References
- Dallas AC. Characterization of Pareto and power function distribution.
Annals of the Institute of Statistical Mathematics. 1976; 28 ,
491–497. https://doi.org/10.1007/BF02504764.
- Meniconi M, Barry DM. The power function distribution: A useful and
simple distribution to assess electrical component reliability.
Microelectronics Reliability. 1996; 36 , 1207–1212.
https://doi.org/10.1016/0026-2714(95)00053-4.
- Ahsanullah M, Shakil M, Kibria BMG. A characterization of the power
function distribution based on lower records. Prob Stat Forum. 2013;6 , 68-72.
https://www.researchgate.net/publication/264760011.
- Chang SK. Characterizations of the power function distribution by the
independence of record values. Journal of the Chungcheong Mathematical
Society. 2007; 20 , 139–146.
http://www.koreascience.or.kr/article/JAKO200717069750355.
- Dorp JR, Kotz S. The standard two-sided power distribution and its
properties: with applications in financial engineering. The American
Statistician. 2002; 56 , 90–99.
https://doi.org/10.1198/000313002317572745.
- Saleem M, Aslam M, Economou P. On the Bayesian analysis of the mixture
of power function distribution using the complete and the censored
sample. Journal of Applied Statistics. 2010; 37 , 25–40.
https://doi.org/10.1080/02664760902914557.
- Zaka A, Akhter AS. Methods for estimating the parameters of the power
function distribution. Pakistan Journal of Statistics and Operation
Research. 2013; 9 , 213–224.
https://doi.org/10.18187/pjsor.v9i2.488
- Tahir M, Alizadeh M, Mansoor M, Cordeiro GM, Zubair M. The
Weibull-Power function distribution with applications. Hacettepe
University Bulletin of Natural Sciences and Engineering Series b:
Mathematics and Statistics. 2014; 45 , 245-265.
10.15672/HJMS.2014428212
- Hanif S, Al-Ghamdi SD, Khan K, Shahbaz MQ. Bayesian estimation for
parameters of power function distribution under various priors.
Mathematical Theory and Modeling. 2015; 5 , 45-67.
https://www.researchgate.net/publication/294428604.
- Shahzad MN, Asghar Z. Transmuted power function distribution: A more
flexible distribution. Journal of Statistics and Management Systems.
2016; 19 , 519–539.
https://doi.org/10.1080/09720510.2015.1048096.
- Shaw WT, Buckley IR. The alchemy of probability distributions: Beyond
Gram-Charlier expansions and a skew-kurtotic-normal distribution from
a rank transmutation map. 2009; arXiv preprint arXiv: 0901.0434.
- Okorie IE, Akpanta AC, Ohakwe J, Chikezie DC. The modified Power
function distribution. Cogent Mathematics. 2017; 4 , 1319592.
https://www.tandfonline.com/doi/full/10.1080/23311835.2017.1319592.
- Marshall AW, Olkin I. A new method for adding a parameter to a family
of distributions with application to the Exponential and Weibull
families. Biometrika. 1997; 84 , 641-652.
https://www.jstor.org/stable/2337585.
- Haq MA, Usman RM, Bursa N, Ozel G. McDonald Power function
distribution with theory and applications. International Journal of
Statistics and Economics. 2018; 19(2) , 89-107.
http://www.ceser.in/ceserp/index.php/bse/article/view/5505.
- Ibrahim M. The Kumaraswamy Power function distribution. Journal of
Statistics Applications and Probability. 2017; 6(1) , 81-90.
doi:
10.18576/jsap/060107.
- Jabeen R, Zaka A. Estimation of parameters of the continuous uniform
distribution: Different classical methods. Journal of Statistics and
Management Systems. 2019; doi: 10.1080/09720510.2019.1639948.
- Zaka A, Akhter AS, Jabeen R. The Exponentiated Generalized Power
function distribution: Theory and Real Life Applications. Advances and
Applications in Statistics. 2020; 61(1) , 33-63. doi:
10.17654/AS061010033
- Lehman EL. The power of rank tests. Annals of Mathematical Statistics.
1953; 24 , 28-43. https://www.jstor.org/stable/2236347.
- Eugene N, Lee C, Famoye F. Beta-Normal distribution and Its
Applications. Communications in Statistics - Theory and Methods. 2002;31(4) , 497-512. doi:
10.1081/STA-120003130.
- Glaser R. Bathtub and Related Failure Rate Characterizations. Journal
of the American Statistical Association. 1980; 75 , 667-672.
https://www.jstor.org/stable/2287666.
- Dubey SD. Some percentile Estimators for Weibull parameters. Journal
of Technometrics. 1967; 9(1) , 119-129.
https://www.tandfonline.com/doi/pdf/10.1080/00401706.1967.10490445.
- Marks NB. Estimation of Weibull parameters from common percentiles.
Journal of applied Statistics. 2005; 32(1) , 17-24.
https://doi.org/10.1080/0266476042000305122.
- Zea LM, Silva RB, Bourguignon M, Santos AM, Cordeiro GM. The beta
exponentiated Pareto distribution with application to bladder cancer
susceptibility. International Journal of Statistics and Probability.
2012; 1 , 8–19. doi:
10.5539/ijsp.v1n2p8.
- Lee ET, Wang JW. Statistical Methods for Survival Data Analysis. 3rd
edition. Wiley: New York. 2003. doi: 10.1002/0471458546.
- Haq MA, Hamedani GG, Elgarhy M, Ramos PL. Marshall-Olkin Power Lomax
distribution: Properties and Estimation Based on Complete and Censored
Samples. International Journal of Statistics and Probability. 2020;9(1) , 48-62. doi:
10.5539/ijsp.v9n1p48.
- Aarset MV. How to identify a bathtub hazard rate. IEEE Transactions on
Reliability. 1987; 36(1) , 106–108. doi:
10.1109/TR.1987.5222310.
- Dey S, Alzaatreh A, Zhang C, Kumar, D. A new extension of generalized
exponential distribution with application to ozone data. Ozone:
Science and Engineering. 2017; 39(4) , 273–285.
https://doi.org/10.1080/01919512.2017.1308817.
- Haq MA, Usman RM, Hashmi S, Al-Omeri AI. Marshall-Olkin length-biased
exponential distribution and its applications. Journal of King Saud
University Science. 2019; 31(2) , 246–251.
https://doi.org/10.1016/j.jksus.2017.09.006.
- Ramadan DA, Magdy W. On the alpha-power inverse Weibull distribution.
International Journal of Computer Applications. 2018;181(11) , 6–12.
https://doi.org/10.1080/16583655.2019.1588488.
- Ihtisham S Khalil A, Manzoor S, Khan SA, Ali A. Alpha-power Pareto
distribution: its properties and applications. PLoS One. 2019;14(6) . https://doi.org/10.1371/journal.pone.0218027.
- ZeinEldin RA, Haq MA, Hashmi S, Elsehety M. Alpha Power Transformed
Inverse Lomax distribution with Different Methods of Estimation and
Applications. Complexity. 2020; 1-15.
https://doi.org/10.1155/2020/1860813