
 1

Generic mathematical formulations for scheduling of multipurpose batch plants

Nikolaos Rakovitis,1 Yueting Pan,1 Nan Zhang,1 Jie Li,1,* and Giorgos Kopanos2

1Centre for Process Integration, Department of Chemical Engineering and Analytical Science, The

University of Manchester, Manchester, M13 9PL, United Kingdom
2Flexciton Limited, London, 145 City Rd, Hoxton, London EC1V 1AZ

Abstract

In this work, we develop two generic mixed-integer linear programming formulations for scheduling

of multipurpose batch plants using the unit-specific event-based modelling approach. While related

non-recycling production and consumption tasks are allowed to take place at the same event points

but in different real time in the first model, they are not allowed in the second model. We also

introduce the concept of indirect and direct material transfer, which allows to conditionally align the

operational sequence of related production and consumption tasks. Processing units are able to hold

materials previously produced over multiple event points. The computational results demonstrate that

the proposed models do not require a task to span over multiple event points to generate the optimal

solution. As a result, the proposed models are able to generate the same or better solutions with up to

one order of magnitude less computational time compared to the existing models.

Keywords: Scheduling, Multipurpose batch processes, mixed-integer linear programming, unit-

specific event-based approach

* To whom correspondence should be addressed. Email: jie.li-2@manchester.ac.uk. Tel: +44 (0) 161 306 8622

 2

1 Introduction

Multipurpose batch plants widely exist in the chemical industry for the production of a large number

of low-volume, high-value products. To achieve higher utilization of resources, lower inventory costs

and better responsiveness to a fluctuating manufacturing environment, optimal scheduling of the

multipurpose facilities is desirable and has attracted much interest of both academia and industry in

the past decades. Many mathematical formulations have been developed using either the State Task

Network (STN) representation1 or the Resource Task Network (RTN) representation2. These models

can be classified based on the time representation of the scheduling horizon into discrete-time and

continuous-time representations. The discrete-time representation divides the scheduling horizon into

time intervals with fixed and known length. The time intervals can either be or non-uniform3 within

the scheduling horizon, and a task or activity can only start and finish at these time intervals. The

continuous-time representation uses time points, slots, or event points to divide the scheduling

horizon with a variable and unknown length. It can be further classified into global event-based4-6,

slot-based including process-slot based7-8 and unit-slot based8-9, unit-specific event-based10-17 and

sequence-based18-20 time representations. These mathematical models are also classified into single-

and multiple- time grid mathematical models21. For more details about these time representations, the

reader can be referred to22-24, which provide excellent reviews for scheduling in chemical industries.

 All existing time-grid mathematical models divide the scheduling horizon using time

points/slots/event points on which a task or activity can both start and finish. Therefore, the number

of time points/slots/event points required directly affects the efficiency of the existing mathematical

models. More specifically, an increase in the total time points/slots/event points can lead to an

exponential increase in the number of binary variables, continuous variables and constraints. This can

potentially increase the computational time by at least one order of magnitude is required to generate

the optimal solution. Some task must be allowed to span over multiple time points/slots/event points

to generate the optimal solution, which further increases the computational burden. The capabilities

of the unit-specific event-based formulations are well established in the literature11-12, 17. However,

they still require excessive computational time for industrial-scale problems due to unnecessary event

points required to generate the optimal solution. The main possible reason is that most existing unit-

specific event-based formulations unconditionally impose that a consumption task starts after its

related production tasks (with the same states) even if the consumption task does not consume

materials from the related production tasks, or there is enough storage available.

 Two works14-15 in the literature have attempted to relax such unconditional alignment. Seid and

Majozi14 investigated whether consumption tasks consume materials from storage tanks and whether

materials produced by production tasks can be stored in the storage tanks. For the former case, if there

are not enough materials in the storage tanks for all consumption tasks, then the unconditional

 3

sequencing of all related production and consumption tasks are imposed. In the latter case, if a

production task produces materials that cannot be stored in the storage tanks, then all related

production and consumption tasks should be unconditionally aligned. The problem of unconditional

sequencing of related production and consumption tasks even if the consumption task does not

consume any materials from the production task is still not addressed. Furthermore, they did not

consider to conditionally align a production task with a related consumption task, if the producing

materials can be stored in storage tanks. Additionally, their formulation can generate schedules with

a real-time violation, as demonstrated by Vooradi and Shaik15. To address these issues, Vooradi and

Shaik15 explicitly examined if a consumption task consumes materials from a specifically related

production task or if there is enough storage for materials produced by a specific production task.

They sequenced a production task with a related consumption task only if the consumption task

consumes materials from the production task. Additionally, they aligned a production task with a

related consumption task only if storage tanks cannot store the materials from a specific production

task. With this approach, they have managed to further reduce the number of event points in

comparison to the model of Seid and Majozi14, while they avoided generating a solution with a real-

time violation. However, Vooradi and Shaik15 used an increased number of binary variable sets to

denote whether tasks have to be sequenced or aligned during an event point in their model, leading

to computational inefficiency. Most of the existing models fail to generate the optimal solution in

some cases, especially when the materials have to be temporarily stored in processing units, as

illustrated later.

 In this work, we develop two generic mixed-integer linear programming formulations for

scheduling of multipurpose batch plants using the unit-specific event-based modelling approach.

While we follow the approach of Rakovitis et al17 to allow all related non-recycling production and

consumption tasks to take place at the same event points but in different real times in the first model,

we do not allow all related non-recycling production and consumption tasks to take place at the same

event points in the second model. We also introduce the concept of indirect and direct material

transfer, which allows us to conditionally and unconditionally align the operational sequences of

related production and consumption tasks. More specifically, production and consumption tasks

related to the same state are sequenced if there is an indirect material transfer between the units that

are processing these tasks, while we align them if there is a direct material transfer between these

units. Additionally, we allow the processing units to hold materials that are previously produced from

these units over multiple event points. Nonsimultaneous material transfer8 is also allowed in both

models. We solve several well-established examples in the literature to illustrate the capability of the

proposed formulations. The computational results demonstrate that both models require a smaller

number of binary variables in most cases, especially in the cases where a processing unit can process

 4

multiple tasks, compared to the existing mathematical formulation15. It is interesting to note that the

proposed models do not need to allow a task to span over multiple event points to generate the optimal

solution. As a result, the computational time is significantly reduced by one order of magnitude in

most cases. More importantly, the proposed models can generate better solutions than the existing

models such as Vooradi and Shaik15 and Mostafaei and Harjunkoski21. Additionally, the first model,

which allows related non-recycling production and consumption tasks to take place at the same event

points is slightly more efficient than the second one. Finally, we use the proposed model to solve a

large-scale industrial batch plant scheduling problem from Janak et al.25 using the rolling-horizon

decomposition algorithm. The results demonstrate that the proposed model can improve productivity

by 26.7% in significantly less computational time compared to that of Janak et al.25.

2 Problem statement

Figure 1 illustrates a general STN representation of a multipurpose batch plant. There are I (i = 1, 2,

3, …, I) tasks that are processed in total J (j = 1, 2, …, J) processing units. In a batch plant, a task

means heating, reaction, separation, and so on. Each unit can process Ij suitable tasks. Multiple tasks

are allowed to be processed in a processing unit. However, at most one task can be processed in a

unit at a time. Raw materials, intermediate products, and final products are denoted as states in the

STN representation. There are S (s = 1, 2, 3, …, S) states in total. The raw materials are denoted as

SR, intermediate materials are denoted as SIN and final products are denoted as SP. A state is consumed

or produced by Is tasks including 𝐈𝑠
𝐶 consumption tasks and 𝐈𝑠

𝑃 production tasks. The proportion of a

state 𝑠 that a task i in a unit j consumes or produces is known which is denoted by a parameter 𝜌𝑠𝑖𝑗.

While this proportion parameter is positive if the state is produced, it is negative if the state is

consumed. A task i on unit j processes a batch size (𝑏𝑖𝑗) of material state. The processing time is

assumed to be a linear function of the batch size, which is calculated by 𝛼𝑖𝑗 + 𝛽𝑖𝑗 ∙ 𝑏𝑖𝑗.

 Once a batch is produced in a processing unit, it may be transferred immediately or remain in

the processing unit for some limited or unlimited time before it is transferred. It may be transferred

into a dedicated storage tank, split into different small batches or mixed together with other batches

for downstream processing. In other words, batch splitting and mixing are allowed. There are several

different storage policies including unlimited intermediate storage (UIS) policy and finite

intermediate storage (FIS) policy. With this, the entire scheduling problem can be stated as follows,

Given:

a) J units, suitable Ij tasks, minimum (𝑏𝑖𝑗
𝑚𝑖𝑛) and maximum (𝑏𝑖𝑗

𝑚𝑎𝑥) capacities and constant

processing time coefficients;

b) S states, suitable Is tasks including production tasks and consumption tasks, detailed

processing paths and recipes, their initial inventories, and minimum and maximum capacities.

c) The production recipe (i.e., the coefficients of processing time for each task, and the

 5

consuming or producing proportions of each batch).

The product prices;

d) The scheduling horizon for maximization of productivity problems or the product demand for

minimization of makespan problems.

Determine:

a) Optimal production schedule including allocation, sequence, timings of tasks in a unit;

b) The amount of material being processed in each unit at each time;

c) Inventory profiles of all material states through the scheduling horizon.

Operating rules:

a) At most one task can be processed in a unit at a time;

b) Batch mixing and splitting is allowed.

Assumptions:

a) All parameters are deterministic with no batch/unit failures or operational interruptions;

b) The processing time of a task in a processing unit depends on the batch size;

c) Unlimited feed materials are available;

d) Unlimited storage policy for raw materials and final products;

e) Unlimited or Finite storage policy for intermediate products;

f) Unlimited resources are available;

g) Unlimited wait policy for intermediate states.

h) Negligible transfer times between units (i.e., processing units and storage units).

i) Setup or changeover times are lumped into batch processing times.

j) All processing units can hold a batch temporarily before its start and after its end.

k) Each material state has its dedicated storage unit.

 We consider two objectives. The first objective is to maximize the productivity in the given

scheduling horizon. The second objective is to minimize the total time required to fulfill the product

demand, which is known as minimization of makespan.

 6

Figure 1 STN representation of a multipurpose batch plant

3 Motivating Example 1

Let consider a motivating example. The data is given in Table 1. The STN is illustrated in Figure 2.

There are two processing units (J1-J2), two tasks (I1-I2) and three states (S1-S3). I1 is processed on

unit J1 and I2 is processed on unit J2. There is no initial amount for the intermediate state S2. The

maximum storage capacity of state S2 is 10 mu.

Table 1 Data for the Motivating Example

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

1 1 3.00 0.02 0 100

2 2 1.00 0.01 0 50

Figure 2 STN representation of the Motivating Example

 We use the mathematical models of Li and Floudas12, Vooradi and Shaik15 and Mostafaei and

Harjunkoski21 to solve this motivating example. The computational results are provided in Table 2.

The optimal schedule with maximum productivity of 300 cu obtained from the existing models12, 15,

21 is illustrated in Figure 3. We can observe that 60 cu of S2 is produced by task I1 in unit J1 at 5 hr.

Then, 50 cu of S2 is consumed immediately after it is produced. 10 cu of S2 is stored in the storage

tank, which does not violate the storage capacity. Another 10 cu of S2 are also consumed at 7 hr.

Finally, product S3 with a total price of 300 cu is produced. It can be concluded that the intermediate

S2 is immediately transferred to storage tank and consumption unit after it is produced. However, we

 7

can generate another schedule with a maximum productivity of 500 cu through trial and errors, as

illustrated in Figure 4. This means that all these existing models generate suboptimal solution for this

example. Through detailed analysis of the schedules in Figures 3 and 4, the possible reason is that the

schedule in Figure 4 allows material S2 produced in the unit J1 to be held in this unit. Only 50 cu is

transferred into unit J2 for further processing after it is produced. Even though the model of Vooradi

and Shaik15 allows materials to be temporarily stored at the production task, they can only be stored

at event point N1. For N2, the materials have to be either consumed by a consumption task or stored

in the storage task. However, since there is no storage available, J1 cannot produce the same amount

of state S2. Instead, only 60 units can be produced. Therefore, the model of Vooradi and Shaik15 also

fail to generate the optimum solution. This example motivates us to develop a new generic

mathematical formulation with consideration of these additional features that can result in a

significant increase in the productivity of the batch plant.

Table 2 Computational results for Motivating Example 1 from the models of Li and Floudas12,

Vooradi and Shaik15 and Mostafaei and Harjunkoski21

Example Model

Number

of event

points

CPU

time

(s)

RMILP
MILP

(h)

Binary

Variables

Continuous

Variables
Constraints

M. E. LF2010 3 0.11 500.00 300.00 6 29 41

(H = 8 h) VS2013 3 0.09 500.00 300.00 14 33 72

 MH2019 4 (ΔR=1) 0.08 500.00 300.00 6 34 78

LF2010: Li and Floudas12 model. VS2013: Vooradi and Shaik15 model. MH2019: Mostafaei and

Harjunkoski21

Figure 3 Optimal schedule for the Motivating Example 1 with maximum productivity of 300 cu

 8

Figure 4 A feasible schedule for the Motivating Example 1 with maximum productivity of 500 cu

4 Generic mathematical formulation

It is of great importance to represent time horizon for scheduling problems before developing

mathematical formulation. Although there are several existing time representations for scheduling

problems including discrete-time, slot-based, global event-based, unit-specific event-based, and

sequence-based time representations as discussed, the well-established unit-specific event-based time

representation is adopted in this work because it often leads to a smaller model size and less

computational effort in comparison to other time representations. The details about this time

representation can be referred to Ierapetritou and Floudas10.

Figure 5 The unit-specific event-based representation where related production and consumptions

tasks are allowed to take place at the same event points

 9

4.1 Model M1

In this model M1, we allow production and consumption tasks related to the same state to take place

at the same event points, which is similar to those of Rakovitis et al.17. We also use the definition of

recycling tasks presented on Rakovitis et al.17 and we only allow non-recycling production and

consumption tasks related to the same state to take place at the same event point. Furthermore, the

timing variables are defined based on units, not tasks. The unit-specific event-based time

representation for model M1 is illustrated in Figure 5. In Figure 5, task I1 produces S1, which is

consumed by task I2. I1 and I2 takes place at the same event point N1 but in different real time.

4.1.1 Allocation constraints

We introduce four-index binary variables 𝑤𝑖𝑗𝑛𝑛 to denote the allocation of tasks to units below,

1 if a task is processed in a unit from an event point to

0 otherwise
ijnn

i j n n
w 


= 


where n  n  n + n. The parameter n is used to denote the maximum number of event points that

a task is allowed to span over.

 Based on the operating policy, at most one task is allowed to be processed in a processing unit

at a time.

1 

   −     +

  
j

ijn n

i n n n n n n n n

w
I

 j, n (1)

4.1.2 Capacity constraints

The amount of materials processed in a unit j should not exceed its minimum (𝐵𝑖𝑗
𝑚𝑖𝑛) and maximum

(𝐵𝑖𝑗
𝑚𝑎𝑥) capacities.

min max

ij ijnn ijnn ij ijnnB w b B w      j, i  Ij, n ≤ n ≤ n+n (2)

4.1.3 Material balance constraints

The amount of a state 𝑠 that has to be stored at event point 𝑛 (𝑆𝑇𝑠𝑛) should be equal to the amount of

the state that has been stored at event point (𝑛 − 1), plus the amount of the state produced by

recycling tasks at event point (𝑛 − 1) and by non-recycling tasks at event point 𝑛, minus the amount

of the state consumed at event point 𝑛. At the first event point, the amount of a state 𝑠 that has to be

stored should be equal to the initial amount of the state (𝑆𝑇0𝑠) plus the amount of the state produced

by non-recycling tasks, minus the amount of state 𝑠 consumed at event point 𝑛.

R R

(1) (1)

() () (1) (1)\ ()P P
s i s is s

sn s n sij ijn n sij ijn n

j n n n n j n n n ni i

ST ST b b  − −
   −     − −   −  

= +  +      
J J J JI I I I

()

 

    +

+   
C

s is

sij ijnn

j n n n ni

b
J JI

 s, n > 1 (3)

R () ()\

0   

   −       + 

= +  +      
P C

s i s is s

sn s sij ijn n sij ijnn

j n n n n j n n n ni i

ST ST b b
J J J JI I I

 s, n = 1 (4)

 10

where I𝑠
𝑃\I𝑅 means all production tasks except recycling tasks.

4.1.4 Duration constraints

The finish time of a unit j at event point n must be after its start time plus the processing time of the

task 𝑖 that the unit starts processing at event point n.

()f s   

   +

 +  +  
j

jn jn ij ijnn ij ijnn

i n n n n

T T w b
I

 j, n (5)

4.1.5 Material transfer

Marterial transfer in the batch process is more flexible and complex compared to that in the

continuous process. There are several scenarios of material transfer. Figure 6 illustrates all scenarios

of material transfer. First, materials can be transferred to storage or downstream processing units

immediately after production (e.g. material transfer MT1 in Figure 6). Second, materials can be held

in the production units after production and then transferred to storage or downstream processing

units (e.g. material transfer MT2 in Figure 6). If the storage capacity is large enough, then material

can be first transferred to storage and then transferred to the downstream processing units (e.g.

material transfer MT3 in Figure 6). If the storage capacity is not enough large, then some material

has to be transferred directly to the downstream processing units (e.g. material transfer MT4 in Figure

6). In addition, materials produced from several production units can be transferred at the same time

to storage or downstream processing units. This is called simultaneous material transfer.

Alternatively, material produced from several production units can be transferred to storage or

downstream processing units at different times, which is called nonsimultaneous material transfer.

We generally classify the material transfer as indirect and direct material transfer. If all material is

transferred to storage tank first and then to downstream processing units, then it is indirect material

transfer. Otherwise, it is direct material transfer.

Figure 6 Different scenarios of material transfer

 11

Indirect material transfer

In this scenario, the storage capacity is usually large enough. As a result, materials produced can

always be transferred to the storage first and then transferred to the downstream processing units from

the storage. It is an indirect material transfer from the production units to the downstream

consumption units. To model this indirect material transfer, we define an additional binary variable

𝑧𝐼𝑗𝑗′𝑛 as follows,

1 if material transfer happens between units and at event point

0 otherwise
jj n

j j n
zI 


= 


  j  j, n

 We also define continuous variables bTiijijn to denote the amount of material transferred from

a production task i in unit j to a consumption task i in unit j at event point n. Note that the material

is first transferred from the production task i to the storage tank and then it is transferred to a

consumption task i. Therefore, it is an indirect material transfer from the production task i to the

consumption task i. The total amount of materials through indirect transfer from a production task i

should not exceed that produced from this task i.

()C
s j s

sij ijn n iji j n

n n n n j i

b bTi


  

 −     

   
J I I

 sSIN, jJs, i  (Ij 𝐈𝑠
𝑃)\IR, n (6)

(1)

(1) (1) ()C
s j s

sij ijn n iji j n

n n n n j i

b bTi


  −
 − −   −   

   
J I I

 sSIN, jJs, i  (Ij 𝐈𝑠
𝑃 IR), n > 1 (7)

While constraint (6) is used for non-recycling tasks, constraint (7) is proposed for recycling tasks

only.

 Similarly, the amount of materials through indirect transfer to a consumption task i at a time

should not exceed the amount of materials consumed by this consumption task at event point n.

()

       

  +   

−    
P

s j s

si j i j nn iji j n

n n n n j i

b bTi
J I I

 sSIN, jJs, i  (Ij 𝐈𝑠
𝐶), n (8)

 The total amount of materials consumed at event point 𝑛 should not exceed the material stored

at previous event point (𝑛 − 1) plus the amount of materials through indirect transfer.

(1)

() () ()C P C
s s ss j j s j s

si j i j nn s n iji j n

j n n n n j ji i i

b ST bTi
 

      −
     +        

 
−   + 
 

      
J J JI I I I I I

 s SIN, n (9)

 When there is no indirect material transfer between two processing units, the amount through

this indirect transfer should be zero.

max max

() ()

min ,


   

   

    
P C

j s j s

iji j n j j jj n

i i

bTi B B zI
I I I I

 s  SIN, j ≠ j, jJs, jJs, n (10)

where 𝐵𝑗
𝑚𝑎𝑥 = max

𝑖∈(𝐈𝑗𝐈𝑠
𝑃)

[𝐵𝑖𝑗
𝑚𝑎𝑥] and 𝐵𝑗

𝑚𝑎𝑥 = max
𝑖∈(𝐈𝑗𝐈𝑠

𝐶)
[𝐵𝑖𝑗

𝑚𝑎𝑥].

 12

Direct material transfer

For states with FIS policy, if there is no storage available then these states cannot be transferred to a

storage tank. Instead, they must be transferred directly from the production task i to a consumption

task i. For such a direct material transfer, we introduce an additional binary variable 𝑧𝐷𝑗𝑗′𝑛 as

follows,

1 if there is a direct material transfer between units and at event point

0 otherwise
jj n

j j n
zD 


= 


  j  j, n

 Similar to indirect material transfer, we also define continuous variables 𝑏𝑇𝑑𝑖𝑗𝑖′𝑗′𝑛 to denote

the amount of material directly transferred from a production task i in unit j to a consumption task i

in unit j at event point n. The amount of materials directly transferred from between processing a

production task i in unit j and a consumption task iʹ in unit jʹ must not exceed the amount of state

produced from production task i. Constraints (11) and (12) are used for non-recycling tasks and

recycling tasks respectively.

()




  

 −     

 +   
C

s j s

sij ijn n ijn iji j n

n n n n j i

b bs bTd
J I I

 s  (SIN  SFIS), jJs, i (Ij 𝐈𝑠
𝑃)\IR, n (11)

(1) (1)

1 1 ()




  − −
 − −   −   

 +   
C

s j s

sij ijn n ij n iji j n

n n n n j i

b bs bTd
J I I

 s  (SIN  SFIS), jJs, i  (Ij 𝐈𝑠
𝑃 IR), n > 1 (12)

 The amount of materials through direct transfer to a consumption task i at a time should not

exceed the amount of materials consumed by this consumption task at event point n.

()

       

  +   

−    
P

s j s

si j i j nn iji j n

n n n n j i

b bTd
J I I

 s  (SIN  SFIS), jJs, i  (Ij 𝐈𝑠
𝐶), n (13)

 A direct material transfer between a production task i in unit j and a consumption task iʹ in unit

jʹ takes place only if the amount of state 𝑠 produced at event point n for recycling tasks or at event

point (𝑛 − 1) for non-recycling tasks, plus the amount of state 𝑠 stored at event point (𝑛 − 1)

exceeds the maximum storage capacity, plus the amount of materials stored in processing units. In

this case, there are no storage tanks or processing units to temporary store the materials produced.

() ()() ()R

max

(1) (1)

\ \ , \


 

  − +
  −            

 
+  + + 

 
        

P P R C P R
s s s sj s j s j s j s

sij ijn n s n s iji j n ij n

j n n n n j j ji i i i

b ST ST bTd bs
J J J JI I I I I I I I I I I

 s  (SIN  SFIS), n (14)

() ()() ()R

max

(1) (1)

1 1 ,




  − −
  − −   −             

 
+  + + 

 
        

P P R C P R
s s s sj s j s j s j s

sij ijn n s n s iji j n ijn

j n n n n j j ji i i i

b ST ST bTd bs
J J J JI I I I I I I I I I I

 s  (SIN  SFIS), n > 1 (15)

where variable 𝑏𝑠𝑖,𝑗,𝑛 denotes the amount of materials stored in a unit 𝑗 at event point 𝑛, previously

 13

produced by task 𝑖 in this unit, which will be explained later.

 When there is no direct material transfer between two related processing units, the amount

through this direct transfer should be zero, similar to the indirect material transfer.

max max

() ()

min ,


   

   

    
P C

j s j s

iji j n j j jj n

i i

bTd B B zD
I I I I

 s  (SIN  SFIS), j ≠ j, jJs, jJs, n (16)

where 𝐵𝑗
𝑚𝑎𝑥 = max

𝑖∈(𝐈𝑗𝐈𝑠
𝑃)

[𝐵𝑖𝑗
𝑚𝑎𝑥] and 𝐵𝑗

𝑚𝑎𝑥 = max
𝑖∈(𝐈𝑗𝐈𝑠

𝐶)
[𝐵𝑖𝑗

𝑚𝑎𝑥].

4.1.6 Sequencing constraints

Different tasks in the same unit

The start time of a unit j at event point (n + 1) must always be after its end time at the previous event

point n.

f s

(1)j n jnT T+  j, n < N (17)

Different task in different unit

In order to make sure correct operational sequences between production and consumption tasks in

different processing units, we define continuous variables 𝑇𝑠𝑗𝑛 to denote the time when a state 𝑠

produced by a unit 𝑗 is available to be transferred (i.e., consumed or stored) at event point 𝑛. Then

we require that the time when a state 𝑠 produced by a unit 𝑗 is available to be consumed at event point

(𝑛 + 1) is always after the time when the state is available at the previous event point 𝑛.

(1)sj n sjnT T+  s  SIN, j Js, n < N (18)

 When a state 𝑠 produced by a unit 𝑗 is available at event point 𝑛, the production of this state in

the same unit 𝑗 must be completed at this event point 𝑛. In other words,

f

()

1
P

j s

sjn jn ijn n

n n n ni

T T M w 

−   

 
 − − 

 
 

 
I I

 s  SIN, jJs,
()

0
P

j s

sij

i


 


I I

, n (19)

 If a unit jʹ processes a task iʹ, which consumes state 𝑠 at event point n and also receives materials

from unit j, then this unit should start after the time that state 𝑠, which was produced by unit j from a

non-recycling task at event point n, is available.

()s 1sjn j n jj nT T M zI  + − s SIN, j, jJs, j ≠ j,
()\

0
 


P R

j s

sij

i I I I

,
()

0
C

j s

si j

i




 

 


I I

, n (20)

 Similarly, if a unit jʹ process a task iʹ at event point (n + 1) and also receives materials from task

j then the start time of this unit should be after the time that state 𝑠, which was produced by a unit j

from a recycling task at event point n, is available.

()s

(1) 1sjn j n jj nT T M zI + + − s SIN, j, jJs, j ≠ j,
()

0
  


P R

j s

sij

i I I I

,
()

0
C

j s

si j

i




 

 


I I

, n < N (21)

 If the materials produced by a non-recycling task in a processing unit at event point n is not

 14

transferred to a consumption task in a processing unit at the same event point n, then all material

should be stored in its dedicated storage tank, before another production task is processed in the unit.

The start time of this consumption task at event point (𝑛 + 1) should always exceed the time that the

state is available at event point n.

s

(1) (1)

(1) (1)()

1
C

j s

sjn j n i j n n

n n n ni

T T M w


   + +
+   + + 

 
 + − 

 
 

 
I I

 s  SIN, j, jJs, j ≠ j,
()\

0
 


P R

j s

sij

i I I I

,
()

0
C

j s

si j

i




 

 


I I

, n < N (22)

 In other words, a unit that processes a consumption task at event point (n + 1) are

unconditionally sequenced with the units that process a related non-recycling production task at event

point n. The units that are processing a consumption task at event point (n + 2) are unconditionally

sequenced with units that process a related recycling production task at event point n.

s

(2) (2)

2 2()

1
C

j s

sjn j n i j n n

n n n ni

T T M w


   + +
+   + + 

 
 + − 

 
 

 
I I

 s  SIN, j, jJs, j ≠ j,
()

0
  


P R

j s

sij

i I I I

,
()

0
C

j s

si j

i




 

 


I I

, n < N−1 (23)

 If there is a direct material transfer at event point n from a unit j that processes a non-recycling

production task i, to a unit jʹ that processes a related consumption task iʹ, then the finish time of the

unit jʹ at the previous event point (n – 1) must be before the finish time of the unit j.

()f f

(1) 1j n jn jj nT T M zD −  + −

 s (SIN  SFIS), j, jJs, j ≠ j,
()\

0
 


P R

j s

sij

i I I I

,
()

0


 

 


C

j s

si j

i I I

, n > 1 (24)

 If there is a material direct transfer at event point n from unit j, that process a recycling

production task i, to unit jʹ, that process a related consumption task iʹ, then the finish time of unit jʹ at

event point n must be before the finish time of unit j.

()f f

(1)1j n jn jj nT T M zD  + + −

 s (SIN  SFIS), j, jJs, j ≠ j,
()

0
  


P R

j s

sij

i I I I

,
()

0


 

 


C

j s

si j

i I I

, n < N (25)

 Finally, in order to avoid real time violations, between production and consumption tasks

occurring at the same event for recycling tasks or at the previous event for non-recycling tasks the

following constraints are introduced.

f s

(1) 1 −
−  

 
 − − 

 
jn j n ijn n

n n n n

T T M w

 15

 s (SIN  SFIS), j, jJs, j ≠ j,
()\

0
 


P R

j s

sij

i I I I

,
()

0


 

 


C

j s

si j

i I I

, n > 1 (26)

f s 1 

−  

 
 − − 

 
jn j n ijn n

n n n n

T T M w

 s (SIN  SFIS), j, jJs, j ≠ j,
()

0
  


P R

j s

sij

i I I I

,
()

0


 

 


C

j s

si j

i I I

, n (27)

4.1.7 Allowing processing units to store materials

In this work, we allow processing units to store materials for multiple event points. Generally, most

existing mathematical models even though they allow processing units to store materials, they only

allow these materials to be stored at the event point that they were produced. At the next event point,

these materials should be either consumed by another task or transferred to the storage tanks. To avoid

this case, we introduce an additional binary variable 𝑦𝑠𝑖,𝑗,𝑛 as follows,

1 if unit stores materials at event point , previously produced by task

0 otherwise


= 


ijn

j n i
ys

 We also introduce a new continuous variable 𝑏𝑠𝑖,𝑗,𝑛 which denotes the amount of materials

stored in a unit 𝑗 at event point 𝑛, previously produced by task 𝑖 in this unit. The amount of materials

stored in a unit 𝑗 cannot exceed its maximum capacity.

max ijn ij ijnbs B ys s (SIN  SFIS), jJs, i  (Ij 𝐈𝑠
𝑃), n (28)

 Additionally, the amount of materials stored in a unit j at event point n cannot exceed the

amount produced at the previous event point (n−1).

()(1) (1)

1

  − −
− −  

  +ijn sij ijn n ij n

n n n n

bs b bs s (SIN  SFIS), jJs, i  (Ij 𝐈𝑠
𝑃), n > 1 (29)

 Materials stored in a processing unit can only be directly transferred to another unit that process

a consumption task. Constraint (30) is used if materials are produced by non-recycling tasks, while

constraint (31) is used if materials are produced by recycling tasks.

(1)

()

 −
  

 − 
C

s j s

ijn ij n iji j n

j i

bs bs bTd
J I I

 s (SIN  SFIS), jJs, i  (Ij 𝐈𝑠
𝑃)\IR, n > 1 (30)

(1) (1)

()

 − +
  

 − 
C

s j s

ijn ij n iji j n

j i

bs bs bTd
J I I

 s (SIN  SFIS), jJs, i  (Ij 𝐈𝑠
𝑃 IR), 1 < n < N (31)

 Finally, if a unit 𝑗 holds some material at event point 𝑛, then it cannot process any task at this

event point 𝑛.

()

1
P

j j s

ijn ijn n

i n n n n n n n ni

ys w  

   −     + 

 −   
I I I

 s (SIN  SFIS), jJs, n (32)

4.1.8 Additional constraints

A number of additional constraints are introduced so as to improve the performance of the proposed

 16

model. Constraints (33)-(36) relate 𝑤𝑖𝑗𝑛𝑛′ with 𝑧𝐼𝑗𝑗′𝑛 . More specifically, if a unit jʹ process a

consumption task iʹ, and there is indirect material transfer between units j and jʹ then unit j must

process the related production task i according to (33). Similarly, if a unit j processes a production

task i, and there is indirect material transfer between units j and jʹ then unit jʹ must process the related

consumption task iʹ according to (34). While (33) and (34) are used for non-recycling production

tasks, constraints (35) and (36) are used for recycling production tasks.

1    

 −     +

 + − ijn n i j nn jj n

n n n n n n n n

w w zI

 s (SIN  SUIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃)\IR, i  (Ij 𝐈𝑠

𝐶), n (33)

1    

   + −  

 + − i j nn ijn n jj n

n n n n n n n n

w w zI

 s (SIN  SUIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃)\IR, i  (Ij 𝐈𝑠

𝐶), n (34)

(1) (1)

1 1

1    + +
 −   +   + +

 + − ijn n i j n n jj n

n n n n n n n n

w w zI

  s (SIN  SUIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃 IR), i  (Ij 𝐈𝑠

𝐶), n < N (35)

(1) (1)

1 1

1    + +
 +   + + −  

 + − i j n n ijn n jj n

n n n n n n n n

w w zI

  s (SIN  SUIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃 IR), i  (Ij 𝐈𝑠

𝐶), n < N (36)

 If an intermediate state 𝑠 has a FIS policy, then a unit j that transfers materials at unit jʹ, then

unit j can either process a production task or store materials at event point n. Constraints (37) and

(38) handle cases with non-recycling production tasks, while (39) and (40) handle cases with

recycling tasks.

1    

 −     +

+  + − ijn n ijn i j nn jj n

n n n n n n n n

w ys w zI

 s (SIN  SFIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃)\IR, i  (Ij 𝐈𝑠

𝐶), n (37)

1    

   + −  

 + + − i j nn ijn n ijn jj n

n n n n n n n n

w w ys zI

 s (SIN  SFIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃)\IR, i  (Ij 𝐈𝑠

𝐶), n (38)

(1) (1)

1 1

1    + +
 −   +   + +

+  + − ijn n ijn i j n n jj n

n n n n n n n n

w ys w zi

 s (SIN  SFIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃 IR), i  (Ij 𝐈𝑠

𝐶), n < N (39)

(1) (1)

1 1

1    + +
 +   + + −  

 + + − i j n n ijn n ijn jj n

n n n n n n n n

w w ys zI

 s (SIN  SFIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃 IR), i  (Ij 𝐈𝑠

𝐶), n < N (40)

In the same manner we relate 𝑤𝑖𝑗𝑛𝑛′ and 𝑦𝑠𝑖𝑗𝑛 with 𝑧𝐷𝑗𝑗′𝑛.

1    

 −     +

+  + − ijn n ijn i j nn jj n

n n n n n n n n

w ys w zD

 17

 s (SIN  SFIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃)\IR, i  (Ij 𝐈𝑠

𝐶), n (41)

1    

   + −  

 + + − i j nn ijn n ijn jj n

n n n n n n n n

w w ys zD

 s (SIN  SFIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃)\IR, jJs, i  (Ij 𝐈𝑠

𝐶), n (42)

(1)

1 1

1     +
 −   +   + +

+  + − ijn n ijn i j nn jj n

n n n n n n n n

w ys w zD

 s (SIN  SFIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃 IR), i  (Ij 𝐈𝑠

𝐶), n < N (43)

(1)

1 1

1    +
 +   + + −  

 + + − i j n n ijn n ijn jj n

n n n n n n n n

w w ys zD

 s (SIN  SFIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃 IR), i  (Ij 𝐈𝑠

𝐶), n < N (44)

Objective functions

As already discussed, two objectives have been considered. While constraint (45) is used for

maximization of productivity, constraint (46) is used for minimization of makespan.

()
 

   + 

=     
P

s j S

s ijs ijnn

s j n n n n ni

z p b
J I I

 (45)

f jnMS T ∀j, n = N (46)

In the minimization of makespan problem, it should be also ensured that the total demand is satisfied.

()
, , , ,

P R
S

s n i s i n n s

n n n ni

ST b D 

−   

+  
I I

 ∀s ∊ Sp, n = N (47)

Finally, (48) and (49) denote all the continuous and binary variables of the model respectively

bijnnʹ, bsijn, bTiijiʹjʹn, bTdijiʹjʹn, MS, STsn, 𝑇𝑠𝑗𝑛, 𝑇𝑗𝑛
s , 𝑇𝑗𝑛

f ≥ 0 (48)

wijnnʹ, ysijn, zDjjʹn, zIjjʹn {0, 1} (49)

 We complete the mathematical model M1, which consists of constraints (1)-(45) and (48-49)

for maximization of productivity, and (1)-(44) and (46)-(49) for minimization of makespan. We

consider two different variations of this model.

4.2 Model M2

In the mathematical model M2, we also use unit-specific event-based approach with timing variables

based on units. The main difference from the mathematical model M1 is that related production and

consumption tasks are not allowed to take place at the same event point. Therefore, we use the

following material balance constraints instead.

R

(1) (1)

() (1) (1) ()()

  − −
   − −   −     +  

= +  +      
P C

s i s is s

sn s n sij ijn n sij ijnn

j n n n n j n n n ni i

ST ST b b
J J J JI I I

 s, n > 1 (50)

()

0  

    +

= +   
C

s is

sn s sij ijnn

j n n n ni

ST ST b
J JI

 s, n = 1 (51)

The mathematical model M2 consists of constraints (1)-(2), (5)-(7), (8)-(13), (15), (17), (19)-(20),

 18

(22)-(23), (25), (27)-(29), (31)-(32), (35)-(36), (39)-(40), (43)-(45), (48)-(49) and (50)-(51) for

maximization of productivity and (1)-(2), (5)-(7), (8)-(13), (15), (17), (19)-(20), (22)-(23), (25), (27)-

(29), (31)-(32), (35)-(36), (39)-(40), (43)-(44) and (46)-(47), (48)-(49), (50)-(51) for minimization of

makespan.

5 Computational studies

To examine the performance of the proposed mathematical models M1 and M2, we revisit the

motivating example 1 and solve additional three motivating examples. The maximum computational

time is one hour for all examples. The optimality gap is set to zero. All examples are solved using

CPLEX 12/GAMS 24.6.1. on a desktop computer with Intel® Core™ i5-2500 3.3 GHz and 8 GB

RAM running Windows 7.

Table 3 Computational results for motivating examples 1-3

Motivating

Example
Model

Event

Points

CPU

Time (s)

RMILP

(cu)

MILP

(cu)

Binary

Variables

Continuous

Variables
Constraints

1 LF2010a 3 0.11 500.00 300.00 6 29 41

(H = 8 h) VS2013b 3 0.09 500.00 300.00 14 33 72

 MH2019c 4 (ΔR=1) 0.08 500.00 300.00 6 34 78

 M1 2 0.02 500.00 500.00 12 28 60

 M2 3 0.03 500.00 500.00 17 39 86

2 LF2010 7 5.4 3281.50 2385.32 56 235 518

(H=12 h) VS2013 7 29.5 3281.50 2392.46 256 403 1268

 MH2019 9 (ΔR=2) 30.8 3332.63 2385.32 120 361 962

 M1 7 39.2 3281.50 2433.16 218 463 1442

 M2 7 38.0 3281.50 2433.16 216 459 1430

3 LF2010 9 (Δn=1) 58.4 3879.34 887.68 187 507 1727

(H=12 h) VS2013 9 5.6 3879.34 989.03 541 723 2549

 MH2019 9 (ΔR=2) 0.2 887.68 887.68 165 506 1424

 M1 9 10.4 3879.34 1033.60 453 813 2935

 M2 9 10.5 3879.84 1033.60 453 813 2935

4 LF2010 - - - - - - -

(H=12 h) VS2013 - - - - - - -

 MH2019 - - - - - - -

 M1 9 27.9 4297.11 2503.15 453 813 2935

 M2 9 27.3 4297.11 2503.15 453 813 2935

a Li and Floudas12 model. b Vooradi and Shaik15 model. c Mostafaei and Harjunkoski21 model

 19

Revisit of Motivating Example 1

We use the proposed models M1 and M2 to solve the motivating example 1. The optimal solution of

500.00 cu is generated in less than 0.1 CPU s for both models. The model statistics is provided in

Table 3. It involves 12 binary variables, 28 continuous variables, and 60 constraints for model M1

and 17 binary variables, 39 continuous variables, and 86 constraints for model M2. The optimal

schedule is the same as that is illustrated in Figure 4. As discussed before, intermediate state S2 is

held in unit J2 after production because of small storage capacity.

 As illustrated in Table 3, it is able to generate the optimum solution for the motivating example

using the proposed models M1 and M2 as both of them allow production units to store materials over

multiple event points. As already discussed, even though the model of Vooradi and Shaik15 allows

materials to be temporarily stored in the processing unit during an event point n, these materials

cannot be stored to the processing unit for the next event points. Similarly, Li and Floudas12 and

Mostafaei and Harjunkoski21 does not allow materials to be stored in the processing unit for the next

event points. As a result, both proposed models M1 and M2 can generate a significantly better

solution.

Motivating Example 2

This example is very similar to Example 2c from Li et al.16 but with the maximum capacity of state

S7 being changed 10 mu. The objective is to maximize productivity. Similar to the Motivating

Example 1, we use the model of Li and Floudas12, Vooradi and Shaik15, Mostafaei and Harjunkoski21

and the proposed model M1 and M2 to solve this motivating example. The computational results are

provided in Table 3. From Table 3, it can be seen that both proposed mathematical models M1 and

M2 are able to generate a solution of 2433.16 mu, whilst the model of Li and Floudas12, Vooradi and

Shaik15 and Mostafaei and Harjunkoski21 are only able to generate a suboptimum solution (2392.46

mu and 2385.32 mu respectively). This is mainly due to the fact that the proposed models M1 and

M2 allow production units to storage materials over multiple event points. The optimal schedule from

model M1 is illustrated in Figure 7. As seen from Figure 7, unit J2 produces 50 mu from 6.3h to 8.9h

by processing task I2 at event point N4. Those materials can be stored in the processing unit J2 and

processed in the same unit at event point N7. However, this is not possible with the model of Vooradi

and Shaik15 and as a result less materials can be produced during the same period as depicted in Figure

8 (2.80 mu by processing task I2 at event point N4 and 39.03 mu by processing task I2 at event point

N6). This leads to less productivity and as a result a suboptimum solution.

 20

Figure 7 Optimal schedule for Motivating Example 2 using model M1

Figure 8 Schedule for Motivating Example 2 using the model of Vooradi and Shaik15

Motivating Example 3

Motivating example 3 is quite similar to the Example 3c from Li et al.16. The maximum capacity for

states S5, S6 and S7 is changed 10 mu. Additionally, the initial amount of materials for states S6 and

S7 is changed 0 mu. Similar to Motivating Example 2, we use the model of Li and Floudas12, Vooradi

and Shaik15, Mostafaei and Harjunkoski21 and the proposed model M1 and M2 to solve this

motivating example. The computational results are provided in Table 3. From Table 3, both proposed

models M1 and M2 are able to generate a better solution than the models from the literature (1033.60

cu). This can be explained by examining the optimal schedule generated by using model M1 (see

Figure 9) and the model of Vooradi and Shaik15 (see Figure 10). Since there is small storage capacity

 21

for states S6 and S7, unit J4 is able to process batches with small sizes when the model of Vooradi

and Shaik15 is used. More specifically, I9 is processed in unit J4 in event points N3, N5 and N7 with

batch sizes of 20.00 mu, 38.40 mu and 53.73 mu respectively. On the other hand, model M1 can

produce significantly larger amounts of states S6 and S7, since those excessive amounts can be

temporarily stored in the processing units, before transferred to another unit. For instance, with model

M1 unit J4 also processes three batches of I9 at event points N3, N6 and N8 with batch sizes 25.00

mu, 43.00 mu and 90.00 mu respectively.

Figure 9 Optimal schedule for Motivating Example 3 using model M1

Figure 10 Optimal schedule for Motivating Example 3 using the model of Vooradi and Shaik15

 22

Motivating Example 4

This example is also quite similar to the Example 3c from Li et al.16. The maximum capacity for state

S7 is 10 mu. Additionally, it is assumed that in the first event point 40 mu of S7 are stored in unit J4

at the first event point. Since the models of Vooradi and Shaik15 and Mostafaei and Harjunkoski21 do

not allow materials to be stored for multiple event points, they fail to generate a feasible solution. On

the other hand, the proposed models M1 and M2 allows materials to be stored in processing units for

multiple event points and as a result they are able to generate the optimum solution of 2503.15 mu in

less than 30 s.

Benchmark Examples

To further examine the performance of the proposed mathematical models M1 and M2, we solve in

total 9 examples from the literature1, 8, 16. The data as well as the STN representations for all examples

are presented in the Supplementary Material. The maximum computational time is one hour for all

examples. The optimality gap is set to zero. All examples are solved using CPLEX 12/GAMS 24.6.1.

on a desktop computer with Intel® Core™ i5-2500 3.3 GHz and 8 GB RAM running Windows 7. It

should also be noted that we only compare our models with the model of Vooradi and Shaik15

(denoted as VS2013) since they incorporate similar features. The model of Mostafaei and

Harjunkoski21 is very similar to the model of Shaik and Floudas11 which requires more event points

in some examples as demonstrated in the Motivating Example 1 and in Vooradi and Shaik15. Detailed

comparison of our models with Shaik and Floudas11, Li and Floudas12, Susarla et al.8, and Mostafaei

and Harjunkoski21 will be presented in our next contribution in order to reduce the length.

 The computational results for Examples 1-9 with UIS policy for maximization of productivity,

are presented in Tables 4 and 5. From Tables 4 and 5, it seems that both the model of Vooradi and

Shaik15 and the model M2 require the same number of event points to generate the optimal solution.

This is because both models do not allow related production and consumption tasks to take place at

the same event point. Nevertheless, it seems that model M2 requires fewer binary variables in some

cases. For instance, in Example 3d, the model of Vooradi and Shaik15 requires 263 binary variables,

while model M2 requires 245 binary variables. This is because M2 only examines if there is a material

transfer between processing units, whist the model of Vooradi and Shaik15 examines if there is a

material transfer from a production task to a related consumption task. In a multipurpose batch

process facility, a processing unit can process more than one tasks. Therefore, two processing units

can process two or more tasks which are related to the same state. In such a case, the proposed model

M2 only requires one binary decision variable, while the model of Vooradi and Shaik15 requires two

or more binary decision variables. As a result, the proposed model M2 can lead to a smaller model

size and less computational time. For instance, M2 requires 36% less computational time for Example

2d (15.1 s vs 23.6 s), 87.7% less computational time for Example 3b (146.4 s vs 1191 s) and 62.2%

 23

less computational time for Example 3d (41.7 s vs 110.3 s) than the model of Vooradi and Shaik15.

Furthermore, additional constraints (33)-(44) can improve the performance of the proposed models.

For instance, both models M2 and the model of Vooradi and Shaik15 lead to the same model size for

Example 1d. However, the model M2 requires 51.8% less computational time to generate the optimal

solution (10.5s vs 21.8 s).

Table 4 Computational results for Examples 1-3 with maximization of productivity (UIS policy)

Example Model Event

points

CPU

Time (s)

RMILP

(cu)

MILP

(cu)

Binary

Variables

Continuous

Variables

Constraints

Ex1a VS2013 4 0.125 2000.00 1840.17 32 90 177

(H = 8 h) M1 2 0.031 2000.00 1840.17 18 54 105

 M2 4 0.031 2000.00 1840.17 32 102 198

Ex1b VS2013 5 0.125 3000.00 2628.19 41 113 226

(H = 10h) M1 3 0.046 3000.00 2628.19 27 80 163

 M2 5 0.047 3000.00 2628.19 41 128 256

Ex1c VS2013 6 0.250 4000.00 3463.62 50 136 275

(H = 12h) M1 4 0.062 4000.00 3463.62 36 106 221

 M2 6 0.109 4000.00 3463.62 50 154 314

Ex1d VS2013 9 21.8 6601.65 5038.05 77 205 422

(H = 16h) M1 7 12.9 6601.65 5038.05 63 184 395

 M2 9 10.5 6601.65 5038.05 77 232 488

Ex2a VS2013 4 0.125 1730.87 1498.57 62 178 384

(H = 8 h) M1 4 0.063 1730.87 1498.57 64 180 396

 M2 4 0.078 1730.87 1498.57 56 178 377

Ex2b VS2013 5 0.17 2436.69 1962.69 80 225 496

(H = 10h) M1 5 0.22 2436.69 1962.69 80 227 510

 M2 5 0.20 2436.69 1962.68 72 225 491

Ex2c VS2013 6 0.48 3076.62 2658.52 98 272 608

(H = 12h) M1 6 0.42 3076.62 2658.52 96 274 624

 M2 6 0.42 3076.62 2658.52 88 272 605

Ex2d VS2013 8 23.6 4291.67 3738.38 134 366 832

(H = 16h) M1 8 15.6 4291.67 3738.38 128 368 852

 M2 8 15.1 4291.67 3738.38 120 366 833

Ex3a VS2013 5 1.92 2100.00 1583.44 123 311 741

(H = 8h) M1 5 0.90 2100.00 1583.44 130 316 793

 24

 M2 5 0.86 2100.00 1583.44 115 316 776

Ex3b VS2013 7 1191 3369.69 2358.20 179 441 1077

(H = 10h) M1 7 146.4 3369.69 2358.20 182 448 1155

 M2 7 157.0 3369.69 2358.20 167 448 1138

Ex3c VS2013 7 1.31 3465.63 3041.27 179 441 1077

(H = 12h) M1 7 1.22 3465.63 3041.27 182 448 1155

 M2 7 1.14 3465.63 3041.27 167 448 1138

Ex3d VS2013 10 110.3 5225.86 4262.80 263 636 1581

(H = 16h) M1 10 42.8 5225.86 4262.80 260 646 1698

 M2 10 41.7 5225.86 4262.80 245 646 1681

Note. Δn = 0 for all examples. VS2013: Vooradi and Shaik15 model.

Table 5 Computational results for Examples 4-9 with maximization of productivity (UIS policy)

Example Model Event

Points

CPU

Time (s)

RMILP

(cu)

MILP

(cu)

Binary

Variables

Continuous

Variables

Constraints

Ex4 VS2013 6 0.124 7.5000 5.3225 65 157 358

(H=15 h) M1 4 0.078 7.5000 5.3225 48 127 298

 M2 6 0.078 7.5000 5.3225 65 187 434

Ex5 VS2013 5 0.109 14.00 10.00 36 98 201

(H=6 h) M1 3 0.032 14.00 10.00 24 71 152

 M2 5 0.031 14.00 10.00 36 113 237

Ex6 VS2013 5 0.141 300.00 210.00 49 138 283

(H=9 h) M1 3 0.047 300.00 210.00 33 100 211

 M2 5 0.031 300.00 210.00 49 158 327

Ex7 VS2013 5 0.125 80.00 58.99 54 147 301

(H=76 h) M1 2 0.031 80.00 58.99 24 71 145

 M2 5 0.046 80.00 58.99 54 167 351

Ex8 VS2013 6 0.093 400.00 400.00 44 130 289

(H=10 h) M1 4 0.032 400.00 400.00 32 106 237

 M2 6 0.047 400.00 400.00 44 154 337

Ex9 VS2013 10 0.109 400.00 400.00 76 218 497

(H=10 h) M1 8 0.062 400.00 400.00 64 210 485

 M2 10 0.032 400.00 400.00 76 258 585

Note. Δn = 0 for all examples. VS2013: Vooradi and Shaik15 model.

 25

 Mathematical model M1 requires a smaller number of event points in most cases since related

production and consumption tasks are allowed to take place at the same event point. For instance, the

model M1 requires two event points less than the models M2 and the model of Vooradi and Shaik15for

Examples 1a-d, 8 and 9. As a result, model M1 leads to the smallest model size with less number of

binary variables, continuous variables and constraints, which makes it more efficient than the

mathematical model Vooradi and Shaik15. Nevertheless, it seems that both mathematical models M1

and M2 require similar computational time to generate the optimal solution, mainly because they both

models can solve all examples in less than three minutes. From Tables 4 and 5, it can be concluded

that the models M1 and M2 reduced the computational time by one order of magnitude for most

examples in comparison to VS2013.

 Tables 6 and 7 present the computational results for Examples 1-10 with FIS policy for

maximization of productivity. Both mathematical models M2 and the model of Vooradi and Shaik15

require the same number of event points for all examples to generate the optimal solution. As we

introduce additional binary variables to allow processing units to store materials for multiple event

points, model M2 leads to a big larger model size for Examples 1a-1d, 4, 5, and 7 where the model

of Vooradi and Shaik15 does not need to allow tasks to span over multiple event points (i.e., Δn = 0)

to generate the optimal solution. However, model M2 requires similar computational time as the

model of Vooradi and Shaik15 for these examples. On the other hand, model M2 requires 15.5%-

16.5% fewer binary variables for Examples 2a-2d, 3a-3d due to fact that the proposed model only

uses binary variables to examine whether there is a material transfer between two units. More

importantly, both models M2 and M1 do not require to allow tasks to span over multiple event points

in any case due to allowing processing units to store materials over multiple event points. Therefore,

both proposed models lead to significantly smaller model size with less binary and continuous

variables and constraints in Examples 6, 8 and 9. For instance, both models M2 and M1 require 61.9%

(128 vs 336) and 53.5% (156 vs 336) less binary variables than the model of Vooradi and Shaik15 to

generate the optimal solution for Example 9 respectively. Such reduction in the model size leads to

one magnitude less computational time required for both proposed models M1 and M2 in comparison

to the model of Vooradi and Shaik15.

 26

Table 6 Computational results for Examples 1-3 with maximization of productivity (FIS policy)

Example Model Event

Points

CPU

Time (s)

RMILP

(cu)

MILP

(cu)

Binary

Variables

Continuous

Variables

Constraints

Ex1a VS2013 4 0.094 2000.00 1840.17 64 102 273

(H = 8 h) M1 2 0.031 2000.00 1840.17 38 72 175

 M2 4 0.047 2000.00 1840.17 74 126 358

Ex1b VS2013 5 0.234 3000.00 2628.19 81 129 352

(H = 10h) M1 3 0.046 3000.00 2628.19 58 107 279

 M2 5 0.062 3000.00 2628.19 94 159 462

Ex1c VS2013 6 0.23 4000.00 3463.62 98 156 431

(H = 12h) M1 4 0.17 4000.00 3463.62 78 142 383

 M2 6 0.25 4000.00 3463.62 114 192 566

Ex1d VS2013 9 45.3 6601.65 5038.05 149 240 668

(H = 16h) M1 7 40.3 6601.65 5038.05 138 247 695

 M2 9 43.5 6601.65 5038.05 174 291 878

Ex2a VS2013 4 0.125 1730.87 1498.57 142 220 665

(H = 8 h) M1 4 0.078 1730.87 1498.57 122 256 774

 M2 4 0.078 1730.87 1498.57 120 252 755

Ex2b VS2013 5 0.45 2436.69 1962.69 180 281 866

(H = 10h) M1 5 0.30 2436.69 1962.69 154 325 999

 M2 5 0.20 2436.69 1962.69 152 321 980

Ex2c VS2013 6 0.66 3076.62 2658.52 218 342 1067

(H = 12h) M1 6 0.50 3076.62 2658.52 186 394 1224

 M2 6 0.47 3076.62 2658.52 184 390 1205

Ex2d VS2013 8 34.6 4291.67 3738.38 294 464 1469

(H = 16h) M1 8 22.2 4291.67 3738.38 250 532 1674

 M2 8 23.7 4291.67 3738.38 248 528 1655

Ex3a VS2013 5 3.32 2100.00 1583.44 293 387 1321

(H = 8h) M1 5 1.80 2100.00 1583.44 245 437 1542

 M2 5 1.92 2100.00 1583.44 245 437 1531

Ex3b VS2013 7 976.3 3369.69 2358.20 417 555 1935

(H = 10h) M1 7 383.8 3369.69 2358.20 349 625 2233

 M2 7 364.9 3369.69 2358.20 349 625 2233

Ex3c VS2013 7 2.90 3465.63 3041.27 417 555 1935

 27

(H = 12h) M1 7 1.47 3465.63 3041.27 349 625 2244

 M2 7 1.42 3465.63 3041.27 349 625 2233

Ex3d VS2013 10 155.6 5225.86 4262.80 603 807 2856

(H = 16h) M1 10 85.5 5225.86 4262.80 505 907 3297

 M2 10 82.2 5225.86 4262.80 505 907 3286

Δn = 0 for all examples. VS2013: Vooradi and Shaik15 model.

Table 7 Computational results for Examples 4-10 with maximization of productivity (FIS policy)

Example Model Event

Points

CPU

Time (s)

RMILP

(cu)

MILP

 (cu)

Binary

Variables

Continuous

Variables

Constraints

Ex4 VS2013 6 (Δn=0) 0.312 7.5000 5.3225 149 341 618

(H=15 h) M1 4 (Δn=0) 0.218 7.5000 5.3225 105 168 560

 M2 6 (Δn=0) 0.172 7.5000 5.3225 157 246 845

Ex5 VS2013 5 (Δn=0) 0.141 14.00 10.00 76 114 327

(H=6 h) M1 3 (Δn=0) 0.062 14.00 10.00 52 92 265

 M2 5 (Δn=0) 0.047 14.00 10.00 84 144 438

Ex6 VS2013 5 (Δn=1) 0.265 300.00 210.00 144 182 547

(H=9 h) M1 3 (Δn=0) 0.078 300.00 210.00 78 130 380

 M2 5 (Δn=0) 0.078 300.00 210.00 128 202 636

Ex7 VS2013 5 (Δn=0) 0.125 80.00 58.99 114 171 490

(H=76 h) M1 2 (Δn=0) 0.047 80.00 58.99 50 91 243

 M2 5 (Δn=0) 0.062 80.00 58.99 122 211 638

Ex8 VS2013 6 (Δn=3) 0.343 400.00 400.00 152 198 665

(H=10 h) M1 4 (Δn=0) 0.047 400.00 400.00 64 134 409

 M2 6 (Δn=0) 0.062 400.00 400.00 92 192 597

Ex9 VS2013 10 (Δn=7) 2.10 400.00 400.00 336 422 1453

(H=10 h) M1 8 (Δn=0) 0.23 400.00 400.00 128 266 849

 M2 10 (Δn=0) 0.11 400.00 400.00 156 324 1037

VS2013: Vooradi and Shaik15 model.

The computational results for examples using minimization of makespan as objective are presented

Tables 8 and 9. While Table 8 presents the results with UIS policy, Table 9 gives the results with FIS

policy. From Table 8, it seems that mathematical models M1 and M2 both lead to tighter MILP

relaxation and smaller model sizes. For instance, the MILP relaxation from both M1 and M2 are 18.68

h for Example 2a, which is improved by 73.2% compared to 10.78 from the model of Vooradi and

 28

Shaik15. The number of binary variables is reduced from 152 to 138 by 9%. As a result, they can

successfully solve all examples except Example 2b to global within one hour. On the other hand, the

model of Vooradi and Shaik15 can only solve for Examples 2a, 3a and 3b to optimality, whilst both

models M1 and M2 require similar or less computational time to solve Examples 2a, 3a and 3b to

optimality. The maximum reduction in the computational time can reach 43% for Example 2a (174

vs. 99 and 174 vs. 106). By comparing models M1 and M2 in Table 8, it seems that allowing related

production and consumption tasks at the same event point can also lead to less computational times.

For instance, model M1 requires 34.8% for Example 1a (412 s vs 639 s) and 49.2% (1004 s vs 1978

s) less computational time for Example 1b compared to model M2.

Table 8 Computational results for Examples 1-3 with minimization of makespan (UIS policy)

Example Model
Event

points

CPU

Time (s)

RMILP

(h)

MILP

 (h)

Binary

Variables

Continuous

Variables
Constraints

Ex1a VS2013 14 >3600a 24.24 27.88 122 320 672

(DS4=2000 cu) M1 12 412 24.24 27.88 108 314 690

 M2 14 639 24.24 27.88 122 362 783

Ex1b VS2013 23 >3600b 48.47 52.07 203 527 1113

(DS4=4000 cu) M1 21 1004 48.47 52.07 189 548 1212

 M2 23 1978 48.47 52.07 203 596 1305

Ex2a VS2013 9 173.4 10.78 19.34 152 413 953

(DS8=200 cu) M1 9 99.6 18.68 19.34 138 415 963

(DS9=200 cu) M2 9 106.1 18.68 19.34 136 413 952

Ex2b VS2013 20 >3600c 26.12 46.11 350 930 2185

(DS8=500 cu) M1 20 >3600d 45.57 46.11 312 930 2206

(DS9=400 cu) M2 20 >3600e 45.57 46.11 314 932 2217

Ex3a VS2013 7 0.578 10.00 13.37 179 441 1089

(DS12=100 cu) M1 7 0.546 11.25 13.37 167 448 1145

(DS13=200 cu) M2 7 0.702 11.25 13.37 167 448 1145

Ex3b VS2013 10 0.889 12.50 17.02 263 636 1593

(DS12=250 cu) M1 10 0.873 14.27 17.02 245 646 1688

(DS13=250 cu) M2 10 0.874 14.27 17.02 245 646 1688

Note that Δn = 0 in all cases. a Relative Gap 0.19%. b Relative Gap 0.01%. c Relative Gap 17.3%. d

Relative Gap 1.17% e Relative Gap 1.17%. VS2013: Vooradi and Shaik15 model.

From Table 9, we can observe that models M1 and M2 lead to tighter MILP relaxation and

 29

smaller model size. For instance, the MILP relaxation from both M1 and M2 are 45.57 h for Example

2b, which is improved by 73% compared to 26.40 from the model of Vooradi and Shaik15 . The

number of binary variables is reduced by 16.2% (788 vs. 660). As a result, the models M1 and M2

can solve Examples 2a, 3a and 3b to optimality within 1 hour and solve Examples 1a, 1b, and 2b with

smaller optimality gap within 1 hour compared to the model of Vooradi and Shaik15. It should also

be noted that models M1 and M2 find a better solution of 52.07 within 1 hour compared to the model

of Vooradi and Shaik15 (52.07 vs. 52.23), which has not been found in the literature. By comparing

models M1 and M2 in Table 9, it seems that allowing related production and consumption tasks at

the same event point can also lead to less computational times. For instance, model M1 requires

12.5% (125 s vs 143 s) less computational time for Example 2a. In brief, we can conclude that the

mathematical model M1 is the most efficient for makespan minimization.

Table 9 Computational results for Examples 1-3 with minimization of makespan (FIS policy)

Example Model Event

points

CPU

time (s)

RMILP

(h)

MILP

(h)

Binary

Variables

Continuous

Variables

Constraints

Ex1a VS2013 14 >3600a 24.24 27.88 234 372 1068

(DS4=2000 cu) M1 12 >3600b 24.24 27.88 214 398 1196

 M2 14 >3600c 24.24 27.88 242 456 1371

Ex1b VS2013 23 >3600d 48.47 52.23 387 615 1779

(DS4=4000 cu) M1 21 >3600e 48.47 52.07 376 695 2114

 M2 23 >3600f 48.47 52.07 404 753 2289

Ex2a VS2013 9 241.7 10.78 19.34 332 525 1679

(DS8=200 cu) M1 9 125.3 18.68 19.34 276 601 1889

(DS9=200 cu) M2 9 142.7 18.68 19.34 272 597 1875

Ex2b VS2013 21 >3600g 26.40 47.68 788 1257 4091

(DS8=500 cu) M1 21 >3600h 45.57 47.68 660 1429 4589

(DS9=400 cu) M2 21 >3600i 45.57 47.68 656 1425 4575

Ex3a VS2013 7 0.780 10.00 13.37 417 555 1947

(DS12=100 cu) M1 7 1.841 11.25 13.37 320 625 2209

(DS13=200 cu) M2 7 1.311 11.25 13.37 320 625 2209

Ex3b VS2013 10 1.545 12.50 17.02 603 807 2868

(DS12=250 cu) M1 10 1.092 14.27 17.02 470 907 3256

(DS13=250 cu) M2 10 1.513 14.27 17.02 470 907 3256

Note Δn = 0 in all cases. a Relative Gap 1.75%. b Relative Gap 1.40%. c Relative Gap 1.67%. d Relative

Gap 0.39%. e Relative Gap 0.15%. f Relative Gap 0.08%. g Relative Gap 19.4%. h Relative Gap

0.64%. i Relative Gap 1.07%. VS2013: Vooradi and Shaik15 model.

 30

Large-scale example

We also solve a large-scale industrial batch plant example from Janak et al.25 to further illustrate the

capabilities of models M1 as model M1 performs slightly better than M2 based on the above

computational results. Figure 11 depicts the STN representation of this batch plant. The facility

produces 87 different products by processing 17 raw materials in 8 different processing paths. There

is a total of 6 different types of processing tasks. 20 different processing units are available to process

these tasks. Each processing unit can only process one type of tasks. The batch plant has to fulfil 402

orders within 19 days. For more information, it can be referred to Janak et al.25.

 We first use the proposed model M1 to solve this problem directly. It fails to generate a feasible

schedule within 12 hours due to intractable problem size. We then employ he rolling-horizon

decomposition approach of Janak et al.25 with the proposed model M1 as the short-term scheduling

model to solve this problem, which are denoted as RH-M1. The level-1 model and the modified short-

term scheduling model M1 are provided in the Supplementary Material. Each subproblem is solved

to zero optimality gap using CPLEX 12/GAMS 24.6.1. on a desktop computer with Intel® Core™

i5-2500 3.3 GHz and 8 GB RAM running Windows 7. The maximum computational time is set as 3

hours for each level. An integer solution limit of 40 is also imposed.

 The computational results are provided in Table 10. From Table 10, RH-M1 can generate a

better solution with productivity of 6880.2 mu, which is increased by 26.7% in comparison to that of

5427.8 mu from the model of Janak et al.25. More interestingly, RH-M1 requires 11.5 h to generate

such an improved solution, which is approximately half of the CPU time required by the model of

Janak et al.25 (22.4 h). Since the same rolling horizon decomposition approach is used in both cases,

such improvement solely derives from the improved efficiency of the short-term model.

Figure 11 STN representation of large-scale industrial plant example

 31

Table 10 Computational results for the industrial plant example

Model
Total production

(mu)

Total CPU time

(h)

RH-JF 5427.8 22.4

RH-M1 6880.2 11.5

Table 11 Computational results for each subproblem for industrial plant example

Sub-

problem
Model Days

Production

(mu)

CPU

time (s)

Binary

Variables

Continuous

Variables
Constraints

1 JF 0-2 857.7 3315 4880 35384 187833

 M1 0-2 853.5 1972 15465 60213 127010

2 JF 3-4 758.5 7202 3834 27053 135916

 M1 3-4 790.1 10200 11021 42382 94200

3 JF 5-6 697.0 9878 5406 30545 248663

 M1-J 5-6 777.3 3899 15388 48876 160812

4 JF 7-8 788.8 10329 5526 30729 276612

 M1-J 7-8 994.9 1355 15781 48915 172265

5 JF 9-10 634.7 6945 5406 30465 271764

 M1-J 9-10 853.5 706 15855 49310 172930

6 JF 11-12 517.9 10800 6222 32280 354410

 M1-J 11-12 779.0 10800 17323 53395 198433

7 JF 13-14 532.3 10800 6252 32318 359365

 M1-J 13-14 1114.6 1541 17228 53642 199952

8 JF 15-16 315.7 10800 6156 32085 354649

 M1-J 15-18 717.3 10800 28614 90455 350605

9 JF 17-18 335.3 10800 5976 31664 344065

 The computational results for each subproblem from RH-M1 and RH-JF are depicted in Table

11. While RH-JF divides the entire scheduling problem into 9 subproblems, RH-M1 divides into 8

subproblems. RH-M1 can solve all subproblems except the subproblems 6 and 8 to optimality within

3 hours. However, RH-JF reaches the maximum time of 3 hours for 4 subproblems out of 9. RH-M1

leads to higher productivity in comparison to RH-JF for all subproblems except the subproblem 1.

The difference in productivity for the subproblem 1 between RH-M1 and RH-JF is 0.5% only. Since

processing units overproduce some materials in RH-M1, which do not fulfil any order at the current

scheduling horizon, they can be stored and used for order delivery directly at a later sub-problem

 32

without the need of using the facility to produce. As a result, processing units require to process fewer

tasks in the successive sub-problems. Consequently, RH-M1 can successfully generate the schedule

of subproblem 8, which contains days 15-18 without the need of further dividing into smaller sub-

problems. On the other hand, RH-JF needs to produce significantly more materials to fulfil the

demand within days 15-18. Therefore, RH-JF divides this sub-horizon into sub-problem 8 with days

15-16, and sub-problem 9 with days 17-18 to successfully develop a schedule for this period.

Figure 12 Optimal schedule for the large-scale industrial plant example using RH-M1

Table 12 Utilisation efficiency of processing units from RH-M1 and RH-JF

 RH-M1 RH-JF
Time

used

Time

 left

%

utilised

 Time

used

Time

 left

%

utilised

U1 173.8 282.2 40.2 187.6 268.4 41.1

U2 61.8 394.2 14.3 92.4 363.6 20.3

U3 61.6 394.4 14.3 118.0 338.0 25.9

U4 208.0 248.0 48.1 200.0 256.0 43.9

U5 123.0 333.0 28.5 49.6 406.4 10.9

U6 123.0 333.0 28.5 296.2 159.8 65.0

U7 233.8 222.2 54.1 174.1 281.9 38.2

U8 200.0 256.0 46.3 233.0 223.0 51.1

U9 340.0 116.0 78.7 311.4 144.6 68.3

U10 242.0 214.0 56.0 170.4 285.6 37.4

U11 158.9 297.1 36.8 90.0 366.0 19.7

U12 213.6 242.4 49.4 129.2 326.8 28.3

U13 224.6 231.4 52.0 185.5 270.5 40.7

U14 200.0 256.0 46.3 162.0 294.0 35.5

U15 220.0 236.0 50.9 129.7 326.3 28.4

U16 194.0 262.0 44.9 451.9 4.1 99.1

U17 - - - 12.0 444.0 2.6

 33

 The feasible schedule from RH-M1 is illustrated in Figure 12. Table 12 depicts the utilization

efficiency for all processing units for both models. RH-M1 utilizes most of the processing unit for

larger periods in order to produce a larger amount of materials and fulfill more orders than RH-JF.

Additionally, RH-M1 utilizes one processing unit less during the whole scheduling horizon. In other

words, RH-M1 utilizes the processing units more efficiently.

6 Conclusions

In this work, we presented two generic unit-specific event-based models for scheduling of

multipurpose batch processes using the unit-specific event-based modelling approach. While we

followed the approach of Rakovitis et al.17 to allow all related production and consumption tasks to

take place at the same event points but in different real times in the first model, we did not allow in

the second model. We introduced the concept of indirect and direct material transfer, which allows

us to conditionally align the operational sequence of related production and consumption tasks. The

processing units were allowed to hold materials that are previously produced over multiple event

points. Nonsimultaneous material transfer8 was also allowed in both models. The computational

results demonstrated that both models require a smaller number of binary variables in most cases,

especially in the cases where a processing unit can process multiple tasks, compared to the existing

mathematical formulation15. The proposed models did not need to allow a task to span over multiple

event points in order to generate the optimal solution. As a result, the computational time was

significantly reduced by one order of magnitude in most cases. More importantly, the proposed

models were able to generate better solutions than Vooradi and Shaik15 and Mostafaei and

Harjunkoski21. In addition, the first model allowing related production and consumption tasks to take

place at the same event points was slightly more efficient than the second one. Finally, we used the

proposed model to solve a large-scale industrial batch plant scheduling problem from Janak et al.25

using the rolling-horizon decomposition algorithm. The results demonstrated that the proposed model

is able to improve the productivity by 26.7% in significantly less computational time compared to

that from Janak et al.25. The future work will extend the proposed models to consider other

immediately storage policy and wait policy. Detailed comparison with all existing models in the

literature especially the model of Mostafaei and Harjunkoski21 will also be conducted.

Acknowledgments

Nikolaos Rakovitis would like to acknowledge financial support from the postgraduate award by The

University of Manchester.

 34

Literature Cited

1. Kondili E, Pantelides CC, Sargent RWH. A general algorithm for short-term scheduling of batch

operations-I MILP formulation. Comput Chem Eng. 1993;17(2):211-227.

https://doi.org/10.1016/0098-1354(93)80015-F.

2. Pantelides C. Unified frameworks for optimal process planning and scheduling. Proceedings of the

Second Conference on Foundations of Computer Aided Operations. 1994:253-274.

3. Lee H. Maravelias CT. Discrete-time mixed integer programming models for short-term scheduling

in multipurpose environments. Comput Chem Eng. 2017;107:171-183.

https://doi.org/10.1016/j.compchemeng.2017.06.013.

4. Zhang X. Sargent RWH. 1996. The optimal operation of mixed production facilities-A general

formulation and some approaches for the solution. Comput Chem Eng. 1996;20(6-7):897-904.

https://doi.org/10.1016/0098-1354(95)00186-7.

5. Castro P. Barbosa-Póvoa APFD. Matos H. An improved RTN continuous-time formulation for the

short-term scheduling of multipurpose batch plants. Ind Eng Chem Res. 2001;40(9):2059-2068.

https://doi.org/10.1021/ie000683r.

6. Maravelias CT. Grossmann IE. New General Continuous-Time State-Task Network Formulation

for Short-Term Scheduling of Multipurpose Batch Plants. Ind Eng Chem Res. 2003;42(13):3056-

3074. https://doi.org/10.1021/ie020923y.

7. Sundaramoorthy A, Karimi IA. A simpler better slot-based continuous-time formulation for short-

term scheduling in multipurpose batch plants. Chem Eng Sci. 2005;60(10):2679-2702.

https://doi.org/10.1016/j.ces.2004.12.023.

8. Susarla N, Li J, Karimi I. A. Novel approach to scheduling multipurpose batch plants using unit-

slots. AIChE J. 2010;56(7):1859-1879. https://doi.org/10.1002/aic.12120.

9. Li J. Karimi IA. Scheduling gasoline blending operations from recipe determination to shipping

using unit slots. Ind Eng Chem Res. 2011;50(15):9156-9174.

https://doi.org/10.1021/acs.iecr.6b01930.

10. Ierapetritou MG. Floudas CA. Effective continuous-time formulation for short-term scheduling.

1. Multipurpose batch processes. Ind Eng Chem Res. 1998;37(11):4341-4359.

https://doi.org/10.1021/ie970927g.

11. Shaik MA. Floudas CA. Novel Unified Modeling Approach for Short-Term Scheduling. Ind Eng

Chem Res. 2009;48(6):2947-2964. https://doi.org/10.1021/ie8010726.

12. Li J. Floudas CA. Optimal Event Point Determination for Short-Term Scheduling of Multipurpose

Batch Plants via Unit-Specific Event-Based Continuous-Time Approaches, Ind Eng Chem Res.

2010;49(16):7446-7469. https://doi.org/10.1021/ie901842k.

13. Tang QH. Li J. Floudas CA. et al. Optimization framework for process scheduling of operation-

dependent automobile assembly lines. Optim Lett. 2012;6(4):797-824.

https://doi.org/10.1016/0098-1354(93)80015-F
https://doi.org/10.1016/0098-1354(95)00186-7
https://doi.org/10.1021/ie000683r
https://doi.org/10.1021/ie020923y
https://doi.org/10.1016/j.ces.2004.12.023
https://doi.org/10.1021/acs.iecr.6b01930
https://doi.org/10.1016/j.compchemeng.2007.05.007

 35

https://doi.org/10.1007/s11590-011-0303-5.

14. Seid R. Majozi T. A robust mathematical formulation for multipurpose batch plants. Chem Eng

Sci. 2012;68(1):36-53. https://doi.org/10.1016/j.ces.2011.08.050.

15. Vooradi R. Shaik MA. Rigorous unit-specific event-based model for short term scheduling of

batch plants using conditional sequencing and unit-wait times. Ind Eng Chem Res.

2013;52(36):12950-12792. https://doi.org/ 10.1021/ie303294k.

16. Li J. Xiao X. Floudas CA. Integrated gasoline blending and order delivery operations: Part I.

short-term scheduling and global optimization for single and multi-period operations, AIChE J.

2016;62(6):2043-2070. https://doi.org/10.1002/aic.15168.

17. Rakovitis N. Zhang N. Li J. Zhang L. A new approach for scheduling of multipurpose batch

processes with unlimited intermediate storage policy. Front Chem Sci Eng. 2019;13:784-802.

https://doi.org/10.1007/s11705-019-1858-4.

18. Méndez CA. Cerdá J. Optimal scheduling of a resource-constrained multiproduct batch plant

supplying intermediates to nearby end-product facilities. Comput Chem Eng. 2000;24(2-7):369-376.

https://doi.org/10.1016/S0098-1354(00)00482-8.

19. Hui C. Gupta A. van der Meulen HAJ. A novel MILP formulation for short-term scheduling of

multi-stage multi-product batch plants with sequence-dependent constraints. Comput Chem Eng.

2000;24(12):2705 – 2717. https://doi.org/10.1016/S0098-1354(00)00623-2.

20. Méndez CA. Cerdá J. An MILP continuous-time framework for short-term scheduling of

multipurpose batch processes under different operation strategies. Optim Eng. 2003;4(1-2):7-22.

https://doi.org/10.1023/A:1021856229236.

21. Mostafaei H, Harjunkoski I. Continuous-time scheduling formulation for multipurpose batch

plants. AIChE J. 2020;66:e16804. https://doi.org/10.1002/aic.16804.

22. Floudas CA. Lin X. Continuous-time versus discrete-time approaches for scheduling of chemical

processes: a review. Comput Chem Eng. 2004;28(11):2109-2129.

https://doi.org/10.1016/j.compchemeng.2004.05.002.

23. Méndez CA. Cerdá, J. Grossmann IE. Harjukoski I. Fahl M. State-of-the-art review of

optimization methods for short-term scheduling of batch processes. Comput Chem Eng. 2006;30(6-

7):913-946. https://doi.org/10.1016/j.compchemeng.2006.02.008.

24. Harjunkoski I. Maravelias CT. Bongers P. et al. Scope for industrial application of production

scheduling models and solution methods. Comput Chem Eng. 2014;62(5):161-193.

https://doi.org/10.1016/j.compchemeng.2013.12.001.

25. Janak SL. Floudas CA. Kallrath J. Vormbrock N. Production scheduling of a large-scale industrial

batch plant. I. Short-term and Medium-term scheduling. Ind Eng Chem Res. 2006;45(25):8234-8252.

https://doi.org/10.1021/ie0600588.

https://doi.org/10.1016/j.ces.2011.08.050
https://doi.org/10.1002/aic.15168
https://doi.org/10.1007/s11705-019-1858-4
https://doi.org/10.1016/S0098-1354(00)00482-8
https://doi.org/10.1016/S0098-1354(00)00623-2
https://doi.org/10.1016/j.compchemeng.2004.05.002
https://doi.org/10.1016/j.compchemeng.2006.02.008
https://doi.org/10.1016/j.compchemeng.2013.12.001
https://doi.org/10.1021/ie0600588

