References:
1. Jones L, Golan D, Hanna S, Ramachandran M. Artificial intelligence, machine learning and the evolution of healthcare: A bright future or cause for concern? Bone & joint research. 2018;7(3):223-5.
2. Sayburn A. Will the machines take over surgery? The Bulletin of the Royal College of Surgeons of England. 2017;99(3):88-90.
3. Balatsouras D, Koukoutsis G, Fassolis A, Moukos A, Apris A. Benign paroxysmal positional vertigo in the elderly: current insights. Clinical interventions in aging. 2018;13:2251.
4. Lim E-C, Park JH, Jeon HJ, Kim H-J, Lee H-J, Song C-G, et al. Developing a Diagnostic Decision Support System for Benign Paroxysmal Positional Vertigo Using a Deep-Learning Model. Journal of clinical medicine. 2019;8(5):633.
5. Acharya V, Haywood M, Kokkinos N, Raithatha A, Francis S, Sharma R. Does focused and dedicated teaching improve the confidence of GP trainees to diagnose and manage common acute ENT pathologies in primary care? Advances in medical education and practice. 2018;9:335.
6. RCS. RCS: Future of Surgery 2018 [Available from: https://futureofsurgery.rcseng.ac.uk/?_ga=2.134153868.344240087.1578048159-1041599817.1578048159.
7. Haan M, Ongena YP, Hommes S, Kwee TC, Yakar D. A Qualitative Study to Understand Patient Perspective on the Use of Artificial Intelligence in Radiology. Journal of the American College of Radiology: JACR. 2019.
8. Bing D, Ying J, Miao J, Lan L, Wang D, Zhao L, et al. Predicting the hearing outcome in sudden sensorineural hearing loss via machine learning models. Clinical Otolaryngology. 2018;43(3):868-74.
9. Olze H, Uecker FC, Haeussler SM, Knopke S, Szczepek AJ, Graebel S. Hearing Implants in the Era of Digitization. Laryngo-rhino-otologie. 2019;98(S 01):S82-S128.
10. Myburgh HC, van Zijl WH, Swanepoel D, Hellström S, Laurent C. Otitis Media Diagnosis for Developing Countries Using Tympanic Membrane Image-Analysis. EBioMedicine. 2016;5:156-60.
11. news EaA. The hearScope 2017 [Available from: https://www.entandaudiologynews.com/development/spotlight-on-innovation/post/the-hearscope-in-conversation-with-de-wet-swanepoel.
12. Bur AM, Shew M, New J. Artificial Intelligence for the Otolaryngologist: A State of the Art Review. Otolaryngology–Head and Neck Surgery. 2019;160(4):603-11.
13. Fei B, Lu G, Wang X, Zhang H, Little JV, Patel MR, et al. Label-free reflectance hyperspectral imaging for tumor margin assessment: a pilot study on surgical specimens of cancer patients. Journal of biomedical optics. 2017;22(8):086009.
14. Arambula AM, Bur AM. Ethical Considerations in the Advent of Artificial Intelligence in Otolaryngology. Otolaryngology–Head and Neck Surgery. 2020;162(1):38-9.