksus.2017.09.006.
  29. Ramadan DA, Magdy W. On the alpha-power inverse Weibull distribution. International Journal of Computer Applications. 2018;181(11) , 6–12. https://doi.org/10.1080/16583655.2019.1588488.
  30. Ihtisham S Khalil A, Manzoor S, Khan SA, Ali A. Alpha-power Pareto distribution: its properties and applications. PLoS One. 2019;14(6) . https://doi.org/10.1371/journal.pone.0218027.
  31. ZeinEldin RA, Haq MA, Hashmi S, Elsehety M. Alpha Power Transformed Inverse Lomax distribution with Different Methods of Estimation and Applications. Complexity. 2020; 1-15. https://doi.org/10.1155/2020/1860813