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1. Introduction and Preliminaries

Let Pn be the set of all algebraic polynomials of degree at most n, and P be the set of all algebraic polynomials. The set of all

monic polynomials of degree n will be denoted by P̂n, i.e.,

P̂n =
{
tn + q(t) | q(t) ∈ Pn−1

}
⊂ Pn.

This paper is devoted to certain classes of orthogonal polynomials on the finite interval on the real line, as well as the corresponding

quadrature formulas of maximal degree of precision.

The most known orthogonal polynomials are ones on the real line with respect to the inner product defined by

〈p, q〉w =
∫ b

a

p(t)q(t)w(t) dt (p, q ∈ P), (1.1)

where t 7→ w(t) is a non-negative function on (a, b), −∞ ≤ a < b ≤ +∞, for which all moments µk =
∫ b
a
tkw(t) dt, k =

0, 1, . . ., exist and µ0 > 0. Such a function is known as the weight function on (a, b). The inner product (1.1) gives rise to a

unique system of monic orthogonal polynomials πn( · ) = πn( · ;w), n ∈ N, which satisfy the three-term recurrence relation

πn+1(t) = (t − αn)πn(t)− βnπn−1(t), n = 0, 1, . . . , (1.2)

with π0(t) = 1 and π−1(t) = 0, where the recurrence coefficients depend only on the weight function w , i.e., αn = αn(w) and

βn = βn(w). The coefficients βk , k ≥ 1, in (1.2) are positive, and β0 may be arbitrary, but sometimes it is convenient to define it
by β0 = µ0 =

∫ b
a
w(t) dt. All zeros of πn(t), n ∈ N, are real and distinct and are located in the interior of (a, b). Using numerical

methods of linear algebra (QR or QL algorithm), it is easy to compute the zeros τk , k = 1, . . . , n, of the orthogonal polynomials
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πn(t) rapidly and efficiently as eigenvalues of the so-called Jacobi matrix of order n associated with the weight function w ,

Jn(w) =





α0
√
β1 O

√
β1 α1

√
β2

√
β2 α2

. . .

. . .
. . .

√
βn−1

O
√
βn−1 αn−1





. (1.3)

A simplification of QR algorithm, known as the Golub-Welsch procedure [16], enables an efficient construction of the Gaussian

quadrature formula with respect to the same weight function w , i.e.,

∫ b

a

f (t)w(t) dt =

n∑

k=1

Ak f (τk) + Rn(f ;w), (1.4)

which is exact on the set P2n−1 (Rn(P2n−1;w) = 0). Such a quadrature formula exists for each n ∈ N and has the maximal
algebraic degree of exactness dmax = 2n − 1. Its nodes τk , k = 1, . . . , n, are exactly eigenvalues of the Jacobi matrix Jn(w)
given by (1.3), and the weight coefficients Ak , the so-called Christoffel numbers, are given by Ak = β0v

2
k,1, k = 1, . . . , n, where

β0 = µ0 =
∫ b
a
w(t) dt and vk,1 is the first component of the normalized eigenvector vk (= [vk,1 . . . vk,n]

T) corresponding to the

eigenvalue τk ,

Jn(w)vk = τkvk , vTk vk = 1, k = 1, . . . , n.

Unfortunately, the recursion coefficients αn and βn in (1.2) are known explicitly only for some narrow classes of orthogonal

polynomials. One of the most important classes for which these coefficients are known explicitly are the so-called very classical

orthogonal polynomials (Jacobi, generalized Laguerre, and Hermite polynomials). They are very popular because of several

interesting common properties and many applications in numerical analysis, approximation theory, differential equations, as well

as in physics, chemistry, electrotechnics, and other computational and applied sciences. Classical orthogonal polynomials possess

a number of interesting properties (Rodrigues’ type formula, characterization by differential equations, etc.). For details see [9],

[31], [23], as well as for different characterizations [1, 2, 5].

Orthogonal polynomials for which the recursion coefficients are not known we call strongly non-classical polynomials. Important

advances in the numerical construction of recursion coefficients for strongly non-classical polynomials were made by Walter

Gautschi in the eighties of the last century, developing the so-called constructive theory of orthogonal polynomials [12] (see also

[13], [14], [24]). The main problem in this construction is very high sensitivity of recursion coefficients with respect to small

perturbations in the data for the moments. Therefore, he developed a few methods for construction (e.g., method of modified

moments and discretized Stieltjes-Gautschi procedure), gave a detailed stability analysis of such algorithms as well as several

new applications of orthogonal polynomials (for details see [24]).

Most recent, advances in symbolic computation and variable precision arithmetic have made it possible to overcome sensitivity

problems, directly by using the original Chebyshev method of moments, but we need then a procedure for the symbolic

calculation of moments or their calculation in variable-precision arithmetic (in sufficiently high precision). For such purpose

we use our Mathematica package OrthogonalPolynomials (see [11], [26]). The package is downloadable from Web Site:

http://www.mi.sanu.ac.rs/ gvm/. The alternative package SOPQ in Matlab was developed by Gautschi (cf. [14], [15]).

Inspired by the recent papers [8], [25], [29], in this paper we consider certain classes of orthogonal polynomials on the finite

intervals and derive the corresponding quadrature formulas of the maximal algebraic degree of precision, which can be successfully

applied in numerical calculation of the left and right fractional Riemann-Liouville integrals (cf. [20], [21], [7], [6])

aI
α
t f (t) =

1

Γ(α)

∫ t

a

(t − τ)α−1f (τ) dτ and t I
α
b f (t) =

1

Γ(α)

∫ b

t

(τ − t)α−1f (τ) dτ, (1.5)

respectively, as well as their multiple composition, recently introduced in [10].

The paper is organized as follows. In Section 2 we analyze results from [8] and [25], and consider the generalized case with

the weight function

w(x) = Bα(x) =

{
1− |x |α, −1 ≤ x ≤ 1,
0, otherwise.

(1.6)

In Section 3 we study a more general case with the weight function

w(x) = Wα,β(x) =

{
|x |2/β−1(1− |x |2/β)α−1, −1 ≤ x ≤ 1,
0, otherwise,

(1.7)

where α, β > 0. Orthogonality on (0, 1), inspired by results from [29], is considered in Section 4, as well as the corresponding

weighted quadrature formulas of Gaussian type. This kind of orthogonality is connected to the orthogonality on the symmetric
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interval (−1, 1) with respect to the weight function (1.7). A procedure for numerical computation of of the left and right
fractional Riemann-Liouville integrals (1.5), based on weighted Gauss-Christoffel quadrature rules, is proposed in 5. Several

numerical examples are also included in order to demonstrate the numerical efficiency of the proposed procedure.

In some parts of this paper we use the generalized hypergeometric function pFq with p numerator and q denominator parameters

defined by (cf. [28])

pFq

[
α1, . . . , αp

β1, . . . , βq

∣∣∣∣∣ z

]

= pFq[α1, . . . , αp;β1, . . . , βq; z ] =

∞∑

ν=0

(α1)ν · · · (αp)ν
(β1)ν · · · (βq)ν

· z
ν

ν!
, (1.8)

where (α)n (α ∈ C) denotes the Pochhammer symbol, defined by (α)n = α(α+ 1) · · · (α+ n − 1) for n ∈ N and (α)0 = 1.
Using the fundamental functional relation for Euler’s Gamma function, Γ(α+ 1) = αΓ(α), the Pochhammer symbol (α)n can

be written in the form (α)n = Γ(α+ n)/Γ(α) (n ∈ N0). For convergence condition and properties of pFq, we refer [28].

2. Orthogonal Polynomials and Gaussian Quadrature Rules with Respect to the Weight
Function (1.6)

In [8] Bokhari, Qadir, and Al-Attas considered Gauss quadrature rules, as well as Gauss-Radau and Gauss-Lobatto rules, based

on polynomials pn(t) orthogonal on (0, 1) with respect to the linear weight function ω(t) := 1− t. The authors discussed a
development of the corresponding orthogonal polynomials pn(t) via Gaussian hypergeometric differential equation, narrated some

of its properties, derived the three-term recurrence relation for the monic polynomials (see [8, Theorem 2])

pn+1(t) =

(
t − 2(n + 1)

2 − 1
4(n + 1)2 − 1

)
pn(t)−

n(n + 1)

4(2n + 1)2
pn−1(t), n = 0, 1, . . . , (2.1)

where p0(t) = 1 and p−1(t) = 0, and considered several numerical examples of such kind of quadratures.
In a short note we show that these polynomials pn(t) are a special case of the well-known Jacobi polynomials on (0, 1) (see

[25]). Namely, by a change of variables x = 2t − 1 in the classical (monic) Jacobi polynomials P̂ (α,β)n (cf. [23, pp. 131–140]),

we can easily get the monic orthogonal polynomials p
(α,β)
n (t)

(
= 2−nP̂ (α,β)n (2t − 1)

)
orthogonal on (0, 1), with respect to the

weight function t 7→ ω(t) := (1− t)αtβ, α, β > −1, as well as their three-term recurrence relation

p
(α,β)
n+1 (t) = (x − αn)p(α,β)n (t)− βnp(α,β)n−1 (t), n = 0, 1 . . . , (2.2)

with the recursive coefficients






αn =
(2n + α+ β + 1)2 − (1 + α2 − β2)

2 [(2n + α+ β + 1)2 − 1] (n ≥ 0),

βn =
n(n + α)(n + β)(n + α+ β)

(2n + α+ β)2 [(2n + α+ β)2 − 1] (n ≥ 1).
(2.3)

For α = 1 and β = 0, the relation (2.2) reduces to (2.1), i.e., the polynomials pn(t) discussed in [8] can be expressed in terms

of transformed Jacobi polynomials

pn(t) = p
(α,β)
n (t) = 2−nP̂ (α,β)n (2t − 1)

)
.

Several other particular cases were listed in [25].

The relation (2.2) can be also obtained taking the even weight function x 7→ w(x) = |x |γ(1− x2)α on (−1, 1), with γ, α > −1,
and the corresponding generalized Gegenbauer polynomials W

(α,β)
n (x), β = (γ − 1)/2, which were introduced by Laščenov [22]

(see, also, [9, pp. 155–156], [23, pp. 147–148]). Their three-term recurrence relation is

W (α,β)n+1 (x) = xW
(α,β)
n (x)− BnW (α,β)n−1 (x), n = 0, 1, . . . , (2.4)

with the starting polynomials W (α,β)0 (x) = 1 and W (α,β)−1 (x) = 0, and the recursion coefficients

B2n =
n(n + α)

(2n + α+ β)(2n + α+ β + 1)
, (2.5)

B2n−1 =
(n + β)(n + α+ β)

(2n + α+ β − 1)(2n + α+ β) , (2.6)

except α+ β = −1; then B1 = β + 1.
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Remark 2.1 It is interesting that the Laščenov polynomials were rediscovered in 1969 in a M. S. Thesis [30], where the
author considered the weight function 7→ |x |α(1− x2)β on [−1, 1], with α, β > −1 and obtained a compact expression for

the coefficients Bn in the form

Bn =

(
α sin2

(
πn
2

)
+ n
) (
2β + α sin2

(
πn
2

)
+ n
)

(α+ 2β + 2n − 1)(α+ 2β + 2n + 1) , n ≥ 1.

By changing α := γ = 2β + 1 and β := α, we get the formulas (2.5) and (2.6) in a compact unique form

Bn =
1

4
·
[
n + (2β + 1) sin2

(
πn
2

)] [
n + 2α+ (2β + 1) sin2

(
πn
2

)]

(n + α+ β)(n + α+ β + 1)
, n ≥ 1.

Since the weight function w is even on (−1, 1), using Theorems 2.2.11 and 2.2.12 from [23, pp. 102–103], we get (2.2) for
polynomials orthogonal with respect to the weight ω(t) = w(

√
t)/
√
t = tβ(1− t)α, with

α0 = B1 =
β + 1

α+ β + 2
, αn = B2n + B2n+1, βn = B2n−1B2n, n ≥ 1. (2.7)

Now, we consider the weight function x 7→ w(x) = Bα(x) given by (1.6) for arbitrary α > 0 and the corresponding Gaussian
rules ∫

R

f (x)Bα(x) dx =

∫ 1

−1
f (x)(1 − |x |α) dx =

n∑

k=1

A
(n)
k f (x

(n)
k ) +Rn(f ;Bα), (2.8)

for which Rn(p;Bα) = 0 for all polynomials p of degree at most 2n − 1.
This weight function Bα(x) : (−1, 1)→ R+ is an even extension of ω(t) = 1− tα from (0, 1) to (−1, 1). This weight function

Bα(x) for several values of α is presented in Fig. 1.
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Figure 1. Graphics of the weight function x 7→ Bα(x) for α = 1/2, 1, 2, 5, and 100

In order to construct orthogonal polynomials and the corresponding Gauss-Christoffel quadrature rules up to n nodes in our

case we need 2n moments

µk =

∫

R

xkBα(x) dx =






2α

(1 + k)(1 + k + α)
, k (≥ 0) is even,

0, k (≥ 1) is odd.
(2.9)

Using our Mathematica Package OrthogonalPolynomials (see [11], [26]) and executing the following commands (with

n = 50)

¡¡ orthogonalPolynomials‘

mom100=Table[If[OddQ[k],0,2a/((1+k)(1+k+a))], –k,0,99˝];

–al50,be50˝=aChebyshevAlgorithm[mom100,Algorithm -¿ Symbolic];

we obtain the first n = 50 coefficients in the three-term recurrence relation for the corresponding monic

orthogonal polynomials πk(x),

πk+1(x) = xπk(x)− βkπk−1(x), k = 1, 2, . . . , n − 1. (2.10)

4 Copyright c© 2020 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2020, 00 1–21
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Note that αk = 0 for each k, because the weight function x 7→ Bα(x) is even. The obtained coefficients βk
are:

β0 =
2α

α+ 1
, β1 =

α+ 1

3(α+ 3)
, β2 =

4
(
α2 + 6α+ 14

)

15(α+ 3)(α+ 5)
, β3 =

9(α+ 3)2
(
α2 + 10α+ 46

)

35(α + 5)(α + 7) (α2 + 6α+ 14)
,

β4 =
16
(
α6 + 30α5 + 426α4 + 3270α3 + 14094α2 + 33690α + 40694

)

63(α+ 7)(α+ 9) (α2 + 6α+ 14) (α2 + 10α+ 46)
,

β5 =
25(α+ 5)2

(
α2 + 6α+ 14

) (
α6 + 42α5 + 858α4 + 9618α3 + 62766α2 + 238686α + 489254

)

99(α+ 9)(α+ 11) (α2 + 10α+ 46) (α6 + 30α5 + 426α4 + 3270α3 + 14094α2 + 33690α + 40694)
,

etc.

All computations were performed in Mathematica, Ver. 12.1.0, on MacBook Pro (2017), OS Catalina Ver.

10.15.5. The running time for calculating these symbolic coefficients was about 6 minutes, precisely

6′ 28”. If you need less number of coefficients, the running time is drastically shortened. For example,
for the first n = 40 coefficients this time is 1′ 53”, and for n = 20 the corresponding running time is
only 2 seconds. Otherwise, the running times are evaluated by the function Timing in Mathematica and it

includes only CPU time spent in the Mathematica kernel. Because of the use of internal system caches,

this can give different results on different occasions within a session. In order to generate worst-case

timing results independent of previous computations we used the command ClearSystemCache[].

From the obtained symbolic values of the coefficients βk we can easily get values for a particular

weight function x 7→ Bq(x) = 1− |x |q (for α = q), only using a simple command be50/.a-¿q. In the sequel we
give recurrence coefficients for some particular cases:

1◦ The weight function B1(x) = 1− |x| . Here (cf. [25])

β0 = 1, β1 =
1

6
, β2 =

7

30
, β3 =

57

245
, β4 =

683

2793
, β5 =

207725

856482
,

β6 =
286749501

1159331030
, β7 =

286268618986

1164429355245
, β8 =

272609711230510

1097298927604497
,

β9 =
109866276249799238109

444168878154314912774
, β10 =

1230269378984465608526587

4941343738726228807816542
, etc.,

as well as the corresponding orthogonal polynomials:

π0(x) = 1, π1(x) = x, π2(x) = x
2 − 1
6
, π3(x) = x

3 − 2x
5
,

π4(x) = x
4 − 31x

2

49
+
19

490
, π5(x) = x

5 − 50x
3

57
+
109x

798
,

π6(x) = x
6 − 16825x

4

15026
+
2179x2

7513
− 5935

631092
, etc.

2◦ The weight function B1/2(x) = 1−
√
|x| . Here we have

β0 =
2

3
, β1 =

1

7
, β2 =

92

385
, β3 =

287

1265
, β4 =

13328

53751
, β5 =

466015

1946721
,

β6 =
22905388

91754117
, β7 =

243053089027

997174601189
, β8 =

370642573889612096

1481868458865339699
,

β9 =
27501004810753377656257

111881203031704489008087
, β10 =

36457861819188576217704569428

145670826324761099597528838187
,

etc.

3◦ The weight function B2(x) = 1− x2 . Here we obtain

β0 =
4

3
, β1 =

1

5
, β2 =

8

35
, β3 =

5

21
, β4 =

8

33
, β5 =

35

143
, β6 =

16

65
, etc.,

i.e.,

β0 =
4

3
, βk =

k(k + 2)

(2k + 1)(2k + 3)
, k = 1, 2, . . . ,

Math. Meth. Appl. Sci. 2020, 00 1–21 Copyright c© 2020 John Wiley & Sons, Ltd. 5
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because this is a special case of the Gegenbauer weight x 7→ (1− x2)λ−1/2 for λ = 3/2. Otherwise, in this
general case we have (cf. [13, p. 29])

β0 =
√
π
Γ(λ+ 1

2 )

Γ(λ+ 1)
, βk =

k(k + 2λ− 1)
4(k + λ)(k + λ− 1) , k = 1, 2, . . . . (2.11)

Note that by the command Limit[be50,a-¿Infinity] we get

β0 = 2, β1 =
1

3
, β2 =

4

15
, β3 =

9

35
, β4 =

16

63
, β5 =

25

99
, β6 =

36

143
, etc.,

i.e., the recurrence coefficients for the Legendre weight (a special case of (2.11) for λ = 1/2)

β0 = 2, βk =
k2

4k2 − 1 , k = 1, 2, . . . .

In order to construct the n-point Gaussian quadrature rule (2.8) for each n ≤ N, we need first N
coefficients βk, k = 0, 1, . . . , N − 1, i.e., the sequence beta (alpha is a zero sequence, because w(x) is an
even weight function), obtained from the first 2N − 1 moments (2.9). The Gaussian quadrature parameters,
the nodes x

(n)
k and the weight coefficients A

(n)
k , k = 1, . . . , n (the sequences node and weight, respectively),

in the quadrature sum

Qn(f ;w) =

n∑

k=1

A
(n)
k f (x

(n)
k ) (2.12)

can be obtained in the Mathematica Package OrthogonalPolynomials by the command aGaussianNodesWeights,

giving number of points n (n), the recurrence coefficients αk and βk (sequences alpha and beta), as

well as the WorkingPrecision and Precision by numerical parameters WP and PR, respectively (usually we

put PR=WP-5 or PR=WP-10). For example, for α = 1/2, N = 100, by the following commands we obtain the

parameters of the n-point quadrature formula (2.12), for n = 20 and n = 100, with precision of PR =230

decimal digits,

¡¡orthogonalPolynomials‘

mom200=Table[If[OddQ[k],0,2/((1+k)(3+2k))], –k,0,199˝];

–alpha,beta˝=aChebyshevAlgorithm[mom200,Algorithm-¿Symbolic];

nw[n˙]:=aGaussianNodesWeights[n,alpha,beta,WorkingPrecision-¿240, Precision-¿230];

–node20,weight20˝=nw[20]; –node100,weight100˝=nw[100];

Example 2.1 We consider a simple weighted integral on (−1, 1), given by

I = I(F ; 1) = I(f ;w) =

∫ 1

−1

1−
√
|x |

x(x + 1)
sin 4πx dx, (2.13)

with the weight function w(x) = B1/2(x) = 1−
√
|x |. Here

F (x) =
1−

√
|x |

x(x + 1)
sin 4πx and f (x) =

sin 4πx

x(x + 1)
,

and their graphics are presented in Fig. 5.
Its exact value can be expressed in terms of the sine integral function x 7→ Si(x) =

∫ x
0
(sin t/t) dt and the hypergeometric

function 1F2 as

I = 2Si(4π) − Si(8π) − 4π d
dc

{
1F2

(
3/4

3/2 c

∣∣∣∣ −4π
2

)} ∣∣∣∣
c=3/4

,

with the numerical value I = 2.39893583689780749749151598817332198435995 . . . .

For testing a quadrature rule Qn(f ;w) for computing the integral I = I(f ;w) we use the relative error

Err[Qn(f ;w)] =

∣∣∣∣
Qn(f ;w)− I(f ;w)

I(f ;w)

∣∣∣∣ . (2.14)

Because of the critical singularity at the origin x = 0 in the integrand F (x) in (2.13), the standard Gauss-Legendre

quadrature formula cannot be successfully applied in this example, because the convergence of the Gauss-Legendre quadrature
sum Qn(F ; 1) is very slow. In Table 1 we give the relative errors in the Gaussian quadrature sums Qn(F ; 1) (Gauss-Legendre)

for n = 5(5)30, 40, 50, and 100. Numbers in parentheses indicate decimal exponents. As we can see these quadrature sums
give only two exact decimal digits of the integral, even using 100-point Gauss-Legendre rule.

6 Copyright c© 2020 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2020, 00 1–21
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Figure 2. Graphics of the integrand x 7→ F (x) = B1/2(x)f (x) (left) and the function x 7→ f (x) (right)

Table 1. Relative errors Err[Qn(F ; 1)] in Gauss-Legendre sums and Err[Qn(f ;B1/2)] in Gaussian sums of the quadrature rule

Qn(f ;w)

n Err[Qn(F ; 1)] Err[Qn(f ;B1/2)]

5 2.06 3.13(−1)
10 1.45(−1) 1.92(−5)
15 2.08(−1) 8.21(−12)
20 4.12(−2) 1.43(−19)
25 9.57(−2) 2.24(−28)
30 2.18(−2) 5.14(−38)
40 1.40(−2) 2.71(−59)
50 1.00(−2) 1.08(−82)
100 3.54(−3) 1.28(−220)

Alternatively, we now apply the Gaussian quadrature formula constructed for the weight function w(x) = B1/2(x) =

1−
√
|x |.

In the same Table 1 we give the corresponding relative errors err[Qn(f ;B1/2)] computed by (2.14), where the quadrature
sums Qn(f ;w) are given by (2.12) for Gaussian quadrature rule (2.8). We can see that our quadrature formula of Gaussian

type (2.8) with respect to the weight function w(x) = B1/2(x) = 1−
√
|x | converges very fast. With only n = 20 nodes the

obtained result has about 19 exact decimal digits (relative error is of order 10−19), and for n = 100 nodes the number of

exact decimal digits is about 220!

3. Orthogonal Polynomials and Gaussian Quadrature Rules with Respect to the Weight
Function (1.7)

In this section we consider a more general case (1.7), i.e., when

w(x) = Wα,β(x) = |x |2/β−1(1− |x |2/β)α−1, α, β > 0, (3.1)

on [−1, 1]. Evidently, for α = β = 2 it reduces to the weight B1(x) = 1− |x |. For β = 2 and different value
of α, the graphics of x 7→ Wα,2(x) are presented in Fig. 3.
The moments of the general two-parametric even weight function (1.7), i.e., (3.1), are

µk =

∫ 1

−1
xkWα,β(x) dx =






β Γ(α)Γ
(
1 + 1

2
βk
)

Γ
(
1 + α+ 1

2βk
) , k (≥ 0) is even,

0, k (≥ 1) is odd.
(3.2)

As before, the corresponding (monic) orthogonal polynomials πk( · ) ≡ πk( · ;Wα,β) satisfy the three-term
recurrence relation of the form

πk+1(x) = xπk(x) − βkπk−1(x), k = 1, 2, . . . , (3.3)

Math. Meth. Appl. Sci. 2020, 00 1–21 Copyright c© 2020 John Wiley & Sons, Ltd. 7
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Figure 3. Graphics of the weight function x 7→ Wα,2(x) for α = 1/2, 1, 3/2, 2, and 10

with β-coefficients

β0 =
β

α
, β1 =

Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 1)
,

β2 =
Γ(2β + 1)Γ(α+ β + 1)2 − Γ(α+ 1)Γ(β + 1)2Γ(α+ 2β + 1)

Γ(β + 1)Γ(α+ β + 1)Γ(α+ 2β + 1)
,

β3 =
Γ(α+ β + 1)2

[
Γ(β + 1)Γ(3β + 1)Γ(α+ 2β + 1)2 − Γ(2β + 1)2Γ(α+ β + 1)Γ(α+ 3β + 1)

]

Γ(β + 1)Γ(α+ 2β + 1)Γ(α+ 3β + 1) [Γ(2β + 1)Γ(α+ β + 1)2 − Γ(α+ 1)Γ(β + 1)2Γ(α+ 2β + 1)] ,

etc.

Remark 3.1 Because of positivity of β-coefficients for nonnegative weight functions, we conclude that the following
inequalities

Γ(α+ β + 1)

Γ(β + 1)
>

√
Γ(α+ 1)Γ(α+ 2β + 1)

Γ(2β + 1)
and

Γ(α+ 2β + 1)

Γ(2β + 1)
>

√
Γ(α+ β + 1)Γ(α+ 3β + 1)

Γ(β + 1)Γ(3β + 1)

hold for each α, β > 0.

0 20 40 60 80 100
k0.0

0.1

0.2

0.3

0.4

0.5

0.6

βk

0 2� 40 60 8� 1��
k0.0

0.2

0.4

0.6

0��

βk

Figure 4. The recurrence coefficients βk , k = 1, 2, . . . , 99, for polynomials orthogonal on (−1, 1) with respect to the weight functions x 7→ W1/2,1(x) =
|x |/
√
1 − x2 (left) and x 7→ W1/2,1/3(x) = |x |5/

√
1− x6 (right)

These parameters βk were obtained by the routine aChebyshevAlgorithm, with the option Algorithm-¿Symbolic, using
our Mathematica Package OrthogonalPolynomials (see [11], [26]).

In order to get the first N = 5 coefficients in symbolic form it needs 21ms, but for N = 10 this time is about 3 seconds.
Any further increase in the number of coefficients requires an exponential increase in time, e.g. for N = 11, 12, and 13, these
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times are 8”, 24”, and 1′24”, respectively. However, if we decide to use numerical option in aChebyshevAlgorithm, for a
fixed values of α and β, with a given WorkingPrecision (WP), we can construct the recurrence coefficients very fast. For

example, if we take α = 1/2 and β = 1, the first N = 100 recursive coefficients can be obtained with the maximal relative
error of 9.37(−24) in only 63ms, taking WP=80. These coefficients βk , k = 1, 2, . . . , 99, are presented in Fig. 4 (left). We can
see that the sequence {β2k−1} is decreasing, and {β2k} is increasing, but so that lim

k→∞
βk = 1/4.

Remark 3.2 The previous weight function is W1/2,1(x) = |x |/
√
1− x2 is a special case considered by Laščenov [22], whose

recurrence coefficients given by (2.5) and (2.6). Thus, in this case we have

βk =






k(k + 1)

4k2 − 1 , k (≥ 1) is odd,

k(k − 1)
4k2 − 1 , k (≥ 2) is even.

and β0 = 2. This sequence is given by

{βk}∞k=1 =
{
2

3
,
2

15
,
12

35
,
4

21
,
10

33
,
30

143
,
56

195
,
56

255
,
90

323
,
30

133
,
44

161
,
132

575
,
182

675
,
182

783
, . . .

}
.

In the following strong nonclassical case of (3.1), with parameters α = 1/2 and β = 1/3, we have the weight function

W1/2,1/3(x) =
|x |5√
1− x6

. (3.4)

As before, numerical construction of recurrence coefficients by the Mathematica Package OrthogonalPolynomials (see
[11], [26]) is very fast. The first N = 100 recurrence coefficients can be obtained with the maximal relative error of 5.22(−18)
in only 56ms, taking WP=80. These coefficients βk , k = 1, 2, . . . , 99, are presented in Fig. 4 (right).

4. Orthogonality on (0, 1) and Quadrature Formulas for Fractional Integrals

A class of quasi-polynomials orthogonal with respect to the fractional integration operator has been

developed in [29], as well as the related quadrature formulas of Gaussian type. In fact, the authors in

[29] considered the problem of numerical evaluation of the left fractional integral for a = 0 (see (1.5))

0I
α
t f (t) =

1

Γ(α)

∫ t

0

f (τ)(t − τ)α−1 dτ, (4.1)

when t = 1, introducing a family of (monic) β-polynomials

P
(α)
n,β (t) =

n∑

ν=0

c (α,β)n,ν t
νβ (c (α,β)n,n = 1),

orthogonal in the sense that

0I
α
1

(
P (α)n,β P

(α)
m,β

)
= 0, n 6= m. (4.2)

Their result [29] can be expressed in the following form:

Theorem 4.1 There exists a family of β-polynomials P
(α)
n,β (t) ≡ P

(α,β)
n (x), x = tβ, satisfying (4.2). These quasi-polynomials can

be obtained recursively by means of

P
(α,β)
k+1 (x) =

(
x − A(α,β)k

)
P
(α,β)
k (x)− B(α,β)k P

(α,β)
k−1 (x), P

(α,β)
0 (x) = 1, (4.3)

with the recurrence coefficients given by Darboux’s formulas

A
(α,β)
k =

〈xP (α,β)k , P
(α,β)
k 〉w

〈P (α,β)k , P (α,β)k 〉w
, B

(α,β)
k =

〈P (α,β)k , P
(α,β)
k 〉w

〈P (α,β)k−1 , P
(α,β)
k−1 〉w

,

where the inner product 〈 · , · 〉w is defined by (1.1) on (a, b) = (0, 1), with the weight function

w(x ;α, β) =
1

Γ(α)

(1− x1/β)α−1
βx1−1/β

, α, β > 0. (4.4)

Math. Meth. Appl. Sci. 2020, 00 1–21 Copyright c© 2020 John Wiley & Sons, Ltd. 9
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Remark 4.1 In the mentioned paper [29], the authors listed a few first monic orthogonal polynomials (for β = 1):

P
(α)
0,1 (t) = 1, P

(α)
1,1 (t) = t −

1

α+ 1
, P

(α)
2,1 (t) = t

2 − 4t

α+ 3
+

2

(α+ 2)(α + 3)
,

P
(α)
3,1 (t) = t

3 − 9t2

α+ 5
+

18t

(α+ 4)(α+ 5)
− 6

(α+ 3)(α+ 4)(α+ 5)
, . . . ,

as well as a few quasi-polynomials (with different the so-called commensurate order β and α = 1) P (1)n,β (t), i.e., P
(1,β)
n (x)

(x = tβ):

P
(1,β)
0 (x) = 1, P

(1,β)
1 (x) = x − 1

β + 1
, P

(1,β)
2 (x) = x2 − 2(β + 1)x

3β + 1
+

β + 1

(2β + 1)(3β + 1)
,

P (1,β)3 (x) = x3 − 3(2β + 1)x
2

5β + 1
+
3(β + 1)(2β + 1)x

(4β + 1)(5β + 1)
− (β + 1)(2β + 1)

(3β + 1)(4β + 1)(5β + 1)
,

P
(1,β)
4 (t) = t4 − 4(3β + 1)t

3

7β + 1
+
6(2β + 1)(3β + 1)t2

(6β + 1)(7β + 1)
− 4(β + 1)(2β + 1)(3β + 1)t
(5β + 1)(6β + 1)(7β + 1)

+
(β + 1)(2β + 1)(3β + 1)

(4β + 1)(5β + 1)(6β + 1)(7β + 1)
,

etc.

The polynomials P
(α,β)
k (x) from Theorem 4.1 can be connected by polynomials πk( · ) ≡ πk( · ;Wα,β), which

satisfy the three-term recurrence relation (3.3). The weight function x 7→ Wα,β(x) is defined on (−1, 1) by
(3.1).

Theorem 4.2 If the monic orthogonal polynomials πk( · ) ≡ πk( · ;Wα,β), with parameters α, β > 0, satisfy the three-term
recurrence relation (3.3), then

1◦ the polynomials P (α,β)k (x) = π2k
(√
x
)
are orthogonal on (0, 1) with respect to the weight function (4.4), i.e., x 7→

x1/β−1(1− x1/β)α−1, and satisfy the three-term recurrence relation (4.3), with the coefficients given by

A
(α,β)
0 = β1, A

(α,β)
k = β2k + β2k+1, B

(α,β)
k = β2k−1β2k .

2◦ the monic polynomials P̃ (α,β)k (x) = π2k+1
(√
x
)
/
√
x are orthogonal on (0, 1) with respect to the weight function

x 7→ x1/β(1− x1/β)α−1, and satisfy the three-term recurrence relation of the form (4.3), with the corresponding coefficients
given by

Ã
(α,β)
0 = β1 + β2, Ã

(α,β)
k = β2k+1 + β2k+2, B̃

(α,β)
k = β2kβ2k+1.

Proof. See Theorems 2.2.11 and 2.2.12 in [23, pp. 102-103]. �

In special cases given in Remark 4.1, the polynomials P
(α)
n,β (t) for β = 1, as well as ones for α = 1, can

be expressed in the explicit forms.

Corollary 4.1 We have

P
(α)
n,1 (t) = P

(α,1)
n (t) =

n∑

ν=0

(−1)ν ν!

(2n − ν + α)ν

(
n

ν

)2
tn−ν , n = 0, 1, . . . , (4.5)

where (a)ν denotes the Pochhammer symbol defined by

(a)ν =

{
a(a + 1) · · · (a + ν − 1), ν ∈ N;
1, ν = 0.

The corresponding recurrence coefficients are

A(α,1)k =
2k2 + 2αk + α− 1
(2k + α)2 − 1 , k = 0, 1, 2, . . . ,

and

B
(α,1)
0 =

1

Γ(α+ 1)
, B

(α,1)
k =

k2(k − 1 + α)2
(2k − 2 + α)(2k − 1 + α)2(2k + α) , k = 1, 2, . . . .

10 Copyright c© 2020 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2020, 00 1–21
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Proof. In this case the weight function is given by x 7→ (1− x)α−1/Γ(α) on (0, 1). The coefficients A(α,1)k and

B
(α,1)
k can be obtained from (2.3), taking n := k, β := 0, and α := α− 1. In addition,

B
(α,1)
0 =

1

Γ(α)

∫ 1

0

(1− x)α−1 dx = 1

αΓ(α)
.

The expression (4.5) for P
(α,1)
n (t) (= P

(α)
n,1 (t)) can be proved by induction, using the corresponding

three-term recurrence relation. �

In the sequel we need the following auxiliary result:

Lemma 4.1 For n ∈ N, 0 ≤ k ≤ n, and each a ∈ C we have

k∑

ν=0

(−1)νν!
(2n − ν + a)ν

(
k

ν

)(
n

ν

)

=
(n − k + a)k
(2n − k + a)k

, 0 ≤ k ≤ n.

Proof. Using the classical Gauss summation formula from 1812 [4, p. 66] (see also [19, 27]),

2F1

[
α1, α2
β1

∣∣∣∣∣ 1

]

=

∞∑

ν=0

(α1)ν(α2)ν
(β1)ν

· 1
ν!
=
Γ(β1)Γ(β1 − α1 − α2)
Γ(β1 − α1)Γ(β1 − α2)

,

with α1 = −k, α2 = −n, β1 = −2n + 1− a and z = 1, where k, n ∈ N0 and k ≤ n, the previous sum reduces to a
finite sum

k∑

ν=0

(−k)ν(−n)ν
ν!(−2n + 1− a)ν

=
Γ(−2n + 1− a)Γ(−n + k + 1− a)
Γ(−2n + k + 1− a)Γ(−n + 1− a) =

(−n + 1− a)k
(−2n + 1− a)k

.

Since (
k

ν

)

=
(−1)ν
ν!
(−k)ν ,

(
n

ν

)

=
(−1)ν
ν!
(−n)ν , (−2n + 1− a)ν = (−1)ν(2n − ν + a)ν ,

we conclude that the identity
k∑

ν=0

(−1)νν!
(2n − ν + a)ν

(
k

ν

)(
n

ν

)

=
(n − k + a)k
(2n − k + a)k

holds for each 0 ≤ k ≤ n and a ∈ C. �

Corollary 4.2 The recurrence coefficients for the polynomials P
(1,β)
n (x) are

A(1,β)k =
1 + (2k − 1)β + 2k2β2

[1 + (2k − 1)β][1 + (2k + 1)β] , k = 0, 1, 2, . . . ,

and

B
(1,β)
0 = β, B

(1,β)
k =

k2β2[1 + (k − 1)β]2
[1 + (2k − 2)β][1 + (2k − 1)β]2[1 + 2kβ] , k = 1, 2, . . . ,

and its explicit expression can be given in the form

P (1,β)n (x) =

n∑

k=0

(−1)k
(
n

k

)
k∏

ν=1

(n − ν)β + 1
(2n − ν)β + 1 x

n−k , (4.6)

where the empty product (for k = 0) is equal to 1.

Proof. The polynomials P
(1,β)
n (x) are orthogonal with respect to the weight function x 7→ x1/β−1 on (0, 1). If

we make changes t := 1− x and α := 1/β in Corollary 4.1, we get

P (1,β)n (x) = (−1)nP (1/β)n,1 (1− x)

=

n∑

ν=0

(−1)n−ν ν!

(2n − ν + 1/β)ν

(
n

ν

)2
(1− x)n−ν

=

n∑

ν=0

(−1)n−ν ν!

(2n − ν + 1/β)ν

(
n

ν

)2 n−ν∑

k=0

(−1)k
(
n − ν
k

)

xk .
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According to the property
n∑

ν=0

n−ν∑

k=0

Aν,k =

n∑

k=0

k∑

ν=0

Aν,n−k ,

we have

P (1,β)n (x) =

n∑

k=0

(−1)kxn−k
k∑

ν=0

(−1)ν ν!

(2n − ν + 1/β)ν

(
n

ν

)2(
n − ν
n − k

)

=

n∑

k=0

(−1)k
(
n

k

){
k∑

ν=0

(−1)ν ν!

(2n − ν + 1/β)ν

(
k

ν

)(
n

ν

)}

xn−k

The expression in curly braces S
(n)
k (β) becomes

S
(n)
k (β) =

k∑

ν=0

(−1)νν!
(
k

ν

)(
n

ν

)
1

(2n − ν + 1/β)ν
.

Using Lemma 4.1 (with a = 1/β) we obtain that

S
(n)
k (β) =

(n − k + 1/β)k
(2n − k + 1/β)k

=

k∏

ν=1

(n − ν)β + 1
(2n − ν)β + 1 ,

and for k = 0, S(n)0 (β) = 1. This proves (4.6).

Using the recurrence relation (4.3) and the property

P
(1,β)
k (x) = (−1)kP (1/β,1)k (1− x),

as well as Corollary 4.1 we obtain A
(1,β)
k = 1− A(1/β,1)k and B

(1,β)
k = B

(1/β,1)
k . �

4.1. The case (4.1) for α = β = 1/2

For these parameters the weight function becomes

w
(
x ; 1
2
, 1
2

)
=
2√
π
· x√
1− x2

, (4.7)

where the numerical factor 2/
√
π is not important, and it will be omitted in the sequel. This is one-side

variant of the even weight function W1/2,1(x) considered in Remark 3.2.

The moments of the weight function (4.7) are

µk =

∫ 1

0

xkw
(
x ; 12 ,

1
2

)
dx =

Γ
(
k
2 + 1

)

Γ
(
k+3
2

) =






2k+1

(k + 1)
(
k
k/2

)√
π
, k (≥ 0) is even,

√
π
(

k
(k−1)/2

)

2k
k (≥ 1) is odd,

i.e.,

{
2√
π
,

√
π

2
,
4

3
√
π
,
3
√
π

8
,
16

15
√
π
,
5
√
π

16
,
32

35
√
π
,
35
√
π

128
,
256

315
√
π
,
63
√
π

256
,
512

693
√
π
,
231
√
π

1024
,
2048

3003
√
π
, . . .

}
.

For the corresponding recurrence coefficients, using the Mathematica Package OrthogonalPolynomials (see

[11], [26]), we obtain

α0 =
π

4
, α1 =

π
(
3π2 − 28

)

4 (32− 3π2) , α2 =
π
(
34816− 7524π2 + 405π4

)

4 (32− 3π2) (2048 − 207π2) ,

α3 =
9π
(
822083584 − 270065664π2 + 29416500π4 − 1063125π6

)

4 (8388608 − 1549440π2 + 70875π4) (207π2 − 2048) ,

α4 =
3πA

4 (8388608 − 1549440π2 + 70875π4) (137438953472 − 27709286400π2 + 1396591875π4) , . . . ,
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where

A = 133559876449206272 − 58302647186227200π2 + 9499436559360000π4

− 685081896187500π6 + 18460501171875π8 ,

and

β0 =
2√
π
, β1 =

1

48

(
32− 3π2

)
, β2 = −

207π2 − 2048
15 (3π2 − 32)2

,

β3 = −
3
(
3π2 − 32

) (
8388608 − 1549440π2 + 70875π4

)

560 (207π2 − 2048)2
,

β4 = −
(
207π2 − 2048

) (
137438953472 − 27709286400π2 + 1396591875π4

)

21 (8388608 − 1549440π2 + 70875π4)2
,

etc. For constructing the first 20 (50) recurrence coefficients in symbolic form, using our Mathematica

package OrthogonalPolynomials, we need 0.6 (40.7) seconds.

However, in numerical mode this construction is very fast. For constructing the first 50 recurrence

coefficients with about 22 exact decimal digits, i.e., when the maximal relative error in these

coefficients

max
0≤k≤49

{∣∣∣∣
αk − α̂k
α̂k

∣∣∣∣ ,

∣∣∣∣∣
βk − β̂k
β̂k

∣∣∣∣∣

}

≈ 5.82× 10−23,

we need the WorkingPrecision (WP=80) and only 16 ms. Here the exact values of the desired recurrence

coefficients are denoted by α̂k and β̂k and their values can be obtained using the same procedure, but

with the higher working precision WP1 (e.g., with WP1=2 WP). If we use WP=100, then we obtain recurrence

coefficients with maximal relative error 4.90× 10−43.

5. Numerical Computation of Fractional Riemann-Liouville Integrals

In this section we return to the fractional integral (4.1)

0I
α
t f (t) =

1

Γ(α)

∫ t

0

f (τ)(t − τ)α−1 dτ, α > 0, (5.1)

Following [29] we reduce (5.1) to an integral on (0, 1), taking transformation τ = tx1/β, β > 0, so that we

get the weighted integral

0I
α
t f (t) =

tα

βΓ(α)

∫ 1

0

f
(
tx1/β

)
x1/β−1(1− x1/β)α−1 dx,

i.e.,

0I
α
t f (t) = t

α

∫ 1

0

f
(
tx1/β

)
w(x ;α, β) dx, α, β > 0, (5.2)

where the weight function x 7→ w(x ;α, β) is given by (4.4).
The fractional integral (5.1), i.e., (5.2), can be approximated by the weighted Gaussian quadrature sum

0I
α
t f (t) ≈ tα

n∑

k=1

An,k(w)f
(
tξn,k(w)

1/β
)
, (5.3)

where the nodes and the weights, ξn,k(w) and An,k(w), k = 1, . . . , n, depend on the two-parametric weight

function x 7→ w(x ;α, β), and they can be constructed using our Mathematica package OrthogonalPolynomials
as it is explained in Section 2, immediately before Example 2.1.

This procedure, in general, can be successfully applied to the both fractional Riemann-Liouville

integrals given by (1.5), i.e.,

aI
α
t f (t) =

1

Γ(α)

∫ t

a

(t − τ)α−1f (τ) dτ t > a, (5.4)

and

t I
α
b f (t) =

1

Γ(α)

∫ b

t

(τ − t)α−1f (τ) dτ t < b. (5.5)
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For the first of them, the so-called left fractional Riemann-Liouville integral (5.4), after using the

change of variables τ = a + (t − a)x, and after that x := x1/β, where β > 0, the integral (5.4) reduces to

aI
α
t f (t) =

(t − a)α
Γ(α)

∫ 1

0

(1− x)α−1f (a + (t − a)x dx

=
(t − a)α
βΓ(α)

∫ 1

0

x1/β−1(1− x1/β)α−1f
(
a + (t − a)x1/β

)
dx

=

∫ 1

0

Fa(x ; t, α, β)w(x ;α, β) dx, α, β > 0,

where the weight function x 7→ w(x ;α, β) is the same as in (5.2) defined by (4.4), and

Fa(x ; t, α, β) = (t − a)αf
(
a + (t − a)x1/β

)
. (5.6)

The right fractional Riemann-Liouville integral (5.5), in a similar way, can be reduced to the

following form

t I
α
b f (t) =

∫ 1

0

Fb(x ; t, α, β)w(x ;α, β) dx, α, β > 0, (5.7)

where

Fb(x ; t, α, β) = (b − t)αf
(
b − (b − t)x1/β

)
. (5.8)

Then the following result is obviously valid.

Theorem 5.1 Let w(x) ≡ w(x ;α, β) = (βΓ(α))−1x1/β−1(1− x1/β)α−1, α, β > 0, with the moments

µk =

∫ 1

0

xkw(x ;α, β) dx =
Γ(βk + 1)

Γ(α+ βk + 1)
, k = 0, 1, . . . . (5.9)

For each n ∈ N there exists a unique quadrature formula of maximal degree of precision 2n − 1 (the Gauss-Christoffel rule),

I[ϕ;w ] =

∫ 1

0

ϕ(x)w(x ;α, β) dx = Qn(ϕ;w) +Rn(ϕ;w), (5.10)

where

Qn(ϕ;w) =

n∑

k=1

An,k(α, β)ϕ
(
ξn,k(α, β)

)
, (5.11)

with the nodes ξk = ξn,k(α, β), k = 1, . . . , n, which are eigenvalues of the Jacobi matrix (1.3) associated with the weight

function x 7→ w(x ;α, β) and Ak = An,k(α, β), k = 1, . . . , n, are the corresponding Christoffel numbers. The remainder term
Rn(x

k ;w) = µk −Qn(xk ;w) = 0 for each k = 0, 1, . . . , 2n − 1.
Then for the fractional Riemann-Liouville integrals (5.4) and (5.5) we have

aI
α
t f (t) = Qn (Fa( · ; t, α, β);w) + Rn(Fa;w) (5.12)

and

t I
α
b f (t) = Qn (Fb( · ; t, α, β);w) +Rn(Fb;w) (5.13)

for each n ∈ N, where the functions Fa and Fb are given by (5.6) and (5.8), while Rn(Fa;w) and Rn(Fb;w) are the corresponding
remainder terms.

For each f ∈ C[a, b] the sequences of quadrature sums {Qn (Fa( · ; t, α, β);w)}∞n=1 and {Qn (Fb( · ; t, α, β);w)}∞n=1
converge to aI

α
t f (t) and t I

α
b f (t), respectively, and their rate of convergence is determined by the

properties of the function f . Error estimates of Gaussian rules for some important classes of functions

and the rate of convergence of corresponding quadrature sums can be found in [23, §5.1.5].

Selecting the parameter β we can remove a critical singularity in the origin (if any) and accelerate

the convergence of the quadrature sums in the previous approximation. In Subsection 5.1 we give a few

numerical examples in order to illustrate this effect.

Some improvements in the approximation of fractional Riemann-Liouville integrals can be achieved by

applying the Radau quadrature formula instead of the Gauss-Christoffel formula (5.11).
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Theorem 5.2 As in Theorem 5.1, let w(x) ≡ w(x ;α, β) be a weight function with the moments µk given by (5.9). Let

w0(x) = xw(x ;α, β) and w1(x) = (1− x)w(x ;α, β)

be weight functions, with the moments µ(0)k = µk+1 and µ
(1)
k = µk − µk+1, respectively. Then for each n ∈ N there exist the

Gauss-Christoffel rules ∫ 1

0

ϕ(x)wν(x) dx = Qn(ϕ;wν) + Rn(ϕ;wν) (ν = 0, 1),

with quadrature sums and Gaussian parameters (nodes and weights)

Qn(ϕ;wν) =

n∑

k=1

A
(ν)
k ϕ

(
ξ
(ν)
k

)
, ξ

(ν)
k = ξ

(ν)
n,k(α, β), A

(ν)
k = A

(ν)
n,k(α, β) (ν = 0, 1),

as well as the Radau quadrature rules for the weighted integral (5.10) of the algebraic degree of exactness 2n,

I[ϕ;w ] =

∫ 1

0

ϕ(x)w(x) dx = Q(ν)n (ϕ) + R
(ν)
n (ϕ;w) (ν = 0, 1),

where

Q(0)n (ϕ) = B0ϕ(0) +

n∑

k=1

Bkϕ
(
ξ
(0)
k

)
and Q(1)n (ϕ) =

n∑

k=1

Ckϕ
(
ξ
(1)
k

)
+ C0ϕ(1),

with quadrature parameters

Bk =
A
(0)
k

ξ(0)k
(k = 1, 2, . . . , n), B0 = µ0 −

n∑

k=1

Bk

and

Ck =
A
(1)
k

1− ξ(1)k
(k = 1, 2, . . . , n), C0 = µ0 −

n∑

k=1

Ck .

R
(ν)
n (ϕ;w), ν = 0, 1, are the corresponding remainder terms.

Then for the fractional Riemann-Liouville integrals (5.4) and (5.5) we have

aI
α
t f (t) = Q

(1)
n (Fa( · ; t, α, β);w) +R(1)n (Fa;w) (5.14)

and

tI
α
b f (t) = Q

(0)
n (Fb( · ; t, α, β);w) + R(0)n (Fb;w) (5.15)

for each n ∈ N, where the functions Fa and Fb are given by (5.8) and (5.6), while R(1)n (Fa;w) and R(0)n (Fb;w) are the
corresponding remainder terms.

Theorems 5.1 and 5.2 give two efficient procedures for numerical computation of the left and right

fractional Riemann-Liouville integrals.

5.1. Numerical examples

In order to illustrate the efficiency of our method for calculating fractional Riemann-Liouville

integrals we give a few examples. With QS
(α,β)
n [f ; t] we denote one of the quadrature sums obtained by

quadrature formulas (5.12), (5.13), (5.14), and (5.15), with respect to the weight function x 7→ w(x ;α, β)
on [0, 1] defined by (4.4).

In all examples we calculate the relative errors as in (2.14),

Err
(α,β)
n f (t) =

∣∣∣∣∣
QS(α,β)n [f ; t]− I[f ; t]

I[f ; t]

∣∣∣∣∣ (a ≤ t ≤ b), (5.16)

where I[f ; t] is the exact value of one of the fractional integrals aI
α
t f (t) and t I

α
b f (t), given by (5.4) and

(5.4), respectively. We calculate the relative errors (5.16) at the selected points

t = tν = a + (b − a)
ν

100
, ν = 0, 1, 2, . . . , 100,

taking the n-point quadrature rule. We usually in our examples show every fifth point in the graphics or

give it as a continuous curve by connecting all the points.
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Example 5.1 We consider the left fractional integral (5.1), with a function as in [29], i.e., when

f (t) = eterfc
(√
t
)
= E1/2,1

(
−
√
t
)
, (5.17)

whose exact solution can be obtained by using the Laplace transform. Here, z 7→ erfc(z) = 1− erf(z) is the so-called

complementary error function of the integral of the Gaussian distribution

erf(z) =
2√
π

∫ z

0

e−t
2

dt,

and Eα,β(z) is two-parametric Mittag-Leffler function [17, Chapter 4], [18, p. 42] (see also [3]), defined by

Eα,β(z) =

∞∑

k=0

zk

Γ(αk + β)
.

Applying the Laplace transform to the convolution integral (5.1) we get

L[0I
α
t f (t)] =

1

Γ(α)
L
[
f (t) ⋆ tα−1

]
=

1

Γ(α)
· 1√
s + s

· Γ(α)
sα
=

1

sα+1/2(1 +
√
s)
,

from which the exact fractional integral is given by

0I
α
t f (t) = L

−1
[

1

sα+1/2(1 +
√
s)

]
=
tα − etΓ(α+ 1, t)

Γ(α+ 1)
+
etΓ
(
α+ 1

2
, t
)

Γ
(
α+ 1

2

) , (5.18)

where Γ(a, z) =
∫∞
z
ta−1e−t dt denotes the incomplete gamma function. The graphics of the fractional integral (5.18) as a

function of t on [0, 1] for three different values of α = 1/4, 1/2, and 1, are presented in Figure 5 (left).
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Figure 5. (Left) The fractional integral 0Iαt (f ) for f (t) = e
t erfc(

√
t), when α = 1/4, 1/2, and 1; (Right) Relative errors in approximation by the Gauss and the

Radau quadrature formula (in log-scale), for α = 1/4, β = 1/2 and n = 5 nodes, when 0 ≤ t ≤ π/2

Now, we apply the Gaussian quadrature formula (5.12) (from Theorem 5.1) for numerical calculating 0I
α
t (f ).

From the series expansion of the function z 7→ f (z), given by (5.17), at the origin z = 0,

f (z) = 1− 2
√
z√
π
+ z − 4z

3/2

3
√
π
+
z2

2
− 8z

5/2

15
√
π
+
z3

6
+O

(
z7/2

)
,

we conclude that there is a critical singularity at z = 0 of these function, and it can slow down the convergence of the
quadrature process (5.12), because this singularity is appeared also at x = 0 of the function x 7→ F0(x ; t, α, β) (a = 0),
defined by (5.6), except certain cases when β takes some special values.

The corresponding series expansion in x of the function Fa is given by

x 7→ F0(x ; t, α, β) = tαf
(
tx1/β

)
= tαetx

1/β

erfc
(√
t x1/β

)

= tα

(

1− 2
√
t

π
x1/(2β) + t x2/(2β) − 4t

3

√
t

π
x3/(2β) +

t2

2
x4/(2β) − 8t

2

15

√
t

π
x5/(2β) +O(x6/(2β))

)

.
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Putting 2β = 1/m, where m ∈ N, we obtain the following series expansion of (5.6) in x (free of singularity)

x 7→ F0
(
x ; t, α,

1

2m

)
= tα

(

1− 2
√
t

π
xm + t x2m − 4t

3

√
t

π
x3m +

t2

2
x4m − 8t

2

15

√
t

π
x5m +O(x6m)

)

. (5.19)

This requires the weight function

x 7→ w
(
x ;α,

1

2m

)
=
2m

Γ(α)
x2m−1(1− x2m)a−1 (m ∈ N),

whose moments are given by

µ
(m)
k =

∫ 1

0

xkw
(
x ;α,

1

2m

)
dx =

Γ
(
k
2m + 1

)

Γ
(
a + k

2m
+ 1
) , k = 0, 1, . . . .

The simplest case is for m = 1, i.e., when β = 1/2, and then the weight function

x 7→ w(x ;α, 1/2) = 2

Γ(α)
x(1− x2)a−1,

is the simplest, whose moments are given by

µk = µ
(1)
k =

∫ 1

0

xkw
(
x ;α, 1

2

)
dx =

Γ
(
k
2
+ 1
)

Γ
(
a + k

2 + 1
) , k = 0, 1, . . . .

The case α = β = 1/2 is considered in Subsection 4.1.

For this choice of β (= 1/2) the convergence of the quadrature process (5.12) (Theorem 5.1) is very fast. Taking only
n = 5 nodes in the quadrature sum Qn (F0( · ; tν , α, 1/2);w) (tν = ν/100, ν = 0, 1, . . . , 100), for α = 1/4, 1/2 and 1, we

obtain numerical values of 0I
α
t f (tν). Each fifth point in the corresponding graphics in Figure 5 (left) is displayed, and show a

good match with the exact values. Interpolation curves for the relative errors (5.16) of all evaluated points for α = 1/4, i.e.,
t 7→ Err(1/4,1/2)5 f (t), 0 ≤ t ≤ 1, is presented in Figure 5 (right). However, an application of the Radau quadrature rule (5.14)
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Figure 6. Relative errors t 7→ Err(1/4,1/2)n f (t) (in log-scale), obtained by Gauss-Christoffel and Radau rules for n = 5, 10, 15, and 20 nodes (left); Relative errors

t 7→ Err(1/2,1)n f (t) (in log-scale) obtained by the Gauss-Christoffel rule for n = 5, 10, 15, 20 (right)

(Theorem 5.2), with also n = 5 points, gives better approximation t 7→ Q(1)5 (F0( · ; t, 1/4, 1/2);w) of the considered fractional

integral and it is presented in the same figure. Both of these graphics for relative errors t 7→ Err(1/4,1/2)n f (t), obtained by
the Gauss-Christoffel rule Qn (F0( · ; t, 1/4, 1/2);w) and the Radau rule Q(1)n (F0( · ; t, 1/4, 1/2);w), are presented in Figure

6 (left) for n = 5, 10, 15, and 20 nodes. By comparing the obtained results, we can conclude that for each number of nodes
n, the Radau rule gives a more accurate approximation for about two orders of magnitude in relation to the Gaussian

approximation. Very similar situation is for other values of α.
However, if we take the parameter β 6= 1/2, the convergence of quadrature sums QS(α,β)n [f ; t], obtained by Gaussian and

Radau rules, are significantly slower. Relative errors in the Gaussian approximation for α = 1/2, β = 1, and n = 5, 10, 15, 20,

are displayed in Figure 6 (right). Similarly, for β = 1/3 and 1/4, the corresponding graphics are presented in Figure 7 for
the same value of α.

As we can see, in the case when β = 1/4 (m = 2) the convergence is faster, but not as in the previous case for β = 1/2
(m = 1), when the n-point quadrature formula integrates exactly the first 2n terms in the expansion (5.19), i.e., all ones with
degree at most 2n − 1. However, for m = 2, such a formula integrates exactly only the first n terms in

x 7→ F0
(
x ; t, α,

1

4

)
= tαf

(
tx4
)
= ta

(

1− 2
√
t

π
x2 + tx4 − 4t

3

√
t

π
x6 +

t2

2
x8 − 8t

2

15

√
t

π
x10 +O(x12)

)

,
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Figure 7. Relative errors t 7→ Err(1/2,β)n f (t) (in log-scale), obtained by the Gauss-Christoffel rule with n = 5, 10, 15, 20 nodes, when the parameter β = 1/3 (left)

and β = 1/4 (right)

because 0 ≤ 2ν < 2n − 1 gives 0 ≤ ν ≤ n − 1. This means that for β = 1/4 (m = 2) the relative error in quadrature rule
with 2n nodes is of the same order as the error with n nodes for β = 1/2 (m = 1).

Example 5.2 Now we consider the right fractional Riemann-Liouville integral (5.5) with b = π and f (t) = sin(t), i.e.,

t I
α
π f (t) =

1

Γ(α)

∫ π

t

(τ − t)α−1 sin(τ) dτ, t < π,

whose the exact value can be expressed in terms of hypergeometric function 1F2 as

t I
α
π f (t) =

(π − t)a
Γ(a + 2)

{

(a + 1) sin(πt) 1F2

[
a
2

1
2 ,
a+2
2

∣∣∣∣∣ −
1

4
π2(π − t)2

]

+ πa(π − t) cos(πt) 1F2
[

a+1
2

3
2 ,
a+3
2

∣∣∣∣∣ −
1

4
π2(π − t)2

]}

.

In order to apply our procedure to numerical calculation of this integral, according to (5.7), we use the function Fb defined

by x 7→ Fb(x ; t, α) = (π − t)α sin(π − (π − t)x) = (π − t)α sin((π − t)x) and the weight function x 7→ w(x ;α, 1). In this case
we expect fast convergence of the quadrature process because the function x 7→ Fb is entire for β = 1.
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Figure 8. (Left) The fractional integral t Iαπ (f ) for f (t) = sin(t), when α = 1/4, 1/2, and 1; (Right) Relative errors in quadrature approximation (in log-scale),

for α = 1/4, when number of quadrature nodes are n = 5, 10, 15, and 20

In Figure 8 (left) we present graphics of the exact values of the right fractional Riemann-Liouville integral t I
α
π sin(t) for

α = 1/4, 1/2, and 1, as well as values obtained numerically by quadrature formula (5.13) with n = 5 nodes. The corresponding
relative errors (in log-scale) in the Gaussian quadrature sums (5.13) for n = 5, 10, 15 and 20 nodes are presented for α = 1/4

in Figure 8 (right). The behaviour of relative errors for other values of α are very similar to the previous one. As we can
see, the quadrature process converges very fast to t I

α
π sin(t) for each 0 ≤ t ≤ π, in particular for larger t. For example, for

only n = 5 nodes the relative error for t = 0 is 7.75× 10−8, i.e., the obtained result has at least seven exact decimal digits,

while for t near π this number of exact digits is near 30. But, if we take n = 20 nodes, the relative error for t = 0 is even
2.56× 10−52.

An improvement can be obtained using the corresponding Radau quadrature (5.15) by adding a node at x = 0.
The comparison with the Gaussian formula for n = 5 and 0 ≤ t ≤ π/2 is presented in Figure 9 (left), when the Radau
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approximation gives at least nine decimal digits for t < 0.1 and more than ten digits for larger t. Comparisons for bigger
number of nodes n are presented in the same figure (right). Note that the Radau modification (5.15) does not require a

calculation in the added node x = 0, because for b = π, Fπ(0; t;α) = (π − t)αf (π) = 0.
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Figure 9. Relative errors in approximation by the Gauss and the Radau quadrature formula (in log-scale), for α = 1/4, β = 1, and n = 5, 0 ≤ t ≤ π/2 (left)
and for n = 5, 10, 15, and 20, 0 ≤ t ≤ π (right)

Example 5.3 We take now f (t) = sin(π
√
t), for which L[f (t)] = 1

2 (π/s)
3/2e−π

2/(4s), so that

0I
α
t f (t) =

π3/2tα+
1
2

2Γ
(
a + 3

2

) 0F1
(
; a +

3

2
;−π

2t

4

)
, (5.20)

where 0F1 is confluent hypergeometric function defined by

0F1

[
−
b

∣∣∣∣∣ z

]

=

∞∑

k=0

1

(b)k
· z
k

k!
.

This function is closely related to the Bessel function, so that (5.20) becomes

0I
α
t f (t) = 2

α− 12π1−αt
1
2 (α+

1
2 )Jα+ 12

(
π
√
t
)
, (5.21)

and it is presented in Figure 10 (left) for α = 1/4, 1/2, and 1.
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Figure 10. (Left) The fractional integral 0Iαt (f ) for f (t) = sin(π
√
t), when α = 1/4, 1/2, and 1; (Right) Relative errors in Gaussian and Radau quadrature

approximations (in log-scale), for α = 1/4, β = 1/2, when number of quadrature nodes are n = 5, 10, 15, and 20

According to the expansion

sin(π
√
t) =

√
t
(
π − π

3t

6
+
π5t2

120
+O

(
t3
))
,

we conclude that the function x 7→ F0
(
x1/β ; t, α

)
= tαf

(
tx1/β

)
becomes an entire function if we take β = 1/2, 1/4, etc., but

the largest value of this parameter is most appropriate, because of facts analyzed in Example 5.1. In this case, the weight

Math. Meth. Appl. Sci. 2020, 00 1–21 Copyright c© 2020 John Wiley & Sons, Ltd. 19
Prepared using mmaauth.cls



Mathematical
Methods in the
Applied Sciences G. V. Milovanović

Table 2. Relative errors in quadrature sums obtained by n-point Gauss-Christoffel (GC) and Radau (R) rules in some selected

values of t ∈ [0, 1] for α = 1/4 and β = 1/2

n rule t = 0.01 t = 0.05 t = 0.1 t = 0.2 t = 0.3 t = 0.5 t = 0.8 t = 1.0

5 GC 7.47(−19) 2.41(−15) 8.07(−14) 2.83(−12) 2.38(−11) 3.89(−10) 6.82(−9) 3.81(−8)
R 3.71(−20) 1.15(−16) 3.64(−15) 1.13(−13) 8.13(−13) 8.53(−12) 4.28(−12) 6.20(−10)

10 GC 8.96(−42) 9.08(−35) 9.76(−32) 1.11(−28) 7.12(−27) 1.52(−24) 2.90(−22) 5.05(−21)
R 2.24(−43) 2.18(−36) 2.23(−33) 2.25(−30) 1.26(−28) 1.86(−26) 7.96(−25) 2.28(−23)

15 GC 7.07(−67) 2.24(−56) 7.71(−52) 2.81(−47) 1.38(−44) 3.81(−41) 7.68(−38) 4.13(−36)
R 1.18(−68) 3.59(−58) 1.18(−53) 3.83(−49) 1.65(−46) 3.22(−43) 1.90(−40) 8.55(−39)

20 GC 2.01(−93) 1.99(−79) 2.20(−73) 2.56(−67) 9.57(−64) 3.42(−59) 7.26(−55) 1.20(−52)
R 2.51(−95) 2.40(−81) 2.52(−75) 2.64(−69) 8.67(−66) 2.21(−61) 1.53(−57) 1.42(−55)

function in (5.2) is also the simplest, i.e., w(x ;α, 1/2). Using this weight function and Gaussian quadrature (5.11) with only

n = 5 nodes we obtain approximative numerical values of 0I
α
t f (tν), ν = 1, 2, . . . , 100. Each fifth point in the corresponding

graphics in Figure 10 (left) is displayed, and show a good match with the exact values.
Interpolation curves for the relative errors (5.16) of all evaluated points for α = 1/4, i.e., t 7→ Err(1/4,1/2)n f (t) (0 ≤ t ≤ 1)

for n = 5, 10, 15 and 20 nodes in the quadrature sums obtained by Gauss-Christoffel rule (5.12) and Radau rule (5.14) are
presented in Figure 10 (right). In Table 2 we give numerical values of the corresponding relative errors in some selected points

of t ∈ [0, 1]. Obviously, Radau’s quadrature formula gives better results (with smaller relative errors), which we pointed out
earlier.

6. Conclusion

In addition to the development of several classes of orthogonal polynomials and corresponding

Gaussian-type quadrature formulas with specially selected weight functions on a finite interval, in this

the paper we present two efficient methods for numerical calculation of the left and right fractional

Riemann-Liouville integrals. By a few examples we illustrate the efficiency of the proposed numerical

procedures.
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23. Mastroianni, G., Milovanović, G.V., Interpolation Processes - Basic Theory and Applications, Springer Monographs

in Mathematics, Berlin - Heidelberg: Springer - Verlag, 2008.
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