References
1. Galli SJ, Tsai M, Piliponsky AM. The development of allergic
inflammation. Nature. 2008;454(7203):445-454.
2. Samitas K, Carter A, Kariyawasam HH, Xanthou G. Upper and lower
airway remodelling mechanisms in asthma, allergic rhinitis and chronic
rhinosinusitis: The one airway concept revisited. Allergy.2018;73(5):993-1002.
3. Barbarot S, Auziere S, Gadkari A, et al. Epidemiology of atopic
dermatitis in adults: Results from an international survey.Allergy. 2018;73(6):1284-1293.
4. Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on
Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020;58(Suppl
S29):1-464.
5. De Meulder B, Lefaudeux D, Bansal AT, et al. A computational
framework for complex disease stratification from multiple large-scale
datasets. BMC systems biology. 2018;12(1):60.
6. Agache I, Sugita K, Morita H, Akdis M, Akdis CA. The Complex Type 2
Endotype in Allergy and Asthma: From Laboratory to Bedside. Curr
Allergy Asthma Rep. 2015;15(6):29.
7. Agache I, Rogozea L. Asthma Biomarkers: Do They Bring Precision
Medicine Closer to the Clinic? Allergy Asthma Immunol Res.2017;9(6):466-476.
8. Diamant Z, Vijverberg S, Alving K, et al. Toward clinically
applicable biomarkers for asthma: An EAACI position paper.Allergy. 2019;74(10):1835-1851.
9. Agache I, Strasser DS, Klenk A, et al. Serum IL-5 and IL-13
consistently serve as the best predictors for the blood eosinophilia
phenotype in adult asthmatics. Allergy. 2016;71(8):1192-1202.
10. Yii ACA, Tay TR, Choo XN, Koh MSY, Tee AKH, Wang DY. Precision
medicine in united airways disease: A ”treatable traits” approach.Allergy. 2018;73(10):1964-1978.
11. Bachert C, Zhang N. Medical algorithm: Diagnosis and treatment of
chronic rhinosinusitis. Allergy. 2020;75(1):240-242.
12. Cardona V, Demoly P, Dreborg S, et al. Current practice of allergy
diagnosis and the potential impact of regulation in Europe.Allergy. 2018;73(2):323-327.
13. Diamant Z, Vijverberg SJ, Agache I, et al. Much ado about
Biologicals: Highlights of the Master Class on Biologicals, Prague,
2018. Allergy. 2019;74(4):837-840.
14. Eguiluz-Gracia I, Tay TR, Hew M, et al. Recent developments and
highlights in biomarkers in allergic diseases and asthma.Allergy. 2018;73(12):2290-2305.
15. Guerra ENS, Acevedo AC, de Toledo IP, Combes A, Chardin H. Do
mucosal biomarkers reveal the immunological state associated with food
allergy? Allergy. 2018;73(12):2392-2394.
16. Chen LC, Tseng HM, Kuo ML, et al. A composite of exhaled LTB(4) ,
LXA(4) , FeNO, and FEV(1) as an ”asthma classification ratio”
characterizes childhood asthma. Allergy. 2018;73(3):627-634.
17. Rodrigo-Muñoz JM, Cañas JA, Sastre B, et al. Asthma diagnosis using
integrated analysis of eosinophil microRNAs. Allergy.2019;74(3):507-517.
18. Siroux V, Boudier A, Nadif R, Lupinek C, Valenta R, Bousquet J.
Association between asthma, rhinitis, and conjunctivitis
multimorbidities with molecular IgE sensitization in adults.Allergy. 2019;74(4):824-827.
19. Lunjani N, Satitsuksanoa P, Lukasik Z, Sokolowska M, Eiwegger T,
O’Mahony L. Recent developments and highlights in mechanisms of allergic
diseases: Microbiome. Allergy. 2018;73(12):2314-2327.
20. Su MW, Lin WC, Tsai CH, et al. Childhood asthma clusters reveal
neutrophil-predominant phenotype with distinct gene expression.Allergy. 2018;73(10):2024-2032.
21. Dona I, Jurado-Escobar R, Perkins JR, et al. Eicosanoid mediator
profiles in different phenotypes of nonsteroidal anti-inflammatory
drug-induced urticaria. Allergy. 2019;74donm(6):1135-1144.
22. Liao B, Liu JX, Li ZY, et al. Multidimensional endotypes of chronic
rhinosinusitis and their association with treatment outcomes.Allergy. 2018;73(7):1459-1469.
23. Asthma GIf. https://ginasthma.org/. accessed June 30,
2020.
24. Seys SF, Quirce S, Agache I, et al. Severe asthma: Entering an era
of new concepts and emerging therapies: Highlights of the 4th
international severe asthma forum, Madrid, 2018. Allergy.2019;74(11):2244-2248.
25. Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: Moving
toward precision medicine. The Journal of allergy and clinical
immunology. 2019;144(1):1-12.
26. Fahy JV. Type 2 inflammation in asthma–present in most, absent in
many. Nat Rev Immunol. 2015;15(1):57-65.
27. Fokkens WJ, Lund V, Bachert C, et al. EUFOREA consensus on biologics
for CRSwNP with or without asthma. Allergy.2019;74(12):2312-2319.
28. Kowalski ML, Agache I, Bavbek S, et al. Diagnosis and management of
NSAID-Exacerbated Respiratory Disease (N-ERD)-a EAACI position paper.Allergy. 2019;74(1):28-39.
29. Roth-Walter F, Adcock IM, Benito-Villalvilla C, et al. Comparing
biologicals and small molecule drug therapies for chronic respiratory
diseases: An EAACI Taskforce on Immunopharmacology position paper.Allergy. 2019;74(3):432-448.
30. Woodruff PG, Boushey HA, Dolganov GM, et al. Genome-wide profiling
identifies epithelial cell genes associated with asthma and with
treatment response to corticosteroids. Proceedings of the National
Academy of Sciences of the United States of America.2007;104(40):15858-15863.
31. Alving K, Diamant Z, Lucas S, et al. Point-of-care biomarkers in
asthma management: Time to move forward. Allergy.2020;75(4):995-997.
32. Holguin F, Cardet JC, Chung KF, et al. Management of severe asthma:
a European Respiratory Society/American Thoracic Society guideline.Eur Respir J. 2020;55(1).
33. Agache I, Akdis C, Akdis M, et al. EAACI Biologicals Guidelines -
Recommendations for severe asthma. Allergy. 2020.
34. Diamant Z, Boot JD, Mantzouranis E, Flohr R, Sterk PJ, Gerth van
Wijk R. Biomarkers in asthma and allergic rhinitis. Pulm Pharmacol
Ther. 2010;23(6):468-481.
35. McDowell PJ, Heaney LG. Different endotypes and phenotypes drive the
heterogeneity in severe asthma. Allergy. 2020;75(2):302-310.
36. Sze E, Bhalla A, Nair P. Mechanisms and therapeutic strategies for
non-T2 asthma. Allergy. 2020;75(2):311-325.
37. Taylor SL, Leong LEX, Choo JM, et al. Inflammatory phenotypes in
patients with severe asthma are associated with distinct airway
microbiology. The Journal of allergy and clinical immunology.2018;141(1):94-103.e115.
38. Green BJ, Wiriyachaiporn S, Grainge C, et al. Potentially pathogenic
airway bacteria and neutrophilic inflammation in treatment resistant
severe asthma. PloS one. 2014;9(6):e100645.
39. Tliba O, Panettieri RA, Jr. Paucigranulocytic asthma: Uncoupling of
airway obstruction from inflammation. The Journal of allergy and
clinical immunology. 2019;143(4):1287-1294.
40. Wenzel SE. Asthma phenotypes: the evolution from clinical to
molecular approaches. Nat Med. 2012;18(5):716-725.
41. Agusti A, Bafadhel M, Beasley R, et al. Precision medicine in airway
diseases: moving to clinical practice. Eur Respir J. 2017;50(4).
42. Chung KF, Adcock IM. Precision medicine for the discovery of
treatable mechanisms in severe asthma. Allergy.2019;74(9):1649-1659.
43. Simpson AJ, Hekking PP, Shaw DE, et al. Treatable traits in the
European U-BIOPRED adult asthma cohorts. Allergy.2019;74(2):406-411.
44. Lefaudeux D, De Meulder B, Loza MJ, et al. U-BIOPRED clinical adult
asthma clusters linked to a subset of sputum omics. The Journal of
allergy and clinical immunology. 2017;139(6):1797-1807.
45. Schofield JPR, Burg D, Nicholas B, et al. Stratification of asthma
phenotypes by airway proteomic signatures. The Journal of allergy
and clinical immunology. 2019;144(1):70-82.
46. Ivanova O, Richards LB, Vijverberg SJ, et al. What did we learn from
multiple omics studies in asthma? Allergy. 2019;74(11):2129-2145.
47. Dunican EM, Elicker BM, Gierada DS, et al. Mucus plugs in patients
with asthma linked to eosinophilia and airflow obstruction. The
Journal of clinical investigation. 2018;128(3):997-1009.
48. Erjefalt JS. Unravelling the complexity of tissue inflammation in
uncontrolled and severe asthma. Curr Opin Pulm Med.2019;25(1):79-86.
49. Walter J, O’Mahony L. The importance of social networks-An
ecological and evolutionary framework to explain the role of microbes in
the aetiology of allergy and asthma. Allergy.2019;74(11):2248-2251.
50. Savage JH, Lee-Sarwar KA, Sordillo J, et al. A prospective
microbiome-wide association study of food sensitization and food allergy
in early childhood. Allergy. 2018;73(1):145-152.
51. Kozik A, Huang YJ. Ecological interactions in asthma: from
environment to microbiota and immune responses. Curr Opin Pulm
Med. 2020;26(1):27-32.
52. Sokolowska M, Frei R, Lunjani N, Akdis CA, O’Mahony L. Microbiome
and asthma. Asthma Res Pract. 2018;4:1.
53. Sbihi H, Boutin RC, Cutler C, Suen M, Finlay BB, Turvey SE. Thinking
bigger: How early-life environmental exposures shape the gut microbiome
and influence the development of asthma and allergic disease.Allergy. 2019;74(11):2103-2115.
54. Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial
and metabolic alterations affect risk of childhood asthma. Sci
Transl Med. 2015;7(307):307ra152.
55. Fujimura KE, Sitarik AR, Havstad S, et al. Neonatal gut microbiota
associates with childhood multisensitized atopy and T cell
differentiation. Nat Med. 2016;22(10):1187-1191.
56. Bannier M, van Best N, Bervoets L, et al. Gut microbiota in wheezing
preschool children and the association with childhood asthma.Allergy. 2019.
57. Thorsen J, Rasmussen MA, Waage J, et al. Infant airway microbiota
and topical immune perturbations in the origins of childhood asthma.Nat Commun. 2019;10(1):5001.
58. Zhou Y, Jackson D, Bacharier LB, et al. The upper-airway microbiota
and loss of asthma control among asthmatic children. Nat Commun.2019;10(1):5714.
59. Huang YJ, Nariya S, Harris JM, et al. The airway microbiome in
patients with severe asthma: Associations with disease features and
severity. The Journal of allergy and clinical immunology.2015;136(4):874-884.
60. Michalovich D, Rodriguez-Perez N, Smolinska S, et al. Obesity and
disease severity magnify disturbed microbiome-immune interactions in
asthma patients. Nat Commun. 2019;10(1):5711.
61. Roduit C, Frei R, Ferstl R, et al. High levels of butyrate and
propionate in early life are associated with protection against atopy.Allergy. 2019;74(4):799-809.
62. Lewis G, Wang B, Shafiei Jahani P, et al. Dietary Fiber-Induced
Microbial Short Chain Fatty Acids Suppress ILC2-Dependent Airway
Inflammation. Front Immunol. 2019;10:2051.
63. Barcik W, Pugin B, Westermann P, et al. Histamine-secreting microbes
are increased in the gut of adult asthma patients. The Journal of
allergy and clinical immunology. 2016;138(5):1491-1494 e1497.
64. Barcik W, Pugin B, Bresco MS, et al. Bacterial secretion of
histamine within the gut influences immune responses within the lung.Allergy. 2019;74(5):899-909.
65. Lee JJ, Kim SH, Lee MJ, et al. Different upper airway microbiome and
their functional genes associated with asthma in young adults and
elderly individuals. Allergy. 2019;74(4):709-719.
66. Jobin C. Precision medicine using microbiota. Science.2018;359(6371):32-34.
67. Maurer M, Hawro T, Krause K, et al. Diagnosis and treatment of
chronic inducible urticaria. Allergy. 2019;74(12):2550-2553.
68. Bieber T, Traidl-Hoffmann C, Schäppi G, Lauener R, Akdis C,
Schmid-Grendlmeier P. Unraveling the complexity of atopic dermatitis:
The CK-CARE approach toward precision medicine. Allergy. 2020.
69. Venter C, Meyer RW, Nwaru BI, et al. EAACI position paper: Influence
of dietary fatty acids on asthma, food allergy, and atopic dermatitis.Allergy. 2019;74(8):1429-1444.
70. Altunbulakli C, Reiger M, Neumann AU, et al. Relations between
epidermal barrier dysregulation and Staphylococcus species-dominated
microbiome dysbiosis in patients with atopic dermatitis. The
Journal of allergy and clinical immunology. 2018;142(5):1643-1647
e1612.
71. Moriwaki M, Iwamoto K, Niitsu Y, et al. Staphylococcus aureus from
atopic dermatitis skin accumulates in the lysosomes of keratinocytes
with induction of IL-1α secretion via TLR9. Allergy.2019;74(3):560-571.
72. Reiger M, Traidl-Hoffmann C, Neumann AU. The skin microbiome as a
clinical biomarker in atopic eczema: Promises, navigation, and pitfalls.The Journal of allergy and clinical immunology.2020;145(1):93-96.
73. Gokkaya M, Damialis A, Nussbaumer T, et al. Defining biomarkers to
predict symptoms in subjects with and without allergy under natural
pollen exposure. The Journal of allergy and clinical immunology.2020.
74. Gonzalez T, Stevens ML, Baatrebek Kyzy A, et al. Biofilm propensity
of Staphylococcus aureus skin isolates is associated with increased
atopic dermatitis severity and barrier dysfunction in the MPAACH
pediatric cohort. Allergy. 2020.
75. Hülpüsch C, Tremmel K, Hammel G, et al. Skin pH-dependent
Staphylococcus aureus abundance as predictor for increasing atopic
dermatitis severity. Allergy. 2020.
76. Vitte J, Amadei L, Gouitaa M, et al. Paired acute-baseline serum
tryptase levels in perioperative anaphylaxis: An observational study.Allergy. 2019;74(6):1157-1165.
77. Izuhara K, Nunomura S, Nanri Y, Ono J, Takai M, Kawaguchi A.
Periostin: An emerging biomarker for allergic diseases. Allergy.2019;74(11):2116-2128.
78. Ando N, Nakamura Y, Ishimaru K, et al. Allergen-specific basophil
reactivity exhibits daily variations in seasonal allergic rhinitis.Allergy. 2015;70(3):319-322.
79. Zhong H, Fan XL, Yu QN, et al. Increased innate type 2 immune
response in house dust mite-allergic patients with allergic rhinitis.Clin Immunol. 2017;183:293-299.
80. Dhariwal J, Cameron A, Trujillo-Torralbo MB, et al. yuMucosal Type 2
Innate Lymphoid Cells Are a Key Component of the Allergic Response to
Aeroallergens. Am J Respir Crit Care Med. 2017;195(12):1586-1596.
81. Yu QN, Guo YB, Li X, et al. ILC2 frequency and activity are
inhibited by glucocorticoid treatment via STAT pathway in patients with
asthma. Allergy. 2018;73(9):1860-1870.
82. Tojima I, Matsumoto K, Kikuoka H, et al. Evidence for the induction
of Th2 inflammation by group 2 innate lymphoid cells in response to
prostaglandin D2 and cysteinyl leukotrienes in allergic rhinitis.Allergy. 2019;74(12):2417-2426.
83. Iinuma T, Okamoto Y, Morimoto Y, et al. Pathogenicity of memory Th2
cells is linked to stage of allergic rhinitis. Allergy.2018;73(2):479-489.
84. North ML, Jones MJ, MacIsaac JL, et al. Blood and nasal epigenetics
correlate with allergic rhinitis symptom development in the
environmental exposure unit. Allergy. 2018;73(1):196-205.
85. Cardenas A, Sordillo JE, Rifas-Shiman SL, et al. The nasal methylome
as a biomarker of asthma and airway inflammation in children. Nat
Commun. 2019;10(1):3095.
86. Panganiban RP, Wang Y, Howrylak J, et al. Circulating microRNAs as
biomarkers in patients with allergic rhinitis and asthma. The
Journal of allergy and clinical immunology. 2016;137(5):1423-1432.
87. Panganiban RP, Lambert KA, Hsu MH, Laryea Z, Ishmael FT. Isolation
and profiling of plasma microRNAs: Biomarkers for asthma and allergic
rhinitis. Methods. 2019;152:48-54.
88. Ma GC, Wang TS, Wang J, Ma ZJ, Pu SB. Serum metabolomics study of
patients with allergic rhinitis. Biomed Chromatogr.2020;34(3):e4739.
89. Choi GS, Shin SY, Kim JH, et al. Serum lactoferrin level as a
serologic biomarker for allergic rhinitis. Clin Exp Allergy.2010;40(3):403-410.
90. Bousquet J, Pfaar O, Togias A, et al. 2019 ARIA Care pathways for
allergen immunotherapy. Allergy. 2019;74(11):2087-2102.
91. Reitsma S, Subramaniam S, Fokkens WWJ, Wang Y. Recent developments
and highlights in rhinitis and allergen immunotherapy. Allergy.2018;73(12):2306-2313.
92. Kortekaas Krohn I, Callebaut I, Alpizar YA, et al. MP29-02 reduces
nasal hyperreactivity and nasal mediators in patients with house dust
mite-allergic rhinitis. Allergy. 2018;73(5):1084-1093.
93. Rittchen S, Heinemann A. Therapeutic Potential of Hematopoietic
Prostaglandin D2 Synthase in Allergic Inflammation. Cells.2019;8(6).
94. Okubo K, Hashiguchi K, Takeda T, et al. A randomized controlled
phase II clinical trial comparing ONO-4053, a novel DP1 antagonist, with
a leukotriene receptor antagonist pranlukast in patients with seasonal
allergic rhinitis. Allergy. 2017;72(10):1565-1575.
95. Meng Y, Wang C, Zhang L. Recent developments and highlights in
allergic rhinitis. Allergy. 2019;74(12):2320-2328.
96. Eyerich S, Metz M, Bossios A, Eyerich K. New biological treatments
for asthma and skin allergies. Allergy. 2020;75(3):546-560.
97. Mukherjee M, Bakakos P, Loukides S. New paradigm in asthma
management: Switching between biologics! Allergy.2020;75(4):743-745.
98. Tsabouri S, Tseretopoulou X, Priftis K, Ntzani EE. Omalizumab for
the treatment of inadequately controlled allergic rhinitis: a systematic
review and meta-analysis of randomized clinical trials. J Allergy
Clin Immunol Pract. 2014;2(3):332-340 e331.
99. Kopp MV, Hamelmann E, Bendiks M, et al. Transient impact of
omalizumab in pollen allergic patients undergoing specific
immunotherapy. Pediatr Allergy Immunol. 2013;24(5):427-433.
100. Weinstein SF, Katial R, Jayawardena S, et al. Efficacy and safety
of dupilumab in perennial allergic rhinitis and comorbid asthma.The Journal of allergy and clinical immunology.2018;142(1):171-177 e171.
101. Breiteneder H, Diamant Z, Eiwegger T, et al. Future research trends
in understanding the mechanisms underlying allergic diseases for
improved patient care. Allergy. 2019;74(12):2293-2311.
102. Murray CS, Poletti G, Kebadze T, et al. Study of modifiable risk
factors for asthma exacerbations: virus infection and allergen exposure
increase the risk of asthma hospital admissions in children.Thorax. 2006;61(5):376-382.
103. Akbarshahi H, Menzel M, Ramu S, Mahmutovic Persson I, Bjermer L,
Uller L. House dust mite impairs antiviral response in asthma
exacerbation models through its effects on TLR3. Allergy.2018;73(5):1053-1063.
104. Oliver BG, Robinson P, Peters M, Black J. Viral infections and
asthma: an inflammatory interface? Eur Respir J.2014;44(6):1666-1681.
105. Johnston NW, Johnston SL, Duncan JM, et al. The September epidemic
of asthma exacerbations in children: a search for etiology. The
Journal of allergy and clinical immunology. 2005;115(1):132-138.
106. Hasegawa K, Hoptay CE, Harmon B, et al. Association of type 2
cytokines in severe rhinovirus bronchiolitis during infancy with risk of
developing asthma: A multicenter prospective study. Allergy.2019;74(7):1374-1377.
107. Globinska A, Pawelczyk M, Piechota-Polanczyk A, et al. Impaired
virus replication and decreased innate immune responses to viral
infections in nasal epithelial cells from patients with allergic
rhinitis. Clin Exp Immunol. 2017;187(1):100-112.
108. Jeon YJ, Lim JH, An S, et al. Type III interferons are critical
host factors that determine susceptibility to Influenza A viral
infection in allergic nasal mucosa. Clin Exp Allergy.2018;48(3):253-265.
109. Gilles S, Blume C, Wimmer M, et al. Pollen exposure weakens innate
defense against respiratory viruses. Allergy. 2020;75(3):576-587.
110. Flayer CH, Haczku A. The Th2 gene cluster unraveled: role of RHS6.Allergy. 2017;72(5):679-681.
111. Hong HY, Chen FH, Sun YQ, et al. Local IL-25 contributes to
Th2-biased inflammatory profiles in nasal polyps. Allergy.2018;73(2):459-469.
112. Tan KS, Andiappan AK, Lee B, et al. RNA Sequencing of H3N2
Influenza Virus-Infected Human Nasal Epithelial Cells from Multiple
Subjects Reveals Molecular Pathways Associated with Tissue Injury and
Complications. Cells. 2019;8(9).
113. Roan F, Obata-Ninomiya K, Ziegler SF. Epithelial cell-derived
cytokines: more than just signaling the alarm. The Journal of
clinical investigation. 2019;129(4):1441-1451.
114. Tan KS, Ong HH, Yan Y, et al. In Vitro Model of Fully
Differentiated Human Nasal Epithelial Cells Infected With Rhinovirus
Reveals Epithelium-Initiated Immune Responses. J Infect Dis.2018;217(6):906-915.
115. Becker Y. Respiratory syncytial virus (RSV) evades the human
adaptive immune system by skewing the Th1/Th2 cytokine balance toward
increased levels of Th2 cytokines and IgE, markers of allergy–a
review. Virus Genes. 2006;33(2):235-252.
116. Malinczak CA, Rasky AJ, Fonseca W, et al. Upregulation of H3K27
Demethylase KDM6 During Respiratory Syncytial Virus Infection Enhances
Proinflammatory Responses and Immunopathology. J Immunol.2020;204(1):159-168.
117. Scanlon ST, McKenzie AN. Type 2 innate lymphoid cells: new players
in asthma and allergy. Curr Opin Immunol. 2012;24(6):707-712.
118. Han JJ, Goldsmith AM, Hong JY, Sajjan U, Hershenson MB. Rhinovirus
induces the expression of thymic stromal lymphopoietin in human airway
epithelial cells. Am J Respir Crit Care Med. 2012;185:A6875.
119. Beale J, Jayaraman A, Jackson DJ, et al. Rhinovirus-induced IL-25
in asthma exacerbation drives type 2 immunity and allergic pulmonary
inflammation. Sci Transl Med. 2014;6(256):256ra134.
120. Shaw JL, Fakhri S, Citardi MJ, et al. IL-33-responsive innate
lymphoid cells are an important source of IL-13 in chronic
rhinosinusitis with nasal polyps. Am J Respir Crit Care Med.2013;188(4):432-439.
121. Yan Y, Tan KS, Li C, et al. Human nasal epithelial cells derived
from multiple subjects exhibit differential responses to H3N2 influenza
virus infection in vitro. The Journal of allergy and clinical
immunology. 2016;138(1):276-281 e215.
122. Jurak LM, Xi Y, Landgraf M, Carroll ML, Murray L, Upham JW.
Interleukin 33 Selectively Augments Rhinovirus-Induced Type 2 Immune
Responses in Asthmatic but not Healthy People. Front Immunol.2018;9:1895.
123. Tian T, Zi X, Peng Y, et al. H3N2 influenza virus infection
enhances oncostatin M expression in human nasal epithelium. Exp
Cell Res. 2018;371(2):322-329.
124. Li L, Chong HC, Ng SY, et al. Angiopoietin-like 4 Increases
Pulmonary Tissue Leakiness and Damage during Influenza Pneumonia.Cell Rep. 2015;10(5):654-663.
125. Taka S, Tzani-Tzanopoulou P, Wanstall H, Papadopoulos NG. MicroRNAs
in Asthma and Respiratory Infections: Identifying Common Pathways.Allergy Asthma Immunol Res. 2020;12(1):4-23.
126. Tiwari BS, Belenghi B, Levine A. Oxidative stress increased
respiration and generation of reactive oxygen species, resulting in ATP
depletion, opening of mitochondrial permeability transition, and
programmed cell death. Plant Physiol. 2002;128(4):1271-1281.
127. Aizawa H, Koarai A, Shishikura Y, et al. Oxidative stress enhances
the expression of IL-33 in human airway epithelial cells. Respir
Res. 2018;19(1):52.
128. Manji J, Thamboo A, Tacey M, Garnis C, Chadha NK. The presence of
Interleukin-13 in nasal lavage may be a predictor of nasal polyposis in
pediatric patients with cystic fibrosis. Rhinology.2018;56(3):261-267.
129. Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of
dupilumab in patients with severe chronic rhinosinusitis with nasal
polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two
multicentre, randomised, double-blind, placebo-controlled,
parallel-group phase 3 trials. Lancet. 2019;394(10209):1638-1650.
130. Bachert C, Sousa AR, Lund VJ, et al. Reduced need for surgery in
severe nasal polyposis with mepolizumab: Randomized trial. The
Journal of allergy and clinical immunology. 2017;140(4):1024-1031
e1014.
131. Bachert C, Zinreich SJ, Hellings PW, et al. Dupilumab reduces
opacification across all sinuses and related symptoms in patients with
CRSwNP. Rhinology. 2020;58(1):10-17.
132. Tomassen P, Vandeplas G, Van Zele T, et al. Inflammatory endotypes
of chronic rhinosinusitis based on cluster analysis of biomarkers.The Journal of allergy and clinical immunology.2016;137(5):1449-1456 e1444.
133. Fokkens WJ, Reitsma S. Medical algorithms: Management of chronic
rhinosinusitis. Allergy. 2019;74(7):1415-1416.
134. Xu X, Ong YK, Wang Y. Novel findings in immunopathophysiology of
chronic rhinosinusitis and their role in a model of precision medicine.Allergy. 2020;75(4):769-780.
135. Arebro J, Drakskog C, Winqvist O, Bachert C, Kumlien Georen S,
Cardell LO. Subsetting reveals CD16(high) CD62L(dim) neutrophils in
chronic rhinosinusitis with nasal polyps. Allergy.2019;74(12):2499-2501.
136. Succar EF, Li P, Ely KA, Chowdhury NI, Chandra RK, Turner JH.
Neutrophils are underrecognized contributors to inflammatory burden and
quality of life in chronic rhinosinusitis. Allergy.2020;75(3):713-716.
137. Jonstam K, Westman M, Holtappels G, Holweg CTJ, Bachert C. Serum
periostin, IgE, and SE-IgE can be used as biomarkers to identify
moderate to severe chronic rhinosinusitis with nasal polyps. The
Journal of allergy and clinical immunology. 2017;140(6):1705-1708
e1703.
138. Zhang Y, Derycke L, Holtappels G, et al. Th2 cytokines orchestrate
the secretion of MUC5AC and MUC5B in IL-5-positive chronic
rhinosinusitis with nasal polyps. Allergy. 2019;74(1):131-140.
139. Ogasawara N, Klingler AI, Tan BK, et al. Epithelial activators of
type 2 inflammation: Elevation of thymic stromal lymphopoietin, but not
IL-25 or IL-33, in chronic rhinosinusitis with nasal polyps in Chicago,
Illinois. Allergy. 2018;73(11):2251-2254.
140. Rouyar A, Classe M, Gorski R, et al. Type 2/Th2-driven inflammation
impairs olfactory sensory neurogenesis in mouse chronic rhinosinusitis
model. Allergy. 2019;74(3):549-559.
141. Rimmer J, Hellings P, Lund VJ, et al. European position paper on
diagnostic tools in rhinology. Rhinology. 2019;57(Suppl
S28):1-41.
142. Oakley GM, Christensen JM, Sacks R, Earls P, Harvey RJ.
Characteristics of macrolide responders in persistent post-surgical
rhinosinusitis. Rhinology. 2018;56(2):111-117.
143. Bidder T, Sahota J, Rennie C, Lund VJ, Robinson DS, Kariyawasam HH.
Omalizumab treats chronic rhinosinusitis with nasal polyps and asthma
together-a real life study. Rhinology. 2018;56(1):42-45.
144. Jonstam K, Swanson BN, Mannent LP, et al. Dupilumab reduces local
type 2 pro-inflammatory biomarkers in chronic rhinosinusitis with nasal
polyposis. Allergy. 2019;74(4):743-752.
145. Tsetsos N, Goudakos JK, Daskalakis D, Konstantinidis I, Markou K.
Monoclonal antibodies for the treatment of chronic rhinosinusitis with
nasal polyposis: a systematic review. Rhinology.2018;56(1):11-21.
146. Castan L, Bogh KL, Maryniak NZ, et al. Overview of in vivo and ex
vivo endpoints in murine food allergy models: Suitable for evaluation of
the sensitizing capacity of novel proteins? Allergy.2020;75(2):289-301.
147. Eiwegger T, Hung L, San Diego KE, O’Mahony L, Upton J. Recent
developments and highlights in food allergy. Allergy.2019;74(12):2355-2367.
148. Ponce M, Diesner SC, Szepfalusi Z, Eiwegger T. Markers of tolerance
development to food allergens. Allergy. 2016;71(10):1393-1404.
149. Ashley SE, Tan HT, Vuillermin P, et al. The skin barrier function
gene SPINK5 is associated with challenge-proven IgE-mediated food
allergy in infants. Allergy. 2017;72(9):1356-1364.
150. Tan HT, Hagner S, Ruchti F, et al. Tight junction, mucin, and
inflammasome-related molecules are differentially expressed in
eosinophilic, mixed, and neutrophilic experimental asthma in mice.Allergy. 2019;74(2):294-307.
151. Leung DYM, Calatroni A, Zaramela LS, et al. The nonlesional skin
surface distinguishes atopic dermatitis with food allergy as a unique
endotype. Sci Transl Med. 2019;11(480).
152. Goleva E, Berdyshev E, Leung DY. Epithelial barrier repair and
prevention of allergy. The Journal of clinical investigation.2019;129(4):1463-1474.
153. van Ginkel CD, Flokstra-de Blok BM, Kollen BJ, Kukler J, Koppelman
GH, Dubois AE. Loss-of-function variants of the filaggrin gene are
associated with clinical reactivity to foods. Allergy.2015;70(4):461-464.
154. Suaini NHA, Wang Y, Soriano VX, et al. Genetic determinants of
paediatric food allergy: A systematic review. Allergy.2019;74(9):1631-1648.
155. Kivisto JE, Clarke A, Dery A, et al. Genetic and environmental
susceptibility to food allergy in a registry of twins. J Allergy
Clin Immunol Pract. 2019;7(8):2916-2918.
156. Marenholz I, Grosche S, Kalb B, et al. Genome-wide association
study identifies the SERPINB gene cluster as a susceptibility locus for
food allergy. Nat Commun. 2017;8(1):1056.
157. Do AN, Watson CT, Cohain AT, et al. Dual transcriptomic and
epigenomic study of reaction severity in peanut-allergic children.The Journal of allergy and clinical immunology.2020;145(4):1219-1230.
158. Mondoulet L, Dioszeghy V, Busato F, et al. Gata3 hypermethylation
and Foxp3 hypomethylation are associated with sustained protection and
bystander effect following epicutaneous immunotherapy in
peanut-sensitized mice. Allergy. 2019;74(1):152-164.
159. D’Argenio V, Del Monaco V, Paparo L, et al. Altered miR-193a-5p
expression in children with cow’s milk allergy. Allergy.2018;73(2):379-386.
160. Ruffner MA, Song L, Maurer K, et al. Toll-like receptor 2
stimulation augments esophageal barrier integrity. Allergy.2019;74(12):2449-2460.
161. Rahrig S, Dettmann JM, Brauns B, et al. Transient epidermal barrier
deficiency and lowered allergic threshold in filaggrin-hornerin
(FlgHrnr(-/-) ) double-deficient mice. Allergy.2019;74(7):1327-1339.
162. Mitamura Y, Nunomura S, Nanri Y, et al. The IL-13/periostin/IL-24
pathway causes epidermal barrier dysfunction in allergic skin
inflammation. Allergy. 2018;73(9):1881-1891.
163. Rinaldi AO, Morita H, Wawrzyniak P, et al. Direct assessment of
skin epithelial barrier by electrical impedance spectroscopy.Allergy. 2019;74(10):1934-1944.
164. Chauveau A, Dalphin ML, Mauny F, et al. Skin prick tests and
specific IgE in 10-year-old children: Agreement and association with
allergic diseases. Allergy. 2017;72(9):1365-1373.
165. Flinterman AE, Knol EF, Lencer DA, et al. Peanut epitopes for IgE
and IgG4 in peanut-sensitized children in relation to severity of peanut
allergy. The Journal of allergy and clinical immunology.2008;121(3):737-743 e710.
166. Caubet JC, Lin J, Ahrens B, et al. Natural tolerance development in
cow’s milk allergic children: IgE and IgG4 epitope binding.Allergy. 2017;72(11):1677-1685.
167. Cerecedo I, Zamora J, Shreffler WG, et al. Mapping of the IgE and
IgG4 sequential epitopes of milk allergens with a peptide
microarray-based immunoassay. The Journal of allergy and clinical
immunology. 2008;122(3):589-594.
168. Sackesen C, Suarez-Farinas M, Silva R, et al. A new Luminex-based
peptide assay to identify reactivity to baked, fermented, and whole
milk. Allergy. 2019;74(2):327-336.
169. Suprun M, Getts R, Raghunathan R, et al. Novel Bead-Based Epitope
Assay is a sensitive and reliable tool for profiling epitope-specific
antibody repertoire in food allergy. Sci Rep. 2019;9(1):18425.
170. Suarez-Farinas M, Suprun M, Chang HL, et al. Predicting development
of sustained unresponsiveness to milk oral immunotherapy using
epitope-specific antibody binding profiles. The Journal of allergy
and clinical immunology. 2019;143(3):1038-1046.
171. Monino-Romero S, Lexmond WS, Singer J, et al. Soluble
FcvarepsilonRI: A biomarker for IgE-mediated diseases. Allergy.2019;74(7):1381-1384.
172. Saidova A, Hershkop AM, Ponce M, Eiwegger T. Allergen-Specific T
Cells in IgE-Mediated Food Allergy. Arch Immunol Ther Exp
(Warsz). 2018;66(3):161-170.
173. Chiang D, Chen X, Jones SM, et al. Single-cell profiling of
peanut-responsive T cells in patients with peanut allergy reveals
heterogeneous effector TH2 subsets. The Journal of allergy and
clinical immunology. 2018;141(6):2107-2120.
174. Wambre E, Bajzik V, DeLong JH, et al. A phenotypically and
functionally distinct human TH2 cell subpopulation is associated with
allergic disorders. Sci Transl Med. 2017;9(401).
175. Heeringa JJ, Rijvers L, Arends NJ, et al. IgE-expressing memory B
cells and plasmablasts are increased in blood of children with asthma,
food allergy, and atopic dermatitis. Allergy.2018;73(6):1331-1336.
176. Jimenez-Saiz R, Ellenbogen Y, Bruton K, et al. Human BCR analysis
of single-sorted, putative IgE(+) memory B cells in food allergy.The Journal of allergy and clinical immunology.2019;144(1):336-339 e336.
177. Nielsen SCA, Boyd SD. New technologies and applications in infant B
cell immunology. Curr Opin Immunol. 2019;57:53-57.
178. Croote D, Darmanis S, Nadeau KC, Quake SR. High-affinity
allergen-specific human antibodies cloned from single IgE B cell
transcriptomes. Science. 2018;362(6420):1306-1309.
179. Nielsen SCA, Roskin KM, Jackson KJL, et al. Shaping of infant B
cell receptor repertoires by environmental factors and infectious
disease. Sci Transl Med. 2019;11(481).
180. Hoof I, Schulten V, Layhadi JA, et al. Allergen-specific IgG(+)
memory B cells are temporally linked to IgE memory responses. The
Journal of allergy and clinical immunology. 2019.
181. Heeringa JJ, McKenzie CI, Varese N, et al. Induction of IgG2 and
IgG4 B-cell memory following sublingual immunotherapy for ryegrass
pollen allergy. Allergy. 2019.
182. Jimenez-Saiz R, Ellenbogen Y, Koenig JFE, et al. IgG1(+) B-cell
immunity predates IgE responses in epicutaneous sensitization to foods.Allergy. 2019;74(1):165-175.
183. Hoffmann HJ, Santos AF, Mayorga C, et al. The clinical utility of
basophil activation testing in diagnosis and monitoring of allergic
disease. Allergy. 2015;70(11):1393-1405.
184. Hemmings O, Kwok M, McKendry R, Santos AF. Basophil Activation
Test: Old and New Applications in Allergy. Curr Allergy Asthma
Rep. 2018;18(12):77.
185. Hung L, Obernolte H, Sewald K, Eiwegger T. Human ex vivo and in
vitro disease models to study food allergy. Asia Pac Allergy.2019;9(1):e4.
186. Santos AF, Couto-Francisco N, Becares N, Kwok M, Bahnson HT, Lack
G. A novel human mast cell activation test for peanut allergy. The
Journal of allergy and clinical immunology. 2018;142(2):689-691 e689.
187. Bahri R, Custovic A, Korosec P, et al. Mast cell activation test in
the diagnosis of allergic disease and anaphylaxis. The Journal of
allergy and clinical immunology. 2018;142(2):485-496 e416.
188. Pouessel G, Beaudouin E, Tanno LK, et al. Food-related anaphylaxis
fatalities: Analysis of the Allergy Vigilance Network((R)) database.Allergy. 2019;74(6):1193-1196.
189. Pouessel G, Turner PJ, Worm M, et al. Food-induced fatal
anaphylaxis: From epidemiological data to general prevention strategies.Clin Exp Allergy. 2018;48(12):1584-1593.
190. De Schryver S, Halbrich M, Clarke A, et al. Tryptase levels in
children presenting with anaphylaxis: Temporal trends and associated
factors. The Journal of allergy and clinical immunology.2016;137(4):1138-1142.
191. Mayorga C, Fernandez TD, Montanez MI, Moreno E, Torres MJ. Recent
developments and highlights in drug hypersensitivity. Allergy.2019;74(12):2368-2381.
192. Romano A, Atanaskovic-Markovic M, Barbaud A, et al. Towards a more
precise diagnosis of hypersensitivity to beta-lactams - an EAACI
position paper. Allergy. 2019.
193. Brockow K, Garvey LH, Aberer W, et al. Skin test concentrations for
systemically administered drugs – an ENDA/EAACI Drug Allergy Interest
Group position paper. Allergy. 2013;68(6):702-712.
194. Torres MJ, Celik GE, Whitaker P, et al. A EAACI drug allergy
interest group survey on how European allergy specialists deal with
β-lactam allergy. Allergy. 2019;74(6):1052-1062.
195. Dona I, Romano A, Torres MJ. Algorithm for betalactam allergy
diagnosis. Allergy. 2019;74(9):1817-1819.
196. Barbero N, Fernandez-Santamaria R, Mayorga C, et al. Identification
of an antigenic determinant of clavulanic acid responsible for
IgE-mediated reactions. Allergy. 2019;74(8):1490-1501.
197. Torres MJ, Celik GE, Whitaker P, et al. A EAACI drug allergy
interest group survey on how European allergy specialists deal with
beta-lactam allergy. Allergy. 2019;74(6):1052-1062.
198. Yang MS, Kang DY, Seo B, et al. Incidence of cephalosporin-induced
anaphylaxis and clinical efficacy of screening intradermal tests with
cephalosporins: A large multicenter retrospective cohort study.Allergy. 2018;73(9):1833-1841.
199. Dona I, Perez-Sanchez N, Salas M, et al. Clinical Characterization
and Diagnostic Approaches for Patients Reporting Hypersensitivity
Reactions to Quinolones. The journal of allergy and clinical
immunology In practice. 2020.
200. Porebski G, Pecaric-Petkovic T, Groux-Keller M, Bosak M, Kawabata
TT, Pichler WJ. In vitro drug causality assessment in Stevens-Johnson
syndrome - alternatives for lymphocyte transformation test. Clin
Exp Allergy. 2013;43(9):1027-1037.
201. Mayorga C, Celik G, Rouzaire P, et al. In vitro tests for drug
hypersensitivity reactions: an ENDA/EAACI Drug Allergy Interest Group
position paper. Allergy. 2016;71(8):1103-1134.
202. Fontaine C, Mayorga C, Bousquet PJ, et al. Relevance of the
determination of serum-specific IgE antibodies in the diagnosis of
immediate beta-lactam allergy. Allergy. 2007;62(1):47-52.
203. Johansson SG, Adedoyin J, van Hage M, Gronneberg R, Nopp A.
False-positive penicillin immunoassay: an unnoticed common problem.The Journal of allergy and clinical immunology.2013;132(1):235-237.
204. Torres MJ, Padial A, Mayorga C, et al. The diagnostic
interpretation of basophil activation test in immediate allergic
reactions to betalactams. Clin Exp Allergy.2004;34(11):1768-1775.
205. Torres MJ, Ariza A, Mayorga C, et al. Clavulanic acid can be the
component in amoxicillin-clavulanic acid responsible for immediate
hypersensitivity reactions. The Journal of allergy and clinical
immunology. 2010;125(2):502-505 e502.
206. Fernandez TD, Ariza A, Palomares F, et al. Hypersensitivity to
fluoroquinolones: The expression of basophil activation markers depends
on the clinical entity and the culprit fluoroquinolone. Medicine
(Baltimore). 2016;95(23):e3679.
207. Fernandez TD, Torres MJ, Blanca-Lopez N, et al. Negativization
rates of IgE radioimmunoassay and basophil activation test in immediate
reactions to penicillins. Allergy. 2009;64(2):242-248.
208. Van Gasse AL, Sabato V, Uyttebroek AP, et al. Immediate
moxifloxacin hypersensitivity: Is there more than currently meets the
eye? Allergy. 2017;72(12):2039-2043.
209. Fernandez-Santamaria R, Palomares F, Salas M, et al. Expression of
the Tim3-galectin-9 axis is altered in drug-induced maculopapular
exanthema. Allergy. 2019;74(9):1769-1779.
210. Dona I, Perez-Sanchez N, Eguiluz-Gracia I, et al. Progress in
understanding hypersensitivity reactions to nonsteroidal
anti-inflammatory drugs. Allergy. 2020;75(3):561-575.
211. Dona I, Perez-Sanchez N, Bogas G, Moreno E, Salas M, Torres MJ.
Medical algorithm: Diagnosis and treatment of NSAIDs hypersensitivity.Allergy. 2019.
212. Dona I, Barrionuevo E, Salas M, et al. NSAIDs-hypersensitivity
often induces a blended reaction pattern involving multiple organs.Sci Rep. 2018;8(1):16710.
213. Blanca M, Oussalah A, Cornejo-Garcia JA, et al. GNAI2 variants
predict nonsteroidal anti-inflammatory drug hypersensitivity in a
genome-wide study. Allergy. 2020;75(5):1250-1253.
214. Lee HY, Ye YM, Kim SH, et al. Identification of phenotypic clusters
of nonsteroidal anti-inflammatory drugs exacerbated respiratory disease.Allergy. 2017;72(4):616-626.
215. Dona I, Jurado-Escobar R, Perkins JR, et al. Eicosanoid mediator
profiles in different phenotypes of nonsteroidal anti-inflammatory
drug-induced urticaria. Allergy. 2019;74(6):1135-1144.
216. Hagan JB, Laidlaw TM, Divekar R, et al. Urinary Leukotriene E4 to
Determine Aspirin Intolerance in Asthma: A Systematic Review and
Meta-Analysis. J Allergy Clin Immunol Pract. 2017;5(4):990-997
e991.
217. Ban GY, Cho K, Kim SH, et al. Metabolomic analysis identifies
potential diagnostic biomarkers for aspirin-exacerbated respiratory
disease. Clin Exp Allergy. 2017;47(1):37-47.
218. Lei DK, Saltoun C. Allergen immunotherapy: definition, indications,
and reactions. Allergy Asthma Proc. 2019;40(6):369-371.
219. Miller JM, Davis CM, Anvari S. The clinical and immune outcomes
after food allergen immunotherapy emphasizing the development of
tolerance. Curr Opin Pediatr. 2019;31(6):821-827.
220. Sindher SB, Long A, Acharya S, Sampath V, Nadeau KC. The Use of
Biomarkers to Predict Aero-Allergen and Food Immunotherapy Responses.Clin Rev Allergy Immunol. 2018;55(2):190-204.
221. Couroux P, Ipsen H, Stage BS, et al. A birch sublingual allergy
immunotherapy tablet reduces rhinoconjunctivitis symptoms when exposed
to birch and oak and induces IgG4 to allergens from all trees in the
birch homologous group. Allergy. 2019;74(2):361-369.
222. Huang Y, Wang C, Wang X, Zhang L, Lou H. Efficacy and safety of
subcutaneous immunotherapy with house dust mite for allergic rhinitis: A
Meta-analysis of Randomized Controlled Trials. Allergy.2019;74(1):189-192.
223. Schmitt J, Wustenberg E, Kuster D, Mucke V, Serup-Hansen N, Tesch
F. The moderating role of allergy immunotherapy in asthma progression:
Results of a population-based cohort study. Allergy.2020;75(3):596-602.
224. Varona R, Ramos T, Escribese MM, et al. Persistent regulatory
T-cell response 2 years after 3 years of grass tablet SLIT: Links to
reduced eosinophil counts, sIgE levels, and clinical benefit.Allergy. 2019;74(2):349-360.
225. Wahn U, Bachert C, Heinrich J, Richter H, Zielen S. Real-world
benefits of allergen immunotherapy for birch pollen-associated allergic
rhinitis and asthma. Allergy. 2019;74(3):594-604.
226. Investigators PGoC, Vickery BP, Vereda A, et al. AR101 Oral
Immunotherapy for Peanut Allergy. The New England journal of
medicine. 2018;379(21):1991-2001.
227. Virkud YV, Kelly RS, Wood C, Lasky-Su JA. The nuts and bolts of
omics for the clinical allergist. Ann Allergy Asthma Immunol.2019;123(6):558-563.
228. van Zelm MC, McKenzie CI, Varese N, Rolland JM, O’Hehir RE. Recent
developments and highlights in immune monitoring of allergen
immunotherapy. Allergy. 2019;74(12):2342-2354.
229. Kim EH, Yang L, Ye P, et al. Long-term sublingual immunotherapy for
peanut allergy in children: Clinical and immunologic evidence of
desensitization. The Journal of allergy and clinical immunology.2019;144(5):1320-1326 e1321.
230. Shamji MH, Kappen JH, Akdis M, et al. Biomarkers for monitoring
clinical efficacy of allergen immunotherapy for allergic
rhinoconjunctivitis and allergic asthma: an EAACI Position Paper.Allergy. 2017;72(8):1156-1173.
231. Viswanathan RK, Busse WW. Allergen immunotherapy in allergic
respiratory diseases: from mechanisms to meta-analyses. Chest.2012;141(5):1303-1314.
232. Datema MR, Eller E, Zwinderman AH, et al. Ratios of specific IgG4
over IgE antibodies do not improve prediction of peanut allergy nor of
its severity compared to specific IgE alone. Clin Exp Allergy.2019;49(2):216-226.
233. Kulis M, Yue X, Guo R, et al. High- and low-dose oral immunotherapy
similarly suppress pro-allergic cytokines and basophil activation in
young children. Clin Exp Allergy. 2019;49(2):180-189.
234. Chinthrajah RS, Purington N, Andorf S, et al. Sustained outcomes in
oral immunotherapy for peanut allergy (POISED study): a large,
randomised, double-blind, placebo-controlled, phase 2 study.Lancet. 2019;394(10207):1437-1449.
235. Feng M, Su Q, Lai X, et al. Functional and Immunoreactive Levels of
IgG4 Correlate with Clinical Responses during the Maintenance Phase of
House Dust Mite Immunotherapy. J Immunol. 2018;200(12):3897-3904.
236. Fukano C, Ohashi-Doi K, Lund K, Nakao A, Masuyama K, Matsuoka T.
Establishment of enzyme-linked immunosorbent facilitated antigen binding
as a biomarker assay for Japanese cedar pollen allergy immunotherapy.J Pharmacol Sci. 2019;140(3):223-227.
237. Chinthrajah RS, Purington N, Sampath V, et al. High dimensional
immune biomarkers demonstrate differences in phenotypes and endotypes in
food allergy and asthma. Ann Allergy Asthma Immunol.2018;121(1):117-119 e111.
238. Boonpiyathad T, Meyer N, Moniuszko M, et al. High-dose bee venom
exposure induces similar tolerogenic B-cell responses in allergic
patients and healthy beekeepers. Allergy. 2017;72(3):407-415.
239. Cianferoni A, Saltzman R, Saretta F, et al. Invariant natural
killer cells change after an oral allergy desensitization protocol for
cow’s milk. Clin Exp Allergy. 2017;47(11):1390-1397.
240. Schulten V, Tripple V, Seumois G, et al. Allergen-specific
immunotherapy modulates the balance of circulating Tfh and Tfr cells.The Journal of allergy and clinical immunology.2018;141(2):775-777.e776.
241. Yao Y, Wang ZC, Wang N, et al. Allergen immunotherapy improves
defective follicular regulatory T cells in patients with allergic
rhinitis. The Journal of allergy and clinical immunology.2019;144(1):118-128.
242. Boonpiyathad T, Sokolowska M, Morita H, et al. Der p 1-specific
regulatory T-cell response during house dust mite allergen
immunotherapy. Allergy. 2019;74(5):976-985.
243. Boonpiyathad T, van de Veen W, Wirz O, et al. Role of Der p
1-specific B cells in immune tolerance during 2 years of house dust
mite-specific immunotherapy. The Journal of allergy and clinical
immunology. 2019;143(3):1077-1086 e1010.
244. Sharif H, Singh I, Kouser L, et al. Immunologic mechanisms of a
short-course of Lolium perenne peptide immunotherapy: A randomized,
double-blind, placebo-controlled trial. The Journal of allergy and
clinical immunology. 2019;144(3):738-749.
245. Sage PT, Alvarez D, Godec J, von Andrian UH, Sharpe AH. Circulating
T follicular regulatory and helper cells have memory-like properties.The Journal of clinical investigation. 2014;124(12):5191-5204.
246. Sun L, Jin H, Li H. GARP: a surface molecule of regulatory T cells
that is involved in the regulatory function and TGF-β releasing.Oncotarget. 2016;7(27):42826-42836.
247. Caruso M, Cibella F, Emma R, et al. Basophil biomarkers as useful
predictors for sublingual immunotherapy in allergic rhinitis. Int
Immunopharmacol. 2018;60:50-58.
248. Van Overtvelt L, Baron-Bodo V, Horiot S, et al. Changes in basophil
activation during grass-pollen sublingual immunotherapy do not correlate
with clinical efficacy. Allergy. 2011;66(12):1530-1537.
249. Ihara F, Sakurai D, Yonekura S, et al. Identification of
specifically reduced Th2 cell subsets in allergic rhinitis patients
after sublingual immunotherapy. Allergy. 2018;73(9):1823-1832.
250. Gueguen C, Luce S, Lombardi V, Baron-Bodo V, Moingeon P, Mascarell
L. IL-10 mRNA levels in whole blood cells correlate with house dust mite
allergen immunotherapy efficacy. Allergy. 2019;74(11):2223-2226.
251. Potaczek DP, Harb H, Michel S, Alhamwe BA, Renz H, Tost J.
Epigenetics and allergy: from basic mechanisms to clinical applications.Epigenomics. 2017;9(4):539-571.
252. Zhang H, Kaushal A, Merid SK, et al. DNA methylation and allergic
sensitizations: A genome-scale longitudinal study during adolescence.Allergy. 2019;74(6):1166-1175.
253. Syed A, Garcia MA, Lyu SC, et al. Peanut oral immunotherapy results
in increased antigen-induced regulatory T-cell function and
hypomethylation of forkhead box protein 3 (FOXP3). The Journal of
allergy and clinical immunology. 2014;133(2):500-510.
254. Tsai M, Mukai K, Chinthrajah RS, Nadeau KC, Galli SJ. Sustained
successful peanut oral immunotherapy associated with low basophil
activation and peanut-specific IgE. The Journal of allergy and
clinical immunology. 2020;145(3):885-896 e886.
255. Burton OT, Logsdon SL, Zhou JS, et al. Oral immunotherapy induces
IgG antibodies that act through FcgammaRIIb to suppress IgE-mediated
hypersensitivity. The Journal of allergy and clinical immunology.2014;134(6):1310-1317 e1316.
256. Frischmeyer-Guerrerio PA, Masilamani M, Gu W, et al. Mechanistic
correlates of clinical responses to omalizumab in the setting of oral
immunotherapy for milk allergy. The Journal of allergy and
clinical immunology. 2017;140(4):1043-1053 e1048.
257. Vickery BP, Berglund JP, Burk CM, et al. Early oral immunotherapy
in peanut-allergic preschool children is safe and highly effective.The Journal of allergy and clinical immunology.2017;139(1):173-181 e178.
258. Ryan JF, Hovde R, Glanville J, et al. Successful immunotherapy
induces previously unidentified allergen-specific CD4+ T-cell subsets.Proceedings of the National Academy of Sciences of the United
States of America. 2016;113(9):E1286-1295.
259. Bedoret D, Singh AK, Shaw V, et al. Changes in antigen-specific
T-cell number and function during oral desensitization in cow’s milk
allergy enabled with omalizumab. Mucosal Immunol.2012;5(3):267-276.
260. Abdel-Gadir A, Schneider L, Casini A, et al. Oral immunotherapy
with omalizumab reverses the Th2 cell-like programme of regulatory T
cells and restores their function. Clin Exp Allergy.2018;48(7):825-836.
261. Blumchen K, Trendelenburg V, Ahrens F, et al. Efficacy, Safety, and
Quality of Life in a Multicenter, Randomized, Placebo-Controlled Trial
of Low-Dose Peanut Oral Immunotherapy in Children with Peanut Allergy.J Allergy Clin Immunol Pract. 2019;7(2):479-491 e410.
262. Syed IA, Sulaiman SA, Hassali MA, Syed SH, Shan LH, Lee CK. Factors
associated with poor CD4 and viral load outcomes in patients with
HIV/AIDS. J Med Virol. 2016;88(5):790-797.
263. Berin MC, Grishin A, Masilamani M, et al. Egg-specific IgE and
basophil activation but not egg-specific T-cell counts correlate with
phenotypes of clinical egg allergy. The Journal of allergy and
clinical immunology. 2018;142(1):149-158 e148.
264. Gorelik M, Narisety SD, Guerrerio AL, et al. Suppression of the
immunologic response to peanut during immunotherapy is often transient.The Journal of allergy and clinical immunology.2015;135(5):1283-1292.
265. Flores Kim J, McCleary N, Nwaru BI, Stoddart A, Sheikh A.
Diagnostic accuracy, risk assessment, and cost-effectiveness of
component-resolved diagnostics for food allergy: A systematic review.Allergy. 2018;73(8):1609-1621.
266. Eller E, Bindslev-Jensen C. Clinical value of component-resolved
diagnostics in peanut-allergic patients. Allergy.2013;68(2):190-194.
267. Klemans RJ, Otte D, Knol M, et al. The diagnostic value of specific
IgE to Ara h 2 to predict peanut allergy in children is comparable to a
validated and updated diagnostic prediction model. The Journal of
allergy and clinical immunology. 2013;131(1):157-163.
268. Kukkonen AK, Pelkonen AS, Makinen-Kiljunen S, Voutilainen H, Makela
MJ. Ara h 2 and Ara 6 are the best predictors of severe peanut allergy:
a double-blind placebo-controlled study. Allergy.2015;70(10):1239-1245.
269. Martinet J, Couderc L, Renosi F, Bobée V, Marguet C, Boyer O.
Diagnostic Value of Antigen-Specific Immunoglobulin E Immunoassays
against Ara h 2 and Ara h 8 Peanut Components in Child Food Allergy.International archives of allergy and immunology.2016;169(4):216-222.
270. Holzhauser T, Wackermann O, Ballmer-Weber BK, et al. Soybean
(Glycine max) allergy in Europe: Gly m 5 (beta-conglycinin) and Gly m 6
(glycinin) are potential diagnostic markers for severe allergic
reactions to soy. The Journal of allergy and clinical immunology.2009;123(2):452-458.
271. Ebisawa M, Brostedt P, Sjolander S, Sato S, Borres MP, Ito K. Gly m
2S albumin is a major allergen with a high diagnostic value in
soybean-allergic children. The Journal of allergy and clinical
immunology. 2013;132(4):976-978 e971-975.
272. Klemans RJ, Knol EF, Michelsen-Huisman A, et al. Components in soy
allergy diagnostics: Gly m 2S albumin has the best diagnostic value in
adults. Allergy. 2013;68(11):1396-1402.
273. Masthoff LJ, Mattsson L, Zuidmeer-Jongejan L, et al. Sensitization
to Cor a 9 and Cor a 14 is highly specific for a hazelnut allergy with
objective symptoms in Dutch children and adults. The Journal of
allergy and clinical immunology. 2013;132(2):393-399.
274. Faber MA, De Graag M, Van Der Heijden C, et al. Cor a 14: missing
link in the molecular diagnosis of hazelnut allergy? International
archives of allergy and immunology. 2014;164(3):200-206.
275. Datema MR, van Ree R, Asero R, et al. Component-resolved diagnosis
and beyond: Multivariable regression models to predict severity of
hazelnut allergy. Allergy. 2018;73(3):549-559.
276. Beyer K, Grabenhenrich L, Hartl M, et al. Predictive values of
component-specific IgE for the outcome of peanut and hazelnut food
challenges in children. Allergy. 2015;70(1):90-98.
277. Ciprandi G, Pistorio A, Silvestri M, Rossi GA, Tosca MA. Walnut
anaphylaxis: the usefulness of molecular-based allergy diagnostics.Immunol Lett. 2014;161(1):138-139.
278. Ballmer-Weber BK, Lidholm J, Lange L, et al. Allergen Recognition
Patterns in Walnut Allergy Are Age Dependent and Correlate with the
Severity of Allergic Reactions. J Allergy Clin Immunol Pract.2019;7(5):1560-1567 e1566.
279. Lee J, Jeong K, Jeon SA, Lee S. Component resolved diagnosis of
walnut allergy in young children: Jug r 1 as a major walnut allergen.Asian Pac J Allergy Immunol. 2019.
280. Giovannini M, Comberiati P, Piazza M, et al. Retrospective
definition of reaction risk in Italian children with peanut, hazelnut
and walnut allergy through component-resolved diagnosis. Allergol
Immunopathol (Madr). 2019;47(1):73-78.
281. Savvatianos S, Konstantinopoulos AP, Borga A, et al. Sensitization
to cashew nut 2S albumin, Ana o 3, is highly predictive of cashew and
pistachio allergy in Greek children. The Journal of allergy and
clinical immunology. 2015;136(1):192-194.
282. van der Valk JP, Gerth van Wijk R, Vergouwe Y, et al. sIgE Ana o 1,
2 and 3 accurately distinguish tolerant from allergic children
sensitized to cashew nuts. Clin Exp Allergy. 2017;47(1):113-120.
283. Lange L, Lasota L, Finger A, et al. Ana o 3-specific IgE is a good
predictor for clinically relevant cashew allergy in children.Allergy. 2017;72(4):598-603.
284. Dang TD, Peters RL, Koplin JJ, et al. Egg allergen specific IgE
diversity predicts resolution of egg allergy in the population cohort
HealthNuts. Allergy. 2019;74(2):318-326.
285. Pascal M, Grishina G, Yang AC, et al. Molecular Diagnosis of Shrimp
Allergy: Efficiency of Several Allergens to Predict Clinical Reactivity.J Allergy Clin Immunol Pract. 2015;3(4):521-529 e510.
286. Gao Z, Fu WY, Sun Y, et al. Artemisia pollen allergy in China:
Component-resolved diagnosis reveals allergic asthma patients have
significant multiple allergen sensitization. Allergy.2019;74(2):284-293.
287. Uriarte SA, Sastre J. Clinical relevance of molecular diagnosis in
pet allergy. Allergy. 2016;71(7):1066-1068.
288. Posa D, Perna S, Resch Y, et al. Evolution and predictive value of
IgE responses toward a comprehensive panel of house dust mite allergens
during the first 2 decades of life. The Journal of allergy and
clinical immunology. 2017;139(2):541-549 e548.
289. Simon D, Page B, Vogel M, et al. Evidence of an abnormal epithelial
barrier in active, untreated and corticosteroid-treated eosinophilic
esophagitis. Allergy. 2018;73(1):239-247.
290. Akdis CA, Arkwright PD, Bruggen MC, et al. Type 2 immunity in the
skin and lungs. Allergy. 2020.
291. Kubo T, Wawrzyniak P, Morita H, et al. CpG-DNA enhances the tight
junction integrity of the bronchial epithelial cell barrier. J
Allergy Clin Immunol. 2015;136(5):1413-1416 e1411-1418.
292. Soyka MB, Wawrzyniak P, Eiwegger T, et al. Defective epithelial
barrier in chronic rhinosinusitis: the regulation of tight junctions by
IFN-gamma and IL-4. J Allergy Clin Immunol. 2012;130(5):1087-1096
e1010.
293. Wawrzyniak P, Wawrzyniak M, Wanke K, et al. Regulation of bronchial
epithelial barrier integrity by type 2 cytokines and histone
deacetylases in asthmatic patients. J Allergy Clin Immunol.2017;139(1):93-103.
294. Kortekaas Krohn I, Seys SF, Lund G, et al. Nasal epithelial barrier
dysfunction increases sensitization and mast cell degranulation in the
absence of allergic inflammation. Allergy. 2020;75(5):1155-1164.
295. Werfel T, Allam JP, Biedermann T, et al. Cellular and molecular
immunologic mechanisms in patients with atopic dermatitis. J
Allergy Clin Immunol. 2016;138(2):336-349.
296. McAleer MA, Irvine AD. The multifunctional role of filaggrin in
allergic skin disease. J Allergy Clin Immunol.2013;131(2):280-291.
297. Jin Y, Lu L, Tu W, Luo T, Fu Z. Impacts of polystyrene microplastic
on the gut barrier, microbiota and metabolism of mice. Sci Total
Environ. 2019;649:308-317.
298. Hole AM, Draper A, Jolliffe G, Cullinan P, Jones M, Taylor AJ.
Occupational asthma caused by bacillary amylase used in the detergent
industry. Occup Environ Med. 2000;57(12):840-842.
299. Sugita K, Altunbulakli C, Morita H, et al. Human type 2 innate
lymphoid cells disrupt skin keratinocyte tight junction barrier by
IL-13. Allergy. 2019;74(12):2534-2537.
300. Zhou X, Wei T, Cox CW, Jiang Y, Roche WR, Walls AF. Mast cell
chymase impairs bronchial epithelium integrity by degrading cell
junction molecules of epithelial cells. Allergy.2019;74(7):1266-1276.
301. Steelant B, Wawrzyniak P, Martens K, et al. Blocking histone
deacetylase activity as a novel target for epithelial barrier defects in
patients with allergic rhinitis. J Allergy Clin Immunol.2019;144(5):1242-1253 e1247.
302. Kelleher MM, Dunn-Galvin A, Gray C, et al. Skin barrier impairment
at birth predicts food allergy at 2 years of age. J Allergy Clin
Immunol. 2016;137(4):1111-1116 e1111-1118.
303. Sindher S, Alkotob SS, Shojinaga MN, et al. Pilot study measuring
transepidermal water loss (TEWL) in children suggests trilipid cream is
more effective than a paraffin-based emollient. Allergy. 2020.
304. Antonov D, Schliemann S, Elsner P. Methods for the Assessment of
Barrier Function. Curr Probl Dermatol. 2016;49:61-70.
305. Birgersson U, Birgersson E, Aberg P, Nicander I, Ollmar S.
Non-invasive bioimpedance of intact skin: mathematical modeling and
experiments. Physiol Meas. 2011;32(1):1-18.
306. Fasano A, Shea-Donohue T. Mechanisms of disease: the role of
intestinal barrier function in the pathogenesis of gastrointestinal
autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol.2005;2(9):416-422.
307. Mu Q, Kirby J, Reilly CM, Luo XM. Leaky Gut As a Danger Signal for
Autoimmune Diseases. Front Immunol. 2017;8:598.
308. Jiminez JA, Uwiera TC, Douglas Inglis G, Uwiera RR. Animal models
to study acute and chronic intestinal inflammation in mammals. Gut
Pathog. 2015;7:29.
309. Camara-Lemarroy CR, Silva C, Greenfield J, Liu WQ, Metz LM, Yong
VW. Biomarkers of intestinal barrier function in multiple sclerosis are
associated with disease activity. Mult Scler.2019:1352458519863133.
310. Bosi E, Molteni L, Radaelli MG, et al. Increased intestinal
permeability precedes clinical onset of type 1 diabetes.Diabetologia. 2006;49(12):2824-2827.
311. Fasano A. Zonulin, regulation of tight junctions, and autoimmune
diseases. Ann N Y Acad Sci. 2012;1258:25-33.
312. Kiecolt-Glaser JK, Wilson SJ, Bailey ML, et al. Marital distress,
depression, and a leaky gut: Translocation of bacterial endotoxin as a
pathway to inflammation. Psychoneuroendocrinology. 2018;98:52-60.
313. Alinaghi M, Nguyen DN, Sangild PT, Bertram HC. Direct
Implementation of Intestinal Permeability Test in NMR Metabolomics for
Simultaneous Biomarker Discovery-A Feasibility Study in a Preterm Piglet
Model. Metabolites. 2020;10(1).
314. Muraro A, Roberts G, Halken S, et al. EAACI guidelines on allergen
immunotherapy: Executive statement. Allergy. 2018;73(4):739-743.
315. European Medicines Agency. Commitee for medicinal products for
human use (CHMP): Guideline on the Clinical Development of Products for
Specific Immunotherapy for The Treatment of Allergic Diseases
(CHMP/EWP/18504/2006). Available from:
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003605.pdf;
2008. 2008.
316. Bonertz A, Roberts G, Slater JE, et al. Allergen manufacturing and
quality aspects for allergen immunotherapy in Europe and the United
States: An analysis from the EAACI AIT Guidelines Project.Allergy. 2018;73(4):816-826.
317. Kaul S, Englert L, May S, Vieths S. Regulatory aspects of specific
immunotherapy in Europe. Curr Opin Allergy Clin Immunol.2010;10(6):594-602.
318. Englert L, May S, Kaul S, Vieths S. [The therapy allergens
ordinance (”Therapieallergene-Verordnung”). Background and effects].Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz.2012;55(3):351-357.
319. Mahler V, Esch RE, Kleine-Tebbe J, et al. Understanding differences
in allergen immunotherapy products and practices in North America and
Europe. The Journal of allergy and clinical immunology.2019;143(3):813-828.
320. Pfaar O, Agache I, de Blay F, et al. Perspectives in allergen
immunotherapy: 2019 and beyond. Allergy. 2019;74 Suppl 108:3-25.
321. Dhami S, Nurmatov U, Arasi S, et al. Allergen immunotherapy for
allergic rhinoconjunctivitis: A systematic review and meta-analysis.Allergy. 2017;72(11):1597-1631.
322. German Society for Allergology and Clinical Immunology (DGAKI).
http://www.dgaki.de/leitlinien/s2k-leitlinie-sit/ (accessed on 07
Dec 2018).
323. Roberts G, Pfaar O, Akdis CA, et al. EAACI Guidelines on Allergen
Immunotherapy: Allergic rhinoconjunctivitis. Allergy.2018;73(4):765-798.
324. Pfaar O, Alvaro M, Cardona V, Hamelmann E, Mosges R, Kleine-Tebbe
J. Clinical trials in allergen immunotherapy: current concepts and
future needs. Allergy. 2018;73(9):1775-1783.
325.
https://www.clinicaltrialsregister.eu/ctr-search/search?query=2016-000051-27.
326. Auge J, Vent J, Agache I, et al. EAACI Position paper on the
standardization of nasal allergen challenges. Allergy.2018;73(8):1597-1608.
327. Fauquert JL, Jedrzejczak-Czechowicz M, Rondon C, et al.
Conjunctival allergen provocation test : guidelines for daily practice.Allergy. 2017;72(1):43-54.
328. Pfaar O, Demoly P, Gerth van Wijk R, et al. Recommendations for the
standardization of clinical outcomes used in allergen immunotherapy
trials for allergic rhinoconjunctivitis: an EAACI Position Paper.Allergy. 2014;69(7):854-867.
329. Mosges R, Bachert C, Panzner P, et al. Short course of grass
allergen peptides immunotherapy over 3 weeks reduces seasonal symptoms
in allergic rhinoconjunctivitis with/without asthma: A randomized,
multicenter, double-blind, placebo-controlled trial. Allergy.2018;73(9):1842-1850.
330. Vély F, Barlogis V, Vallentin B, et al. Evidence of innate lymphoid
cell redundancy in humans. Nat Immunol. 2016;17(11):1291.
331. Pfaar O, Bachert C, Kuna P, et al. Sublingual allergen
immunotherapy with a liquid birch pollen product in patients with
seasonal allergic rhinoconjunctivitis with or without asthma. The
Journal of allergy and clinical immunology. 2019;143(3):970-977.
332. Pfaar O, Gerth van Wijk R, Klimek L, Bousquet J, Creticos P.
Clinical trials in allergen immunotherapy in the age group of children
and adolescents: current concepts and future needs. Clinical and
Translational Allergy. 2020;10:1-8.
333. Pfaar O, Bastl K, Berger U, et al. Defining pollen exposure times
for clinical trials of allergen immunotherapy for pollen-induced
rhinoconjunctivitis - an EAACI position paper. Allergy.2017;72(5):713-722.
334. Karatzas K, Riga M, Berger U, Werchan M, Pfaar O, Bergmann KC.
Computational validation of the recently proposed pollen season
definition criteria. Allergy. 2018;73(1):5-7.
335. Pfaar O, Karatzas K, Bastl K, et al. Pollen season is reflected on
symptom load for grass and birch pollen-induced allergic rhinitis in
different geographic areas-An EAACI Task Force Report. Allergy.2019.
336. Pfaar O, Agache I, Bergmann K, et al. Placebo effects in allergen
immunotherapy–an EAACI Task Force Position Paper. Allergy. 2020.
337. Pfaar O, Bonini S, Cardona V, et al. Perspectives in allergen
immunotherapy: 2017 and beyond. Allergy. 2018;73 Suppl 104:5-23.
338. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus
on rating quality of evidence and strength of recommendations.Bmj. 2008;336(7650):924-926.
339. Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1.
Introduction—GRADE evidence profiles and summary of findings tables.Journal of clinical epidemiology. 2011;64(4):383-394.
340. Santesso N, Glenton C, Dahm P, et al. GRADE guidelines 26:
Informative statements to communicate the findings of systematic reviews
of interventions. Journal of clinical epidemiology.2020;119:126-135.
341. Agache I, Beltran J, Akdis C, et al. Efficacy and safety of
treatment with biologicals (benralizumab, dupilumab, mepolizumab,
omalizumab and reslizumab) for severe eosinophilic asthma. A systematic
review for the EAACI Guidelines‐recommendations on the use of
biologicals in severe asthma. Allergy. 2020;75(5):1023-1042.
342. Agache I, Rocha C, Beltran J, et al. Efficacy and safety of
treatment with biologicals (benralizumab, dupilumab and omalizumab) for
severe allergic asthma: A systematic review for the EAACI Guidelines -
recommendations on the use of biologicals in severe asthma.Allergy. 2020;75(5):1043-1057.
343. Agache I, Song Y, Rocha C, et al. Efficacy and safety of treatment
with dupilumab for severe asthma: A systematic review of the EAACI
guidelines-Recommendations on the use of biologicals in severe asthma.Allergy. 2020;75(5):1058-1068.
344. Agache I, Lau S, Akdis CA, et al. EAACI Guidelines on Allergen
Immunotherapy: House dust mite-driven allergic asthma. Allergy.2019;74(5):855-873.