References
  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon, France: IARC Press; 2008
  2. Jaffe E.S.et al. Classification of lymphoid neoplasms: the microscope as a tool for disease discovery. Blood. 2008; 112(12):4384–99. doi: 10.1182/blood-2008-07-077982,
  3. Laurini, J. A., Perry, A. M., Boilesen, E., Diebold, J., MacLennan, K. A., Müller-Hermelink, H. K., Nathwani, B. N., Armitage, J. O., & Weisenburger, D. D.(2012). Classification of non-Hodgkin lymphoma in Central and South America: a review of 1028 cases. Blood, 120(24), 4795-4801. Accessed January 17, 2019. https://doi.org/10.1)
  4. Teras, Lauren R., et al. ”2016 US lymphoid malignancy statistics by World Health Organization subtypes.” CA: a cancer journal for clinicians 66.6 (2016): 443-459
  5. Morton, L. M., Wang, S. S., Devesa, S. S., Hartge, P., Weisenburger, D. D., & Linet, M. S. (2006). Lymphoma incidence patterns by WHO subtype in the United States, 1992-2001. Blood, 107(1), 265-276. Accessed January 17, 2019. https://doi.org/10.1182/blood-2005-06-2508
  6. Shenoy, Pareen J., et al. ”Racial differences in the presentation and outcomes of diffuse large B‐cell lymphoma in the United States.” Cancer 117.11 (2011): 2530-2540
  7. Howlader N, Noon AM, Krapcho M, et al., eds. SEER Cancer Statistics Review, 1975-2013, National Cancer Institute, Bethesda, MD, based on November 2015 SEER data submission, posted to the SEER web site, April 2016. https://seer.cancer.gov/csr/1975_2013/
  8. Sant M, Minicozzi P, Mounier M, et al; EUROCARE-5 Working Group. Survival for haematological malignancies in Europe between 1997 and 2008 by region and age: results of EUROCARE-5, a population-based study. Lancet Oncol. 2014;15(9):931-942
  9. Crump, M., Neelapu, S. S., Farooq, U., Van Den Neste, E., Kuruvilla, J., Westin, J., Gisselbrecht, C. (2017). Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood, 130(16), 1800–1808. doi:10.1182/blood-2017-03-769620
  10. Lenz, G., Rutherford, S. C., Davies, A., Zinzani, P. L., Salles, G., Hasskarl, J., Margunato-Debay, S., Rodrigues, F., Nientker, L., Balradj, J., & Alleman, C. The Burden of Relapsed/Refractory (R/R) Diffuse Large B-Cell Lymphoma (DLBCL): A Systematic Literature Review (SLR). Blood, 132(Suppl 1), 2241. Accessed January 17, 2019. https://doi.org/10.1182/blood-2018-99-112878.)
  11. Friedberg, J.W. (2011) Relapsed/refractory diffuse large B‐cell lymphoma. ASH Education Program Book, 2011, 498–505.)
  12. Vose, J. M., Weisenburger, D. D., Loberiza, F. R., Arevalo, A., Bast, M., Armitage, J., … & Armitage, J. O. (2010). Late relapse in patients with diffuse large B‐cell lymphoma. British journal of haematology, 151(4), 354-358
  13. Broséus, J., Chen, G., Hergalant, S., Ramstein, G., Mounier, N., Guéant, J. L., … Houlgatte, R. Relapsed diffuse large B-cell lymphoma present different genomic profiles between early and late relapses. Oncotarget, 7(51), 83987–84002. doi:10.18632/oncotarget.9793
  14. Gisselbrecht C, Glass B, Mounier N, et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol. 2010;28(27):4184-4190, 10
  15. R. Vaidya, T. E. Witzig, Prognostic factors for diffuse large B-cell lymphoma in the R(X)CHOP era, Annals of Oncology, Volume 25, Issue 11, November 2014, Pages 2124–2133, https://doi.org/10.1093/annonc/mdu109
  16. Biccler, Jorne L., Sandra Eloranta, Peter de Nully Brown, Henrik Frederiksen, Mats Jerkeman, Judit Jørgensen, Lasse Hjort Jakobsen, Karin E. Smedby, Martin Bøgsted, and Tarec C. El-Galaly. ”Optimizing Outcome Prediction in Diffuse Large B-Cell Lymphoma by Use of Machine Learning and Nationwide Lymphoma Registries: A Nordic Lymphoma Group Study.” JCO clinical cancer informatics 2 (2018): 1-13
  17. International Non-Hodgkin’s Lymphoma Prognostic Factors Project. (1993). A predictive model for aggressive non-Hodgkin’s lymphoma. New England Journal of Medicine, 329(14), 987-994
  18. Biccler, Jorne Lionel, Tarec Christoffer El-Galaly, Martin Bøgsted, Judit Jørgensen, Peter de Nully Brown, Christian Bjørn Poulsen, Jørn Starklint et al. ”Clinical prognostic scores are poor predictors of overall survival in various types of malignant lymphomas.” Leukemia & lymphoma  60, no. 6 (2019): 1580-1583.
  19. Sehn, L. H., Berry, B., Chhanabhai, M., Fitzgerald, C., Gill, K., Hoskins, P., … & Gascoyne, R. D. (2007). The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood, 109(5), 1857-1861
  20. Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., … & Powell, J. I. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403(6769), 503
  21. Christof Schneider, Laura Pasqualucci, Riccardo Dalla-Favera, Molecular pathogenesis of diffuse large B-cell lymphoma, Seminars in Diagnostic Pathology Volume 28, Issue 2,2011,Pages 167-177
  22. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:1937–1947.
  23. Vitolo, Umberto, et al. ”Obinutuzumab or rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in previously untreated diffuse large B-cell lymphoma.” Journal of Clinical Oncology 35.31 (2017): 3529-3537
  24. Scott DW, Mottok A, Ennishi D, et al. Prognostic Significance of Diffuse Large B-Cell Lymphoma Cell of Origin Determined by Digital Gene Expression in Formalin-Fixed Paraffin-Embedded Tissue Biopsies. J Clin Oncol. 2015;33(26):2848–2856. doi:10.1200/JCO.2014.60.2383
  25. Xu-Monette, Zijun Y. et al ”Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study.” Blood 120.19 (2012): 3986-3996. Web. 01 April. 2019.
  26. Wilson, W. H., Young, R. M., Schmitz, R., Yang, Y., Pittaluga, S., Wright, G., … & De Vos, S. (2015). Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nature medicine21 (8), 922
  27. Scott, D. W., Wright, G. W., Williams, P. M., Lih, C., Walsh, W., Jaffe, E. S., Rosenwald, A., Campo, E., Chan, W. C., Connors, J. M., Smeland, E. B., Mottok, A., Braziel, R. M., Ott, G., Delabie, J., Tubbs, R. R., Cook, J. R., Weisenburger, D. D., Greiner, T. C., Glinsmann-Gibson, B. J., Fu, K., Staudt, L. M., Gascoyne, R. D., & Rimsza, L. M. (2014). Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. Blood,  123(8), 1214-1217. Accessed July 07, 2019. https://doi.org/10.1182/blood-2013-11-536433.)
  28. Hans, C. P., Weisenburger, D. D., Greiner, T. C., Gascoyne, R. D., Delabie, J., Ott, G., Müller-Hermelink, H. K., Campo, E., Braziel, R. M., Jaffe, E. S., Pan, Z., Farinha, P., Smith, L. M., Falini, B., Banham, A. H., Rosenwald, A., Staudt, L. M., Connors, J. M., Armitage, J. O., & Chan, W. C. (2004). Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood, 103(1), 275-282.Accessed April 10, 2019. https://doi.org/10.1182/blood-2003-05-1545
  29. Visco C, Li Y, Xu-Monette ZY, et al. Comprehensive gene expression profiling and immunohistochemical studies support application of immunophenotypic algorithm for molecular subtype classification in diffuse large B-cell lymphoma: a report from the International DLBCL Rituximab-CHOP Consortium Program Study [published correction appears in Leukemia. 2014 Apr;28(4):980]. Leukemia. 2012;26(9):2103–2113. doi:10.1038/leu.2012.83
  30. William W.L. Choi, Dennis D. Weisenburger, Timothy C. Greiner, Miguel A. Piris, Alison H. Banham, Jan Delabie, Rita M. Braziel, Huimin Geng, Javeed Iqbal, Georg Lenz, Julie M. Vose, Christine P. Hans, Kai Fu, Lynette M. Smith, Min Li, Zhongfeng Liu, Randy D. Gascoyne, Andreas Rosenwald, German Ott, Lisa M. Rimsza, Elias Campo, Elaine S. Jaffe, David L. Jaye, Louis M. Staudt and Wing C. Chan. A New Immunostain Algorithm Classifies Diffuse Large B-Cell Lymphoma into Molecular Subtypes with High Accuracy. Clin Cancer Res September 1 2009 (15) (17) 5494-5502; DOI: 10.1158/1078-0432.CCR-09-0113
  31. Meyer PN, Fu K, Greiner TC, et al. Immunohistochemical methods for predicting cell of origin and survival in patients with diffuse large B-cell lymphoma treated with rituximab. J Clin Oncol. 2010;29(2):200–207. doi:10.1200/JCO.2010.30.036
  32. Gutiérrez-García, G., Cardesa-Salzmann, T., Climent, F., González-Barca, E., Mercadal, S., Mate, J. L., Sancho, J. M., Arenillas, L., Serrano, S., Escoda, L., Martínez, S., Valera, A., Martínez, A., Jares, P., Pinyol, M., García-Herrera, A., Martínez-Trillos, A., Giné, E., Villamor, N., Campo, E., Colomo, L., López-Guillermo, A., & , . (2011) Blood, 117(18), 4836-4843. Accessed January 26, 2019. https://doi.org/10.1182/blood-2010-12-322362).
  33. Yoon, Nara, et al. ”Cell-of-origin of diffuse large B-cell lymphomas determined by the Lymph2Cx assay: better prognostic indicator than Hans algorithm.” Oncotarget 8.13 (2017): 22014,
  34. 25. Nyman H, Adde M, Karjalainen-Lindsberg ML, Taskinen M, Berglund M, Amini RM, Blomqvist C, Enblad G, Leppa S. Prognostic impact of immunohistochemically defined germinal center phenotype in diffuse large B-cell lymphoma patients treated with immunochemotherapy. Blood. 2007; 109:4930–4935.
  35. Gleeson M, Hawkes EA, Cunningham D, Jack A, Linch D. Caution in the Use of Immunohistochemistry for Determination of Cell of Origin in Diffuse Large B-Cell Lymphoma. J Clin Oncol. 2015; 33:3215–3216
  36. Schmitz, Roland, et al. ”Genetics and pathogenesis of diffuse large B-cell lymphoma.” New England Journal of Medicine378.15 (2018): 1396-1407
  37. Chapuy, Bjoern, et al. ”Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes.” Nature medicine 24.5 (2018): 679
  38. Lopez, Juanita S., and Udai Banerji. ”Combine and conquer: challenges for targeted therapy combinations in early phase trials.” Nature reviews Clinical oncology 14.1 (2017): 57
  39. Wierda, William G., et al. ”NCCN guidelines insights: chronic lymphocytic leukemia/small lymphocytic lymphoma, version 1.2017.” Journal of the National Comprehensive Cancer Network 15.3 (2017): 293-31
  40. B.D. Cheson, R.I. Fisher, S.F. Barrington, et al.Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol, 32 (2014), pp. 3059-3068
  41. Han HS, Escalon MP, Hsiao B, et al. High incidence of false‐positive PET scans in patients with aggressive non‐Hodgkin’s lymphoma treated with rituximab‐containing regimens. Ann Oncol 2009;20:309–318.
  42. 36. El‐Galaly T, Prakash V, Christiansen I, et al. Efficacy of routine surveillance with positron emission tomography/computed tomography in aggressive non‐Hodgkin lymphoma in complete remission: status in a single center. Leuk Lymphoma2011;52:597–60
  43. Guppy AE, Tebbutt NC, Norman A, . The role of surveillance CT scans in patients with diffuse large B-cell non-Hodgkin’s lymphoma. Leuk Lymphoma 2003;44:123–125
  44. Cohen, J. B., Behera, M., Thompson, C. A., & Flowers, C. R. (2017). Evaluating surveillance imaging for diffuse large B-cell lymphoma and Hodgkin lymphoma. Blood, 129(5), 561-564. Accessed February 02, 2019.https://doi.org/10.1182/blood-2016-08-685073
  45. Durani, U., Asante, D., Heien, H. C., Thompson, C. A., Halfdanarson, T. R., Peethambaram, P., Quevedo, J. F., Villasboas, J. C., & Go, R. S. (2018). Changes in Imaging Surveillance of Diffuse Large B-Cell Lymphoma Survivors after Publication of the American Society of Hematology Choosing Wisely®Recommendations. Blood, 132(Suppl 1), 618. Accessed February 04, 2019.https://doi.org/10.1182/blood-2018-99-119179
  46. Smith-Bindman R, Lipson J, Marcus R. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 2009; 169:2078–2086
  47. Alix-Panabières C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem. 2013 Jan; 59(1):110-8
  48. Krebs, M. G. et al. Molecular analysis of circulating tumour cells — biology and biomarkers. Nat. Rev. Clin. Oncol. 11, 129–144 (2014
  49. Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017 Sep;14(9):531-548. doi: 10.1038/nrclinonc.2017.14. Epub 2017 Mar 2
  50. Haber, D. A. & Velculescu, V. E. Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov. 4, 650–661 (2014
  51. Riethdorf S, Fritsche H, Muller V, Rau T, Schindlbeck C, Rack B, et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer:a validation study of the CellSearch system. Clin Cancer Res. 2007;13:920–8
  52. Talasaz AH, Powell AA, Huber DE, Berbee JG, Roh KH, Yu W, et al. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc Natl Acad Sci U S A. 2009;106:3970–5
  53. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450:1235–9
  54. Brock, G., Castellanos-Rizaldos, E., Hu, L., Coticchia, C., & Skog, J. (2015). Liquid biopsy for cancer screening, patient stratification and monitoring. Translational Cancer Research, 4(3), 280-290
  55. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies.Sci. Transl Med. 6, 224ra24 (2014
  56. Thierry, A. R. et al. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat. Med. 20, 430–435 (2014
  57. Narayan, A. et al. Ultrasensitive measurement of hotspot mutations in tumor DNA in blood using error- suppressed multiplexed deep sequencing. Cancer Res. 72, 3492–3498 (2012),
  58. Liggett, T. et al. Differential methylation of cell-free circulating DNA among patients with pancreatic cancer versus chronic pancreatitis. Cancer 116, 1674–1680 (2010),
  59. Sturgeon, S. R. et al. Detection of promoter methylation of tumor suppressor genes in serum DNA of breast cancer cases and benign breast disease controls. Epigenetics 7, 1258–1267 (2012)
  60. Cristiano, Stephen, Alessandro Leal, Jillian Phallen, Jacob Fiksel, Vilmos Adleff, Daniel C. Bruhm, Sarah Østrup Jensen et al. ”Genome-wide cell-free DNA fragmentation in patients with cancer.” Nature  (2019): 1.
  61. Roschewski  M,  Dunleavy  K,  Pittaluga  S,  et  al.  Circulating  tumour  DNA  and  CT  monitoring  in 124patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet 125Oncol. 2015;16(5):541-549.1264.
  62. Sebastián, E., Alcoceba, M., Balanzategui, A., Marín, L., Montes-Moreno, S., Flores, T., … & Corral, R. (2012). Molecular characterization of immunoglobulin gene rearrangements in diffuse large B-cell lymphoma: antigen-driven origin and IGHV4-34 as a particular subgroup of the non-GCB subtype. The American journal of pathology181 (5), 1879-1888.
  63. Mitterbauer-Hohendanner, G., Mannhalter, C., Winkler, K., Mitterbauer, M., Skrabs, C., Chott, A., … & Jaeger, U. (2004). Prognostic significance of molecular staging by PCR-amplification of immunoglobulin gene rearrangements in diffuse large B-cell lymphoma (DLBCL). Leukemia18 (6), 1102.
  64. Hurley JH, Odorizzi G. Get on the exosome bus with ALIX. Nat Cell Biol. 2012; 14:654-655. https://doi.org/10.1038/ncb2530
  65. Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J. Hematol. Oncol. 8, 83 (2015)
  66. Février B, Raposo G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 2004;16(4):415-421
  67. Mathieu, M., Martin-Jaular, L., Lavieu, G., & Théry, C. (2019). Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nature cell biology, 21(1), 9.,
  68. C. Lässer, M. Eldh, J. Lötvall Isolation and characterization of RNA-containing exosomes J. Vis. Exp., 59 (2012), pp. 3037-3047,
  69. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9(6), 654–659 (2007), C.
  70. Subra, K. Laulagnier, B. Perret, M. Record. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies Biochimie, 89 (2007), pp. 205-212,
  71. B.S. Batista, W.S. Eng, K.T. Pilobello, K.D. Hendricks-Muñoz, L.K. Mahal Identification of a conserved glycan signature for microvesicles. J. Proteome Res., 10 (2011), pp. 4624-4633
  72. Crescitelli, Rossella, Cecilia Lässer, Tamas G. Szabó, Agnes Kittel, Maria Eldh, Irma Dianzani, Edit I. Buzás, and Jan Lötvall. ”Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes.” Journal of extracellular vesicles 2, no. 1 (2013): 20677
  73. Jeffrey S. Schorey and Sanchita Bhatnagar1. Exosome Function: From Tumor Immunology to Pathogen Biology. Traffic 2008; 9:871–881Blackwell Munksgaard
  74. Xia, Bing, et al. ”The central roles of exosomes in hematological malignancies: A new frontier review.” Bioscience Biotechnology Research Comminications11.3 (2018): 347-355
  75. Mikhail A. Livshits, Elena Khomyakova, Evgeniy G. Evtushenko, Vassili N. Lazarev, Nikolay A. Kulemin, Svetlana E. Semina, Edward V. Generozov & Vadim M. Govorun. Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol Scientific Reports volume 5, Article number: 17319 (2015
  76. Momen Heravi F, Balaj L, Alian S, Trachtenberg A, Hochberg F, Skog J, et al. Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles. Front Physiol. 2012;3:162
  77. Lane, R. E., Korbie, D., Anderson, W., Vaidyanathan, R. & Trau, M. Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Sci Rep. 5, 7639 (2015)
  78. Witwer, K. W. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2, 20360 (2013)
  79. Théry, C.; Amigorena, S.; Raposo, G.; Clayton, A. Isolation and Characterization of Exosomes From Cell Culture Supernatants and Biological Fluids. Current Protocols in Cell Biology: Hoboken, NJ, 2006; Chapter 3, Unit 3.22, DOI: 10.1002/0471143030.cb0322s30,
  80. Vidal, M.; Mangeat, P.; Hoekstra, D. Aggregation Reroutes Molecules From a Recycling to a Vesicle-Mediated Secretion Pathway During Reticulocyte Maturation J. Cell Sci. 1997, 110, 1867– 1877
  81. Huilin Shao, Hyungsoon Im, Cesar M. Castro, Xandra Breakefield, Ralph Weissleder, and Hakho Lee. New Technologies for Analysis of Extracellular Vesicles. Chemical Reviews 2018 118 (4), 1917-1950 DOI: 10.1021/acs.chemrev.7b00534
  82. Heinemann, M. L., Ilmer, M., Silva, L. P., Hawke, D. H., Recio, A., Vorontsova, M. A., … & Vykoukal, J. (2014). Benchtop isolation and characterization of functional exosomes by sequential filtration. Journal of Chromatography A, 1371, 125-135.
  83. Alvarez, M.L.; Khosroheidari, M.; Kanchi Ravi, R.; DiStefano, J.K. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012, 82, 1024–1032
  84. Gámez-Valero, A., Monguió-Tortajada, M., Carreras-Planella, L., Beyer, K., & Borràs, F. E. (2016). Size-Exclusion Chromatography-based isolation minimally alters Extracellular Vesicles’ characteristics compared to precipitating agents. Scientific reports, 6, 33641.
  85. Taylor D, Zacharias W, Gercel Taylor C. Exosome isolation for proteomic analyses and RNA profiling. Methods Mol Biol. 2011; 728:235-46
  86. Taylor, D. D., & Shah, S. (2015). Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods, 87, 3-10). The disadvantage of this method is significant co-isolation with non-exosomal molecules and limited suitability of recovered exosomes for downstream analyses.
  87. B. J. Tauro, D. W. Greening, R. A. Mathias et al., “Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes,” Methods, vol. 56, no. 2, pp. 293–304, 2012.,
  88. K. A. Konadu, M. B. Huang, W. Roth et al., “Isolation of exosomes from the plasma of HIV-1 positive individuals,” Journal of Visualized Experiments, vol. 2016, no. 107, Article ID e53495, 2016
  89. Zeringer, E., Barta, T., Li, M., & Vlassov, A. V. (2015). Strategies for isolation of exosomes. Cold Spring Harbor Protocols, 2015(4), pdb-top074476). Immunoaffinity methods yield isolates of high purity but have low capacity.
  90. Witwer, K. W., Buzas, E. I., Bemis, L. T., Bora, A., Lässer, C., & Lötvall, J. (2013). Nolte-’t Hoen EN, Piper MG, Sivaraman S, Skog J, Théry C, Wauben MH, Hochberg F. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles, 2(10.3402
  91. Lee, K.; Shao, H.; Weissleder, R.; Lee, H. Acoustic Purification of Extracellular Microvesicles ACS Nano 2015, 9, 2321– 2327 DOI: 10.1021/nn506538f
  92. Liu, C., Guo, J., Tian, F., Yang, N., Yan, F., Ding, Y., … & Sun, J. (2017). Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. ACS nano, 11(7), 6968-6976
  93. R. C. Lai, R. W. Y. Yeo, K. H. Tan, and S. K. Lim, “Exosomes for drug delivery—a novel application for the mesenchymal stem cell,” Biotechnology Advances, vol. 31, no. 5, pp. 543–551, 2013
  94. Vlassov, A. V., Magdaleno, S., Setterquist, R., & Conrad, R. (2012). Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica et Biophysica Acta (BBA)-General Subjects, 1820(7), 940-948
  95. Alimirzaie, Sahar, Maryam Bagherzadeh, and Mohammad R. Akbari. ”Liquid Biopsy in Breast Cancer: A Comprehensive Review.” Clinical genetics (2019
  96. Rutherford, Sarah C., Angela Fachel, Sheng Li, Yanwen Jiang, Maria Pilar Dominguez, Doron Betel, and Rita Shaknovich. ”DLBCL-Derived Exosomes Provide Key Insights into Genomic Landscape in Cell of Origin and May Lead to a Novel Method of Surveillance and Therapeutic Intervention.” (2017): 5132-5132.
  97. Feng, Yuhua, Meizuo Zhong, Shan Zeng, Leyuan Wang, Ping Liu, Xiangyu Xiao, and Yiping Liu. ”Exosome-derived miRNAs as predictive biomarkers for diffuse large B-cell lymphoma chemotherapy resistance.” Epigenomics 11, no. 1 (2018): 35-51
  98. Nasrin Zare, Shaghayegh Haghjooy Javanmard, Valiollah Mehrzad, Nahid Eskandari & Amirhosein Kefayat (2019) Evaluation of exosomal miR-155, let-7g and let-7i levels as a potential noninvasive biomarker among refractory/relapsed patients, responsive patients and patients receiving R-CHOP, Leukemia & Lymphoma, DOI: 10.1080/10428194.2018.1563692
  99. Di, C., Jiang, Y., Li, M., Juan, X., & Xu, C. (2018). Circulating Exosomal microRNA Signature As a Noninvasive Biomarker for Diagnosis of Diffuse Large B-Cell Lymphoma. Blood, 132(Suppl 1), 5406. Accessed March 10, 2019. https://doi.org/10.1182/blood-2018-99-115940
  100. Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A, Montabana E, Lang UE, Fu Q, Fong L, Blelloch R. Suppression of Exosomal PD-L1 Induces Systemic Anti-Tumor Immunity and Memory. Cell. 2019 Apr 4;177(2):414-427.e13. doi: 10.1016/j.cell.2019.02.016
  101. G Raposo, H W Nijman, W Stoorvogel, R Liejendekker, C V Harding, C J Melief, H J Geuze. B lymphocytes secrete antigen-presenting vesicles. Journal of Experimental Medicine Mar 1996, 183 (3) 1161-1172; DOI: 10.1084/jem.183.3.1161
  102. 61. Chaput, Nathalie, and Clotilde Théry. ”Exosomes: immune properties and potential clinical implementations.” In Seminars in immunopathology, vol. 33, no. 5, pp. 419-440. Springer-Verlag, 2011.
  103. Chen, Zhenzhen, Liangshun You, Lei Wang, Xianbo Huang, Hui Liu, Ju ying Wei, Li Zhu, and Wenbin Qian. ”Dual effect of DLBCL-derived EXOs in lymphoma to improve DC vaccine efficacy in vitro while favor tumorgenesis in vivo.” Journal of Experimental & Clinical Cancer Research 37, no. 1 (2018): 190
  104. Koch, Raphael, et al. ”Populational equilibrium through exosome-mediated Wnt signaling in tumor progression of diffuse large B-cell lymphoma.” Blood 123.14 (2014): 2189-2198.
  105. Koch, R., Aung, T., Vogel, D., Chapuy, B., Wenzel, D., Becker, S., … & Truemper, L. (2016). Nuclear trapping through inhibition of exosomal export by indomethacin increases cytostatic efficacy of doxorubicin and pixantrone. Clinical cancer research, 22(2), 395-404
  106. Aung, Thiha, et al. ”Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3.” Proceedings of the National Academy of Sciences 108.37 (2011): 15336-15341
  107. J Castillo, V Bernard, F A San Lucas, K Allenson, M Capello, D U Kim, P Gascoyne, F C Mulu, B M Stephens, J Huang, H Wang, A A Momin, R O Jacamo, M Katz, R Wolff, M Javle, G Varadhachary, I I Wistuba, S Hanash, A Maitra, H Alvarez, Surfaceome profiling enables isolation of cancer-specific exosomal cargo in liquid biopsies from pancreatic cancer patients, Annals of Oncology, Volume 29, Issue 1, January 2018, Pages 223–229, https://doi.org/10.1093/annonc/mdx542
  108. Mizutani, Kosuke, Riyako Terazawa, Koji Kameyama, Taku Kato, Kengo Horie, Tomohiro Tsuchiya, Kensaku Seike et al. ”Isolation of prostate cancer-related exosomes.” Anticancer research 34, no. 7 (2014): 3419-3423.
  109. Jeppesen, Dennis K., Aidan M. Fenix, Jeffrey L. Franklin, James N. Higginbotham, Qin Zhang, Lisa J. Zimmerman, Daniel C. Liebler et al. ”Reassessment of exosome composition.” Cell 177, no. 2 (2019): 428-445