References
- León-Velarde, F., Maggiorini, M., Reeves, J.T., Aldashev, A., Asmus,
I., Bernardi, L. et al. (2005). Consensus statement on chronic and
subacute high-altitude diseases. High Alt. Med. Biol. 6 ,
147-157.
- Luks, A.M. (2015). Physiology in Medicine: A physiologic approach to
prevention and treatment of acute high-altitude illnesses. J. Appl.
Physiol. 118 , 509–519.
- Hooper, L.V., Littman, D.R., and Macpherson, A.J. (2012). Interactions
between the microbiota and the immune system. Science 336 ,
1268-1273.
- Cho, I., and Blaser, M. J. (2012). The human microbiome: at the
interface of health and disease. Nature Rev. Genet.13 , 260–270.
- Huttenhower, C., Kostic, A.D., and Xavier, R.J. (2014). Inflammatory
bowel disease as a model for translating the microbiome. Immunity40 , 843-854.
- Shreiner, A. B., Kao, J. Y., and Young, V. B. (2015). The gut
microbiome in health and in disease. Curr. Opin. Gastroenterol.
31 , 69–75.
- Schroeder, B.O., and Bäckhed, F. (2016). Signals from the gut
microbiota to distant organs in physiology and disease. Nature Med.22 , 1079-1089.
- Shreiner, A. B., Kao, J. Y., and Young, V. B. (2015). The gut
microbiome in health and in disease. Curr. Opin. Gastroenterol.
31 , 69–75.
- Cho, I., and Blaser, M. J. (2012). The human microbiome: at the
interface of health and disease. Nature Rev. Genet.13 , 260–270.
- Hooper, L.V., Littman, D.R., and Macpherson, A.J. (2012). Interactions
between the microbiota and the immune system. Science 336 ,
1268-1273.
- Huttenhower, C., Kostic, A.D., and Xavier, R.J. (2014). Inflammatory
bowel disease as a model for translating the microbiome. Immunity40 , 843-854.
- Schroeder, B.O., and Bäckhed, F. (2016). Signals from the gut
microbiota to distant organs in physiology and disease. Nature Med.22 , 1079-1089.
- Meer, R.R., Songer, J.G., and Park, D.L. (1997). Human disease
associated with Clostridium perfringens enterotoxin. Rev. Environ.
Contam. Toxicol. 150 , 75-94.
- Veldhuyzen van Zanten, S.J., Pollak, P.T., Best, L.M., Bezanson, G.S.
and Marrie, T. (1994). Increasing prevalence of Helicobacter pylori
infection with age: continuous risk of infection in adults rather than
cohort effect. Journal of Infectious Diseases 169 ,434-437.
- Tong, S.Y., Davis, J.S., Eichenberger, E., Holland, T.L., and Fowler,
V.G. Jr. (2015). Staphylococcus aureus infections: epidemiology,
pathophysiology, clinical manifestations, and management. Clin.
Microbiol. Rev. 28 , 603-661.
- Adak, A., Maity, C., Ghosh, K., and Mondal, K.C. (2014). Alteration of
predominant gastrointestinal flora and oxidative damage of large
intestine under simulated hypobaric hypoxia. Z Gastroenterol.52 , 180-186.
- Adak, A., Ghosh, K., and Mondal, K.C. (2014). Modulation of small
intestinal homeostasis along with its microflora during
acclimatization at simulated hypobaric hypoxia. Ind. J. Exp. Biol.52 , 1098-1105.
- Berrios, J. (1982). Consideraciones sobre la pathologia digestive en
los habitentes de las grandes alturasdel Peru. (In Spanish). Rev
Gastroenterol (Peru), pp. 21-28.
- Wu, T.Y. (2001). Take note of altitude gastrointestinal bleeding.
Newsletter Int. Soc. Mountain Med. 10 , 9-11.
- Saito, A. (1989). The medical reports of the China-Japan-Nepal
Friendship Expedition to Mt. Qomolungma/Sagamartha (Everest). Jap. J.
Mount. Med. 9, 83-87.
- Liu, M.F. (1995). Upper alimentary bleeding at high altitude. In: Lu,
Y.D., Li, K.X., Yin, Z.Y., editors. High Altitude Medicine and
Physiology. (In Chinese). Tianjing: Tianjing Science & Technology
Press, 586.
- Ley, R.E., Peterson, D.A., and Gordon, J.I. (2006). Ecological and
evolutionary forces shaping microbial diversity in the human
intestine. Cell 24 , 837-848.
- Sekirov, I., Russell, S.L., Antunes, L.C., and Finlay, B.B. (2010).
Gut microbiota in health and disease. Physiol. Rev. 90 ,
859-904.
- Bhute, S., Pande, P., Shetty, S.A., Shelar, R., Mane, S., Kumbhare,
S.V. et al. (2016). Molecular characterization and meta-analysis of
gut microbial communities illustrate enrichment of Prevotella and
Megasphaera in Indian subjects. Front. Microbiol. 9 , 657-660.
- Dehingia, M., Devi, K.T., Talukdar, N.C., Talukdar, R., Reddy, N.,
Mande, S.S. et al. (2015). Gut bacterial diversity of the tribes of
India and comparison with the worldwide data. Sci. Rep. 22 ,
18555-18563.
- Ghosh, T.S., Gupta, S.S., Bhattacharya, T., Yadav, D., Barik, A.,
Chowdhury, A. et al. (2014). Gut microbiomes of Indian children of
varying nutritional status. PLoS One 9 , e95547.
- Dethlefsen, L., and Relman, D.A. (2011). Incomplete recovery and
individualized responses of the human distal gut microbiota to
repeated antibiotic perturbation. Proc. Natl. Acad. Sci. 108 ,
4554-4561.
- De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet,
J.B., Massart, S. et al. (2010). Impact of diet in shaping gut
microbiota revealed by a comparative study in children from Europe and
rural Africa. Proc. Natl. Acad. Sci. 107 , 14691-14696.
- Khachatryan, Z.A., Ktsoyan, Z.A., Manukyan, G.P., Kelly, D.,
Ghazaryan, K.A., and Aminov, R.I. (2008). Predominant role of host
genetics in controlling the composition of gut microbiota. PLoS One3 , e3064.
- Goodrich, J.K., Waters, J.L., Poole, A.C., Sutter, J.L., Koren, O.,
Blekhman, R. et al. (2014). Human genetics shape the gut microbiome.
Cell 159 , 789-799.
- Kleessen, B., Schroedl, W., Stueck, M., Richter, A., Rieck, O., and
Krueger, M. (2005). Microbial and immunological responses relative to
high-altitude exposure in mountaineers. Med. Sci. Sports Exerc.37 , 1313-1318.
- Adak, A., Maity, C., Ghosh, K., Pati, B.R., and Mondal, K.C. (2013).
Dynamics of predominant microbiota in the human gastrointestinal tract
and change in luminal enzymes and immunoglobulin profile during
high-altitude adaptation. Folia. Microbiol. (Praha) 58 ,
523-528.
- Li, L., and Zhao, X. (2015). Comparative analyses of fecal microbiota
in Tibetan and Chinese Han living at low or high altitude by barcoded
454 pyrosequencing. Sci Rep. 5 , 1-10.
- Li, K., Dan, Z., Gesang, L., Wang, H., Zhou, Y., Du, Y. et al. (2016).
Comparative Analysis of Gut Microbiota of Native Tibetan and Han
Populations Living at Different Altitudes. PLoS One 11 ,
e0155863.
- Das, B., Ghosh, T.S., Kedia, S., Rampal, R., Saxena, S., Bag, S. et
al. (2018). Analysis of the Gut Microbiome of Rural and Urban Healthy
Indians Living in Sea Level and High Altitude Areas. Sci. Rep.8 , 1-15.
- Tandon, D., Haque, M.M., Saravanan, R., Shaikh, S., Sriram, P., Dubey,
A.K. et al. (2018). A snapshot of gut microbiota of an adult urban
population from Western region of India. PLoS One 13 , e0195643.
- Lepage, P., Leclerc, M.C., Joossens, M., Mondot, S., Blottière, H.M.,
Raes, J. et al. (2013). A metagenomic insight into our gut’s
microbiome. Gut 62 , 146-158.
- Lieberman, T.D., Flett, K.B., Yelin, I., Martin, T.R., McAdam, A.J.,
Priebe, G.P. et al. (2013). Genetic variation of a bacterial pathogen
within individuals with cystic fibrosis provides a record of selective
pressures. Nature Genet. 46 , 82-87.
- Snitkin, E.S., Zelazny, A.M., Montero, C.I., Stock, F., Mijares, L.,
NISC Comparative Sequence Program. et al. (2011) Genome-wide
recombination drives diversification of epidemic strains of
Acinetobacter baumannii. Proc. Natl. Acad. Sci. 108 ,
13758-13763.
- Rasko, D.A., Webster, D.R., Sahl, J.W., Bashir, A., Boisen, N.,
Scheutz, F. et al. (2011). Origins of the E. coli strain causing an
outbreak of hemolytic-uremic syndrome in Germany. N. Engl. J. Med.365 , 709-717.
- Lauber, C.L., Zhou, N., Gordon, J.I., Knight, R., and Fierer, N.
(2010). Effect of storage conditions on the assessment of bacterial
community structure in soil and human-associated samples. FEMS
Microbiol. Lett. 307 , 80-86.
- Carroll, I.M., Ringel-Kulka, T., Siddle, J.P., Klaenhammer, T.R., and
Ringel, Y. (2012). Characterization of the fecal microbiota using
high-throughput sequencing reveals a stable microbial community during
storage. PLoS One 7 , e46953.
- Kultima, J.R., Coelho, L.P., Forslund, K., Huerta-Cepas, J., Li, S.S.,
Driessen, M. et al. (2016). MOCAT2: a metagenomic assembly, annotation
and profiling framework. Bioinformatics 32 , 2520-2523.
- Mende, D.R., Sunagawa, S., Zeller, G., and Bork, P. (2013). Accurate
and universal delineation of prokaryotic species. Nat. Met. 10 ,
881-884. doi: 10.1038/nmeth.2575.
- Paulson, J.N., Stine, O.C., Bravo, H.C., and Pop, M. (2013).
Differential abundance analysis for microbial marker-gene surveys.
Nat. Met. 10 , 1200-1202.
- Zakrzewski, M., Proietti, C., Ellis, J.J., Hasan, S., Brion, M.J.,
Berger, B. et al. (2017). Calypso: a user-friendly web-server for
mining and visualizing microbiome-environment interactions.
Bioinformatics 1 , 782-783.
- Kang, D.D., Froula, J., Egan, R., and Wang, Z. (2015). MetaBAT, an
efficient tool for accurately reconstructing single genomes from
complex microbial communities. Peer J. 3 , e1165.
- Nayfach, S., Rodriguez-Mueller, B., Garud, N., and Pollard, K.S.
(2016). An integrated metagenomics pipeline for strain profiling
reveals novel patterns of bacterial transmission and biogeography.
Genome Res. 26 , 1612-1625.
- Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J. et al. (2012).
SOAPdenovo2: an empirically improved memory-efficient short-read de
novo assembler. Giga Science 1, 1-6.
- Medini, D., Donati, C., Tettelin, H., Masignani, V., and Rappuoli, R.
(2005). The microbial pan-genome. Curr. Opin. Genet. Dev. 15 ,
589-594.
- Jensen, L.J., Julien, P., Kuhn, M., von Mering, C., Muller, J.,
Doerks, T. et al. (2008). eggNOG: automated construction and
annotation of orthologous groups of genes. Nucleic Acids Res.36 , D250-D254.
- Kim, J., Kim, M.S., Koh, A.Y., Xie, Y., and Zhan, X. (2016). FMAP:
Functional Mapping and Analysis Pipeline for metagenomics and
meta-transcriptomics studies. BMC Bioinformatics 17 , 1-8.
- De Filippis, F., Pellegrini, N., Laghi, L., Gobbetti, M., and
Ercolini, D. (2016). Unusual sub-genus associations of faecal
Prevotella and Bacteroides with specific dietary patterns. Microbiome4 , 1-6.
- Khatri, P., Sirota, M., and Butte, A.J. (2012). Ten years of pathway
analysis: current approaches and outstanding challenges. PLoS Comput.
Biol. 8 , e1002375.
- Vogtmann, E., Hua, X., Zeller, G., Sunagawa, S., Voigt, A.Y., Hercog,
R. et al. (2016). Colorectal Cancer and the Human Gut Microbiome:
Reproducibility with Whole-Genome Shotgun Sequencing. PLoS One11 , e0155362.
- Donaldson, G. P., Lee, S. M., and Mazmanian, S. K. (2016). Gut
biogeography of the bacterial microbiota. Nature Rev.
Microbiol. 14 , 1-13.
- Litvak. Y., Sharon, S., Hyams, M., Zhang, L., Kobi, S., Katsowich, N.
et al. (2017). Epithelial cells detect functional type III secretion
system of entero pathogenic Escherichia coli through a novel NF-κB
signaling pathway. PLoS Pathog. 13 , e1006472.
- WHO E.C. (2004). Appropriate body-mass index for Asian populations and
its implications for policy and intervention strategies. Lancet363 , 157-63.
- Nemati, R., Dietz, C., Anstadt, E.J., Cervantes, J., Liu, Y.,
Dewhirst, F.E. et al. (2007). Deposition and hydrolysis of serine
dipeptide lipids of Bacteroidetes bacteria in human arteries:
relationship to atherosclerosis. J. Lipid Res. 58 , 1999-2007.
- Konstantinov, S.R., van der Woude, C.J., and Peppelenbosch, M.P.
(2013). Do pregnancy-related changes in the microbiome stimulate
innate immunity? Trends. Mol. Med. 19 , 454-459.
- Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T.,
Mende, D.R. et al. (2011). Enterotypes of the human gut
microbiome. Nature 473 , 174-180.
- Vandeputte, D., Falony, G., Vieira-Silva, S., Tito, R.Y., Joossens,
M., and Raes, J. (2016). Stool consistency is strongly associated with
gut microbiota richness and composition, enterotypes and bacterial
growth rates. Gut 65 , 57-62.
- Falony, G., Joossens, M., Vieira-Silva, S., Wang, J., Darzi, Y.,
Faust, K. et al. (2016). Population-level analysis of gut microbiome
variation. Science 352 , 560-564.
- Moeller, A.H., Li, Y., Ngole, E.M., Ahuka-Mundeke, S., Lonsdorf, E.V.,
Pusey, A.E. et al. (2014). Rapid changes in the gut microbiome during
human evolution. Proc. Natl. Acad. Sci. 111 , 16431-16435.
- Conlon, M. and Bird, A., 2014. The impact of diet and lifestyle on gut
microbiota and human health. Nutrients 7 , 17-44.
- De Filippis, F., Pellegrini, N., Vannini, L., Jeffery, I.B., La
Storia, A., Laghi, L. et al. (2016). High-level adherence to a
Mediterranean diet beneficially impacts the gut microbiota and
associated metabolome. Gut 65, 1812-1821.
- Wu, G.D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.Y.,
Keilbaugh, S.A. et al. (2011). Linking long-term dietary patterns with
gut microbial enterotypes. Science 334 ,105-108.
- McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., DeSantis,
T.Z., Probst, A. et al. (2011). An improved Greengenes taxonomy with
explicit ranks for ecological and evolutionary analyses of bacteria
and archaea. ISME J. 6 , 610-618.
- Mannucci, P.M., Gringeri, A., Peyvandi, F., Di Paolantonio, T., and
Mariani, G. (2002). Short-term exposure to high altitude causes
coagulation activation and inhibits fibrinolysis. Thromb. Haemost.87 , 342-343.
- Tyagi, T., Ahmad, S., Gupta, N., Sahu, A., Ahmad, Y., Nair, V. et al.
(2014). Altered expression of platelet proteins and calpain activity
mediate hypoxia-induced prothrombotic phenotype. Blood 123 ,
1250-1260.
- Bultink, I.E., Dorigo-Zetsma, J.W., Koopman, M.G., and Kuijper, E.J.
(1999). Fusobacterium nucleatum septicemia and portal vein thrombosis.
Clin. Infect. Dis. 28 , 1325-1326.
- Hamidi, K., Pauwels, A., Bingen, M., Simo, A.C., Medini, A., Jarjous,
N. et al. (2008). Recent portal and mesenteric venous thrombosis
associated with Fusobacterium bacteremia. Gastroenterol. Clin. Biol.32 , 734-739.
- Redford, M.R., Ellis, R., and Rees, C.J. (2005). Fusobacterium
necrophorum infection associated with portal vein thrombosis. J. Med.
Microbiol. 54 , 993-995.
- Koren, O., Spor, A., Felin, J., Fak, F., Stombaugh, J., Tremaroli, V.
et al. (2011). Human, oral, gut, and plaque microbiota in patients
with atherosclerosis. Proc. Natl. Acad. Sci. 108 , 4592-4598.
- Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan,
A., Ley, R.E. et al. (2009). A core gut microbiome in obese and lean
twins. Nature 457 , 480–484.
- Human Microbiome Project Consortium (2012). Structure, function and
diversity of the healthy human microbiome. Nature 486 ,
207–214.
- Zhu, A., Sunagawa, S., Mende, D.R., and Bork, P. (2015).
Inter-individual differences in the gene content of human gut
bacterial species. Genome Biol. 16 , 1-13.
- Ley, R.E., Peterson, D.A., and Gordon, J.I. (2006). Ecological and
evolutionary forces shaping microbial diversity in the human
intestine. Cell 24 , 837-848.
- Scher, J.U., Sczesnak, A., Longman, R.S., Segata, N., Ubeda, C.,
Bielski, C. et al. (2013). Expansion of intestinal Prevotella copri
correlates with enhanced susceptibility to arthritis. eLife2 ,
1-20.
- Dillon, S.M., Lee, E.J., Kotter, C.V., Austin, G.L., Gianella, S.,
Siewe, B. et al. (2016). Gut dendritic cell activation links an
altered colonic microbiome to mucosal and systemic T-cell activation
in untreated HIV-1 infection. Mucosal Immunol. 9 , 24-37.
- Larsen, J.M. (2017). The immune response to Prevotella bacteria in
chronic inflammatory disease. Immunology 151 , 363-374.
- Kovatcheva-Datchary, P., Nilsson, A., Akrami, R., Lee, Y.S., De
Vadder, F., Arora, T. et al. (2015). Dietary Fiber-Induced Improvement
in Glucose Metabolism Is Associated with Increased Abundance of
Prevotella. Cell Metab. 22 , 971-982.
- Maurice, C.F., Haiser, H.J., and Turnbaugh, P.J. (2013). Xenobiotics
shape the physiology and gene expression of the active human gut
microbiome. Cell 152 , 39-50.
- Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman,
F.D., Costello, E.K. et al. (2010). QIIME allows analysis of
high-throughput community sequencing data. Nat. Met. 7 ,
335-336.