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Abstract.In this paper, we study the initial-boundary-value problem (IBVP) for
coupled Korteweg-de Vries equations posed on a finite interval with nonhomoge-
neous boundary conditions. We overcome the requirement for stronger smooth
boundary conditions in the traditional method via the Laplace transform. Our
approach uses the strong Kato smoothing property and the contraction mapping

principle.
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1 Introduction and main results

In this paper, we investigate the initial-boundary value problem (IBVP) of the coupled
Korteweg-de Vries (cKdv) system:
Up + Uggy + 6uU, — 2000, = 0 (1.1)

Uy + Ve + 3uv, =0 (1.2)
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posed on {(z,t) € Q x R*}, where Q = (m,n) is an interval in R, and b is a real positive
constant. Moreover, the system (1.1)-(1.2) has a certain application for describing the inter-
action of two long waves with different dispersion relation [1] [2]. The initial and boundary

conditions of (1.1)-(1.2) are given by (without loss of generality, we choose (m,n) = (0,1)):

u(z,0) = ug(x),v(x,0) = vo(x) (1.3)
U(O, t) = hll(t), U(]_, t) = hlg(t), Ua;<1, t) = hlg(t) (14)
U(Ovt) - h21(t)7v(17t) = h22(t)7vx<1’t) = h23(t) (15)

where ug(x), vo(z), hi;(¢)(i = 1,2; 7 = 1,2,3) are given functions.

For the KdV equation, Bubnov (1979, 1980) studied the general two-point boundary-
value problem posed on a finite interval. Bona and Dougalis (1980) gave the related work
on the BBM-equation. Zhang (1994) studied the Dirichlet boundary conditions posed on a
finite interval and show the global well-posedness in the space H3**1(0,1) for k = 0,1,....
of the KdV system. Colin and Ghidaglia (2001) considered the following initial-boundary

value problem:

Ut + Uy + Ugze = 0,u(x,0) = ¢(x),z € (0,1),£ >0

w(0,8) = hu(t), up(1,1) = ha(t), tsu(1,) = ha(t),t > 0

and gave the locally well-posed on the space H'(0,1).
In this article, we will prove the well-posedness of the nonhomogeneous boundary-value
problem (1.1)-(1.5) in H*(0,7)x H*(0,r) with the assumption that the initial condition lies in

the product space H*(0,7) x H*(0,r) and the boundary condition is drawn from the product

s+1

space H5 (0,T) x H5 (0,T) x H3(0,T) x H

s+1 s+1

5(0,T) x Hs (0,T) x H3(0,T). Without

loss of generality, we choose underlying spatial domain (0,r) = (0,1). Moreover, if (u,v) is
a C°— smooth solution of the IBVP (1.1)-(1.5), its initial conditions ug(z), vo(z) and its
boundary conditions h;;(t), (i = 1,2;5 = 1,2,3) are assumed to satisfy the s-compatibility
conditions:

uor(0) = B (0), uor(1) = ) (0),up, (1) = A% (0)



vor(0) = h (0), v (1) = hS(0), vp,. (1) = A5 (0)

where £k =0,1,..., and h,gf) (t) is the k-th order derivative of h; and

woo () = uo(x), voo() = vo(x)
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where k = 0,1,... Then we give the following definition:

Definition 1.1 (s-compatibility) Let T > 0 and s > 0 be given. (q;, Ay, 52,53) = (uo, vo,

hn, hgl, ]’LIQ, hgg, h13, hgg) € Xs,T X Xs,T 18 said to be s—compatible ’Lf
uor(0) = BSY(0), uor(1) = % (0), v0,(0) = A (0), vor (1) = R (0) (1.6)

holds for k = 0,1,...,[5 — 1] when s — 3[5] < 3, or (1.6) holds for k = 0,1,...,[2] when

uor(0) = h%(0), ugr(1) = K (0), uf, (1) = Al (0)

k k k
v0k(0) = 1 (0), vor(1) = 135 (0), 0(1) = b3 (0)
holds for k = 0,1,...,[2] when s—3[5] > 3, we adopt the convention that Eq.(1.6) is vacuous
if 3] —1<0.
Then we give the main results of this article as the following two theorems:

Theorem 1.2 (Local well-posedness) Assume that T > 0,s > 0, (&, hu, o, 713) = (ug, vo, h11, a1,
hia, hoo, his, has) € X1 X Xsp is s-compatible. Then there exists a T* € (0,T] relying only
on the norm of (¢, hi, ha, hs) in the space Xsr % X1 such that the system (1.1)-(1.5) admits

a unique solution

(u,v) € (C([0,T*]; H*(0,1))NLy([0, T*); H¥(0,1)))x (C([0, T*]; H*(0,1))NLy([0, T*]); H*T(0,1)))



Theorem 1.3 (Global well-posedness) Assume that T > 0 is arbitrary, s > 0, ((E, hu, ho, 713) =
(Uo, Vo, hll, th, hlg, h22, h13, hgg) - HS(O, 1) X H“l(s)(O,T) X H“l(s)(O,T) X H“2(S)(0, T) X
H*(0,1) x H*©)(0,T) x H®(0,T) x H*(0,T) where

( 5) 9
et 20t if 0<s<3
_ 18
p(s) = s+1
if s>3
. 3
( 5! 3
¢ S;g if 0<s<3,
pa(s) = s
— if 5>3
\ 3

where € is any positive constant, the IBVP (1.1)-(1.5) admits a unique solution

(u,v) € (C([0,T); H*(0,1))NLo([0, T); H¥T1(0,1))) x (C([0, T); H*(0,1))NLo([0, T]; H511(0,1))).

Note that X r will be defined later in Section 3, X7 = H*(0, 1) x HS (0,T) x H (0,7) x
H5(0,T).

The rest of this article is organized as follows. In Section 2, we give the smooth properties
of the associated linear problem. A traditional method to consider the corresponding non-
homogeneous boundary-value problem is to render its boundary conditions homogeneous.
However, this needs a stronger boundary smoothing property. In order to overcome this
requirement, we seek an explicit solution formula via the Laplace transform. In Section 3,
we obtain the locally well-posed of (1.1)-(1.5) by using the linear estimates and the fixed

point theory. In Section 4, we show the global well-posedness of the system (1.1)-(1.5).

2 Linear estimates and smoothing properties

In this section, we will study the linear system (1.1)-(1.5), and give various smoothing

—

properties. Let & = (u,v)’,¢ = (uo(:v),vo(x))T,l;i(t) = (hli(t>,h22‘(t))T,ﬁ = (f1, f2)T, the
IBVP (1.1)-(1.5) can be written as

@(x,0) = ¢(x) (2.2)
W(0,) = ha (1), W(1, 1) = ha(t), W, (1,t) = hs(t) (2.3)



then we just need to discuss the linear system (2.1)-(2.3). Firstly, we consider the problem

Wy 4 Wage = 0 (2.4)
w(x, 0) = ¢(x) (2.5)
w(0,t) = 0,w(1, ) = 0,w,(1,¢) =0 (2.6)

with zero forcing and homogeneous boundary conditions. Define A as a linear operator in
the space
LQ(O, 1) X LQ(O, 1)

by

with the domain
D(A) ={g e H*(0,1) x H*(0,1),§(0) = §(1) = §'(1) = 0}

Then the initial-boundary value problem (2.4)-(2.6) is equivalent to the following abstract
evolution equation in Lo(0,1) x L9(0,1)

dw N
= = Aw,@(0) = ¢

By direct computation, we can get that both A and its adjoint A* are dissipative. Then
follows from the standard semi-group theory [4], we know that the operator A is the in-
finitesimal generator of a Cy-semigroup Py(t) in the space Lo(0,1) X Lo(0, 1), where Py(t) =
diag{po(t), po(t)}. For given ¢ € Ly(0,1) x Ly(0,1), the mild solution @ € C(R*; L2(0,1)) x
C(R*; L*(0,1)) to (2.4)-(2.6) can be written in the form of

—

W(t) = Fo(t)o
For given ¢ € D(A), the strong solution @(t) = Py(t)¢ belong to the smaller space
(€(0, 005 H*(0,1) N C(0, 005 Ly(0, 1))) x (C(0, 00; H(0,1) N CH(0, 00; L(0, 1)),

then we discuss the global Kato smoothing property as in the following:

5



Lemma 2.1 For any ¢ € Ly(0,1) x Ly(0,1), there exist a constant C such that the solution

-

w(t) = Py(t)o of (2.4)-(2.6) satisfies
W] | Ly (0,4:51.(0,1)) x Lo (0,411 (0,1)) < CH&HLg(O,l)XLg(O,I)ﬂf >0 (2.7)

Proof. If ¢ € D(A), then the strong solution @(t) of (2.4)-(2.6) belong to the space
C1(0,00; Ly(0,1)) x C1(0, 00; Ly(0,1)) and wi(t) € D(A)for anyt > 0. Multiply (2.4) by 21,
integrate over (0,t) with respect to t and integrate over (0,1) with respect to z. Integrate

by part we can get

t
||U7<'7t)||%2(0,1)xL2(0,1) +/ 1‘712(0:T)d7 = ||¢||%2(0,1)><L2(0,1) (2.8)
0

which gives a boundary smoothing effect. Multiply (2.4) by 2z, integrate over (0,t) with

respect to ¢ and integrate over (0, 1) with respect to x. Integrate by part we can get

1 t 1 1
/ o (x, t)dr + 3/ / wrdrdr = / 2¢?(x)dx (2.9)
0 0 Jo 0

Combing (2.8) and (2.9), we can get a Kato-type smoothing effect (2.7). By choosing a
sequence {(En} C D(A) and using a limiting procedure, we can easily get the general case
about ¢ € Ly(0,1) x Ly(0,1) . O

Then, we consider the problem

W+, = F(x,t) (2.10)
w(z,0) =0 (2.11)
W(0,t) = 0,w(1,t) = 0,w,(1,¢) =0 (2.12)

with non-trivial forcing F and all three boundary conditions set to zero. Then the initial-
boundary value problem (2.10)-(2.12) is equivalent to the following abstract nonhomogeneous

evolution equation

Then follows from the standard semi-group theory [4], for given F € Ly joc(RT; L2(0,1)) x
Lisoc(R*: L3(0, 1)), the mild solution @ € C(R*+; Ly(0,1)) x C(R*; L»(0,1)) to (2.10)-(2.12)
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can be written in the form of @(t) = fg Py(t — 7)F(r)dr. For given F' € D(A) and AF €
Ly joc(RT5 Lo(0,1)) X Ly joe(RT;5 L2(0, 1)), w(t) is a strong solution.

Lemma 2.2 For any Fe Ly joe(RT5 L2(0,1)) X Ly 1oe(R*; Lo(0, 1)), there exist a constant C
such that the solution wW(t) = fot Py(t — 7)F(T)dr of (2.10)-(2.12) satisfies
— 1 =
0| Ly 0,617 0,1)) x La (0,611 (0,1)) < C(L + )2 || F|| 1, (0,43L9(0,1))x L1.(0,4:L2(0,1)) (2.13)

Proof. Without loss of generality, let F' € D(A), Multiply (2.10) by 2, integrate over (0, t)

with respect to ¢t and integrate over (0, 1) with respect to x, we can obtain

t
||“7(‘>t)||%2(0,1)xL2(0,1) "’/0 UTxZ(OaT)dT < CHF”%,l((),t;Lg(O,l))xLl(O,t;LQ(O,l)) (2.14)

Multiply (2.10) by 2z, integrate over (0,¢) with respect to ¢ and integrate over (0,1) with

respect to x, we can obtain

1 t el
/0 2 (x, t)d + 3/0 /o Wodwdr < 21+ OF|IZ, 04000)x01 0620,y (2:15)

Combining (2.14) and (2.15), we can get (2.13). Similar to the proof of Lemma 2.1, we can
also get the general case about Fe Ly joe(RY; La(0,1)) X Lygoc (RT3 La(0,1)). O

Next, we turn to discuss the problem

w(z,0) =0 (2.17)
B(0,1) = hy(t), B(1, ) = ho(t), we(1, 1) = hs(t) (2.18)

with zero forcing but with all three non-trivial boundary condition. By using the Laplace
transform, we can get an explicit solution formula of (2.16)-(2.17) [9].

We can convert (2.16) to the following system via the Laplace transform with respect to t.

su(x, ) + Waga (2, 5) = 0 (2.19)
@(0,5) = hy(s), W(1, s) = ha(s), Wa(1, s) = hy(s) (2.20)
where

J(zx,s) = / e S (x, t)dt
0
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~ +oo
hj(S) = /0 €7Sthj(t)dt,j = 1,2,3

we can write the solution of (2.19)-(2.20) in the form

(3(1‘; s) = & (s)eMOT 4 & (s)eM2 T 4 @ (s)et )T

I
S
—

V2)
S~—
Q)
>
<
=
8

j=1
where \; = \;(s),j = 1,2, 3 satisfy the characteristic equation
NM4s=0 (2.21)
and &;(s) = (cj1(s), cja(s))T satisfy the system
1 1 1 e e Iy oo
M) ehals) - Aals) C21 C2 | = | ha1 hao
A () Npet2(s) Ngetsls) C31 C32 hat has
by Gramer’s rule
Ajp(s)
= =1,2,3,p=1,2
C]P A(S) ’ y 4y 9y P )

where A(s) is the determinant of the coefficient matrix, A(s) # 0 and A}, is the determinant
of the matrix with the column j replaced by the vector (ﬁlp(s), flgp(s), izgp(s))T,j =1,2,3;p=
1,2. By taking the inverse Laplace transform of 127(.%, s), we get

1 [

w(z,t) = — e*i(z, s)ds

21 S oo

r+100
— st .71 )\] s)d )\]( )d T
Z 27?2/ S Z 2m/ s)

r > 0,and the solution of (2.19)-(2.20) also can be written as

where @, (x,t) is the solution of (2.19)-(2.20) with hj = 0,5 # n,j = 1,2,3. Thus @, (z,t)

can be written as follows:

Wy (z,1)
3 i 3 i
1 r+100 tAjl (8) () 1 r+100 A o (S) ’ .
— = s ) (s xhn d = st =72mn /\J(s)xhn d T
( -1 2mi r—100 ‘ A(‘S) ‘ 1(S> > JZ:; 2mi /r 100 ‘ A(S> ‘ 2(8) S)



= [Qn(O)(x),n=1,2,3 (2.22)

where Aj, ,(s) are get from Aj,(s) by letting ﬁnp(t) =1, ﬁkp(t) =0,k#n,kn=1,23 We

know that

r+i00 A (s , ~ ' r+iR A (S . R
/T_ioo eSt—JA(’Sg )e)‘f(s)xhnm(s)ds = limp_ oo /T_ZR GSt—JA(’Sg )e’\f(s)mhnm(s)ds

where j,n = 1,2,3;m = 1,2. The above integrable functions are analytic on the whole
space. According to the Cauchy integral theorem, there are the following characteristics in

the connected closed loop @ :

A’mn(s) ; 7 A‘mn<8) j j
St I Ay (s)ds = / +/ +/ +/ et =Ll Ay (s)ds = 0.
/Q 8 s = ([ + [+ [+ [t (s)

Q,ly,ls,13,14 are shown in Fig.1, a € [0, r].

r+iR

r-ik

4

Fig.1

The integrals along the two lines cancel one another. Because we can easily verify

(a+iR)t Ajpn((a+iR)) e)\j((aJrz'R))zilnm((a_'_iR))

—q Am’VL((a_ZR)) i((a—i 7 ;
(a—iR)t =gm, Aj((a—iR))x .
A((a +iR)) ¢ ¢ hnm((a—iR)).

A((a —iR))

(&

So

Njmn(5) 3 (eras Ajmn(8) a(9)af
St IR Ay (8)ds +/ et =L AT, (s)ds = 0.
/b A(s) () o Al *

9



Then we can obtain

Ajmn(8) 5 (o1 tBjman(S) 3(o)ai
eSt—Im ] (s)ds +/ EImn A2 As)eg - (s)ds = 0.
[k B)ds + )T AG) )

Which means

r+iR A R iR A ~
/ estM@/\j(s)ﬂﬂhnm(S)ds = / eStMe’\f(s)’”hnm(s)ds =0.
r—iR A(s) —iR A(s)

So we can also make s = ip® and get the w,(x,t) in the form

Un(2,1)
3 3
1 e WAVIRIC), X (s) 1 ’ Ajin(s) 2
_ = s ) (s xhn d = st=g1n )\](s)xhn d
Q. 27Ti/0 AGs) € s +) 5| e AGs) € 1(s)ds.
7=1 7=1
3 ; 3
L7 i Djan(8) s 1 [° Ajon(s) 3
= s n smhn d = st —J2,n )\](s)mhn d T
ZZM 0 ‘ A(s) ‘ 2(s) S+Z2m' /_iooe A(s) c 2(s)ds)
7j=1 7j=1
= Z(m,t) + Iﬁn(x,t),n =1,2,3
Letting s = (—ip)® = ip®, p € [1,00), we can get three roots from the characteristic

equation (2.21):

1+iv3 C1-iV3
5 )

AL (p) = ip, Az (p) = —ip(——==), A3 (p) = —inl
then we can get I,(z,t), IT,(z, t) as follows:
f( t)
— Z 27r/ it >\+(p)xAA]1 ?;)) 3025t (p)dp Z 27T/ it p)xAAJTE(/)))B 2+ (p)dp)”

IT,(z,1t)

L o Biale), e DNanlo) .
_ E —ip’t A7 (p)z JLTZ E —zp t )\ Jj2,n 27— T
(j:1 27T/1 € € A,(p) p7 27T/ 3p th(p)dp) )

n =1,2,3, where b/, (p) = ha1(ip?), by replacing s with ip? and Aj(s) with AT (p), we give
A*(p) and A%, (p)(i = 1,2) from A(s)andAj;,.(s), A" (p) = A*(p), A () = AT (p)

ji,n ji,m

and ho.(p) = hi(p),j = 1,2,3;i = 1,2. The next Lemma 2.3 is given by Bona, Sun and
Zhang [9].
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Lemma 2.3 For any f € Ly(0,00),let Kf be the function defined by

+oo
bre) = [ W

where y(p) is a continuous complex-valued function defined on (0, 00) satisfying the following
two conditions:

(i) There exist § > 0,b > 0 such that

R
sup WIS,

0<pu<d 2 N

(ii) There exist a complex number o+ i3 such that

lim M

H—r00 /jj

=a+1if.
Then there ezists a constant C' such that for all f € Ly(0,00),

1k fllza00) < CUE™™ O FOllagrry + I1F llza(rs)

Thus we can give the following Lemma 2.4, which can be proved easily by using the definition

of the vector function space and the corresponding norm.

Lemma 2.4 For any F € L3(0,00) x Ly(0,00),let KF be the function defined by
+oo
WF ) = [ e F
0

where y(p) is a continuous complex-valued function defined on (0, 00) satisfying the following
two conditions:

(i) There exist 6 > 0,b > 0 such that

0<pu<d 2 N

(ii) There exist a complex number o+ if8 such that

lim M =a+10.
p—oo 4

Then there ezists a constant C' such that for all F € Ly(0,00) x Ly(0, 00),

|’k?"L2(0,1)XL2(0,1) < C(HeRW(')?(‘)\|L2(R+>xL2(R+) + H?(')HLQ(RﬂxLQ(m))
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We will give estimates for w, ws, ws in the following three lemmas. First, consider o (x,t) =

L(z,t) + IT, (z,¢).

Lemma 2.5 For any S € |0, 3], there exist a constant C' such that

||u71HLQ(R+;H1(O,1))XL2(R+;H1(0,1)) + OSS"IEEOO H/U_jl(a t)HLQ(O,l)XLQ(O,l) S C||h1||H%(R+)XH%(R4(?23)

and d,wy € Cy([0,1]; La(RT)) x Cy([0,1]; Lo(RT)) with

b 10201 (2, D) Loty xrary < Clall g o ird (mey (2.24)
for all by € Hs(R*) x H3(R™).
Proof. Since A\i(s) + Aa(s) + A3(s) = 0, we have
1 1 1
Aq1a(s) = Dy2a(s) =10 e e = (A3 — /\2)6_’\1
0 /\26)‘2 )\36)‘3
1 1 1
_ _ A A _ —A2
A21’1<8) = AQQJ(S) = e’ () e = ()\1 — )\3)6
)\16)\1 0 )\3€>\3
1 1 1
A31’1<8) = A3271(S) = 6)\1 6/\2 0 = ()\2 — )\1)67)\3
)\16)\1 )\2€>\2 0
1 1 1
As)=| e e eM | =3 —N)e ™M+ (A —Ag)e 2+ (A — A)e ™
)\1€>\1 )\26)\2 )\36)\3
we know s = ip3,s0
Af11(p) N 6773,0’ Az14(p) N e,\/gp, A:—ﬁg(ﬂ) ~1,
Alp) A(p) A(p)
Ats4(p) N 6_73,)7 A2+2,1(P) _\/gp7 Azp1(p) 1,
Alp) A(p) A(p)
as p — +00. Then we can estimate the solution @ (z,t) = Iy (z,t) + I1,(x,t).
3 3
17 s e Da(p) L[ s e D (0) o
_ - ip3t A (p)x j1,1\P 2h+ - ip3t AT (p)x —J2,1 302h T d T
(; 27?/1 o —A+( 22 /1 e ) o Male)p)

12



by using Lemma 2.4, we obtain

+oo
nmwmmmm_az/

+ +

+oo
||h (0 3p2|2dp+022/ ||h ()3

let € = maz{| 45, | 545 ) p € [1,00),5 = 1,230 = ¥, we get

1B 0 emon < C / 32 (1t () + 70 12)30%)dp
o /_\"+ > 2 0 —i - —
= C/o (30%[hy (p)|*3p°)dp < C/O Ng‘/o e hy(r)dr|*dp < CthHH%(m)XH%(m)

__)
t > 0, we can obtain the estimate of II(z,t) similar to that appearing in the proof of

(x,t).

=

HI[l( )HL2 0,1)xL2(0,1) < CthHHs R+)><H3(R+) t> 0.

Thus (2.23) holds. Then for 8,1;(x,t), Let (u) be the real solution of u = p3, p € [1,00),

we have

= (ii/Jroo eip3t()\+( ))ekj(p)zA;—l,l(p)g 2il+< )d
B = 21 J; i \P A+ (p) P p)ap,

3

Lo e A (0),, o
> 5 /1 PN (p))e @) A”i’l(p) 3y (p)dp)"
J=1

3 +
1 /+°° - + An@(ﬂ))
(;:1 o o j( ( )) ( (N)) 11( )
3
Lo e D (6(1))
= ipt \ + AT (0(p)z j2,1 . T
> | e o S
By using the Plancherel Theorem with respect to ¢, we deduce
3
- [ + e D (0(1))
2 § { At (o 1,1 .
Haxll(x,-)"LQ(R+)XL2(R+) S P %/0 ‘)\j(&( ))e J( (W)z _AJ—F(Q(M» ’2‘}111(2/0' du
oo Ao (0() o
)\+ o)z —J2,1 2 N
+§ o) S Pl P
then
[ 10 e < s 10500 i
xe
(0(1)) 3,5
< C / AT (0(w))? sup et Oz J11—2h ip)|*d
E | xe(o’l)! i 000) [P (i) | dpe

13
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- o a0 o
4030 [N OUNP sup [N 00 ZEEED Plhi) Pa
0

ey xe(0,1) ( (1))
3 4o A
<oy [ s miin wldu+02/ (14 1) i) P
j=1"0
< Ol

H3 (R)x H3 (R+)
Next, we give the continuity of 8,7, from[0,1] x [0,1] to Ly(R*) x Ly(R*), for any z €
[0,1],2 € [0, 1] we have

10211 (2, ) = Ou L1 (@0, Iy () Lot

3 +
1= e AT OG0y D (0) o
Sogr | NG 00— o ) S Bl i)
j=1
(

IN

3 +
1 [t Tome ot e D21 (0(1)
+Z% /0 AT (0()) (e CEDw — eAg 0oy ZIZo 2l 12 (ign) Py

IA

3
1 Feo 2,7 . 2 7 . 2
02% / (14 03 ()| + Vonaligs) )

“+o0o —~
e 32—/ (14 )3 oy (i) Pl
j=1 <7 Jo

let 22 — 20, by using the Fatou’s Lemma, we have ||, 11 (x, -) — 8,11 (o, -)||%2(R+)XL2(R+) — 0,
thus I1(z,-) € Cy([0,1]; Ly(R1)) x Cy([0,1]; Ly(RY)). Similar to that appearing in the proof

of 9,1, (x,t), we get

/ 10z —”1 ||L2 RT)x La(RT) du < le(lopl) 10, ]]1( >||%Q(R+)><L2 RT) = O”thH?3 (RY)x H3 (RY)
and IT;(z,-) € Cy([0,1]; Lo(R")) x Cy([0,1]; Ly(RT)). This complete the proof. O

The properties of ws(z,t), ws(x,t) is similar to w(z,t) in Lemma 2.5, and the proof of

wy(x,t), ws(x,t) is same as that appearing in the Lemma 2.5, we omit it. We note that

ATl,Q(P) ~1 Aﬁ,z(/)) ~1 A2+1,2(p> - e_ép
A(p) ’ A(p) ’ A(p) ’

A;2,2(:0) N 6_73,) A§172(p) - A?EQ(P) ~1
A(p) ’ A(p) ’ A(p)
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Aﬁ,S(P) ~pt AE,:%(P) ~ph A;L:s(ﬁ) N p_le_gp
Alp) A © A
AT AT
A;E,g(p)A(p) ~ p—1€—§p7 L(p) -1 32,2(P) ~ o

Alp) P A(p)

We have the following Lemmas:

Lemma 2.6 There exist a constant C such that

Hu72||LQ(R+;H1(0,1))xLQ(R+;H1(o,1))+ Sup HU72('7t)HL2(0,1)xL2(0,1)
0<t<+o0

< Clhal

H3 (Rt ><H3(R+)

and Oywy € Cy([0,1]; La(RT)) x Cy([0,1]; Lo(R)) with

sup ||0pwa(z,t)|| LyrtyxLary < Cllh2ll 1

2€(0,1) HE (R¥)xH3 (RY)

for all hy € H3(R*) x H3(R™).
Lemma 2.7 There exist a constant C such that

||U73||LQ(R+;H1(0,1))ng(R+;H1(0,1))+ sup ||U73('>t)||L2(o,1)xL2(o,1)
0<t<+oo

< COllhsl aaryxa(rt)s
and 8,05 € Cy([0,1]; La(R1)) x Cy([0,1]; Ly(RT)) with

sup ||0xwa(z, )| Ly(r+yxLary < Cllh2ll 1

2€(0,1) HE (R+)xH3 (RY)

for all hy € Ly(RY) x Ly(R™).

We write the solution  of (2.16)-(2.17) as

= ZQj(t)Hj = Q(1)H

(2.25)

(2.26)

(2.27)

(2.28)

where the spatial variable z is suppressed and (); are as defined in (2.22). For s > 0,7 > 0,

let

Hor=HS (0,T)x H+ (0,T) x H3(0,T)

15



For any H € Hsr X Hs 1, we give

1132, ere, o = 02

=2
)+Hh2HHL}1 01 + 3HH3 (0,T)xH3(0,T)"

s+1
=0 xHIF (0,7 (0,T)xH 3 (0,

Then we have the following theorem:

Theorem 2.8 Assume that H € Ho oo X Ho oo, the problem (2.16)-(2.18) admits a unique

solution
w(z,t) = [Qu(t) H](z)

which belongs to the space (Cy(RT; La(0,1))NLa(RT; HY(0,1)) x (Cy(RT; Lo(0,1))NLa(RT; HY(0,1)))

with
|G| Lo(mtH1 (0,1))x Lo (R (0,1)) T+ SUDtefo,+00) W (5 1) | 2o(0,1) S CH [ 215,00 xHo.00
and 9,0 € Cy([0, 1]; Lo(R™)) x Cy([0, 1]; Lo(RT)) with
sUPe(0,1) 1020 (T, )| Lor+yxLa(rH) < ClNH 30,00 xHo o0

where C' is a constant.

3 Local well-posedness

In this section, the local well-posedness of the nonlinear IBVP will be discussed.

Wy + Wyyy + B =0 (3.1)
@(x,0) = () (3.2)
W(0,t) = hy(t), W(1, 1) = ho(t), W, (1,1) = hs(t) (33)

6u, —2bv,

where W = (u,U)Taﬁg: (U0($)7U0(x))Tvﬁi(t) = (ha(1), haa(1))", B = (3% 0

T>0,s>0,1let

) . For any

Xor = H*(0,1) x H5 (0,T) x H% (0,T) x H3(0,T)

Yor = {w:@ € (C([0,T]; H(0,1)) N Ly([0, T); H11(0,1))) x (C([0,T); H*(0,1))

16



NLy([0, T]; H*71(0,1))), @, € (C([0,1]; L2(0,T)) x C([0,1]; Lo(0, 7))}
define the norm || - [y, ,. as:
@y, » = (’W’%([O,T];Hs(o,l)) + ’leiz([O,T];H5+1(O,1)) + HwﬂCH%’([O,l];LQ(O,T)))E7

W € Y; r, then we have the following lemma:

Lemma 3.1 For any s > 0,7 >0 and @ € Y p, we have

| BW|| L, (j0,77: 1 (0,1)) x Ly ((0,7): 1 0,1)) < C(T'2 +T'3) || ng,T (3.4)

6u, —2bv,

where C' is a constant,B =
v, O

) ,b 15 a real positive constant.

Proof. We will give the proof for 0 < s < 1, and we can get the proof of other values of s

by similar method. First, we consider s =0 :

| BW|| 1., ([0,77:2.2(0,1)) x L1 ([0,7]; L2 (0,1))

T
< 6/ “u('vt)ux('at)HLQ(O,l)dt—l—2b/
0 0

T

T
||v(-,t)vx(-,t)||L2<o,1>dt+3/ [ul- D)va (-, 1) Lo0.0)d
0

by applying the Poincare inequality, we have

[ul )va ()l Lo0.1) < [Jul Dll oo 102 (5 )] 22 0.0)

1 1
< O(fluls ) lzaon + al D2, oyl (DI o) 2, 8) ooy

then by integrating these two terms with respect to ¢, we have

T T
/ (-, ) Logo,0) 1V (- 1) || Lo 0,1y dt < SUPOStST||U<'7t)HLz(O,l)/ |2 (-, E) || Lo 0,1y
0 0
1 T ) 1 1 52
< Tzsupo<i<r||u( ) oo Noa( ) 1,0,0)d0)2 < CT2 |4y, .,
0

and

T 1 1
/O||U('at)HiQ(o,l)Hux('at)||22(o,1)||vx('at)||L2(0,1)dt
T

IA

3 3
vz (-, t)||22(0,1)dt)4

T
1 1
supoiallu(, )12 o ( / e )12, 00 /

1 —
CT3 HwH%’Q’T‘

IA

17



Then

T
1 1 .
/ [u(, )oa (-, 1) [ a0ydt < C(T2 + T3)||a]3, .,
0
similarly

T
/ (s )t (s ) ooy dt < C(T2 + T3) |l .
0

T
1 1 =
/ [0, t)ve (s )| oo ydt < C(T2 + T3) |3, ..
0
Then,
- 1 1 -
| B\ 1, (0,7 L0,y < L1 (0,73 220,1)) < C(T'2 4 T3)|[dl[5, .-

For s = 1, we note that

s )0a (o Ollnony < et ) oy + B0 ) oty + 1 )0 ) o
<ot + THER, , + 1@R,, + 13)3,,)
>~ Yo, zllYo, T z Yo, T

< (T2 +T5)|d))%,,
similarly
T
1 1 -

/0 [ul- tyue (-, ) | oydt < C(T2 +T5) |3, .,

T 1 1 =02
(s )va (- D)l ydt < C(T2 +T173)||dly, .-

0

Then

| BWI| L, (0,771 (0,1)) % L ([0.7):1.0,1))

T T T
6/ ||u(-,t)ux(-,t)HHl(o,l)dt+zb/ ||v(-,t)vx(-,t)HHl(O,l)dt+3/ e )0 (- )1 oy
0 0 0

1 1 -
< CO(T2 +T9)|lwl3, ,

IN

Next, we will use the nonlinear interpolation theory to give the estimate (3.4) with 0 <
s < 1[3]. Let By and B; be two Banach space such that B; C By with the inclusion map

continuous. Let F € By x By, F = (f1, f2)7,G = (g1, ¢2)7, define

K(fi7€> = Z.nfgiGBl{Hfi - giHBo + €||gi||B1}’ K(F_;E) = K(flv E) + K(f%e)v

18



where € > 0,7 = 1,2. For § € (0,1),p € [1, +00], define

o 1
[Bo, Biley = Bop = {fi € Bo: || fillB,,, = (/ K(f;, €)Pe "7 1dt)» < +o0}
0

with the usual modification for the case p = 4+o00. Then By, is a Banach space with the

normal || - ||p,,. Given two pairs of indices (61,p1) and (62,p2) as above, then we have
91 < 92
(01,p1) < (01, p1), which means
01 = 02,01 > p2
If (61,p1) < (61,p1) then By, ,, D By, p, with the inclusion map continuous. The next two

Lemmas are given by Bona and Scott [3].

Lemma 3.2 (Bona and Scott, 1976) Let f € By,0 <0 <1 and 1 < p < oco. Suppose that for

all € > 0 there are g;(€) € B; such that f = go(€) + g1(€) with ||g;(e)|

B, < Gi(€) and such that

M; = (f;° Gi(e)Pei=0P=1de)s < +oo. Fori=0,1. Then f € By and | fl|5,, < My M}
Lemma 3.3 (Bona and Scott,1976) Let f € By, f. € By satisfy the inequality

If = fellgo +ell fellB, < 2K(f €)

for some € > 0. If f € By, for some 6 and p with 0 <0 <1 and 1 <p < oo, then

1fell 3y, < 3I11l5,,-

Then we can give the following Lemmas, which can be proved easily by using the definition

of the vector function space and the corresponding norm.
Lemma 3.4 Let F € By x By, 0 <0 <1 and 1 < p < oo. Suppose that for all € > 0

BiXBi S Q’L(e) and

such that M; = (fooo Qi(e)pe(ifg)pflde)% < +o00. For i = 0,1. Then F e By, x By, and

there are Gi(€) € B; x B; such that F = Go(e) + Gi(e) with ||Gi(e)]

"ﬁ||39,px39,p < My~ 'MY
Lemma 3.5 Let F' € By X By, F € B, x B satisfy the inequality
1E = Eellyxso + el Fell pixs, < 2K (Fe)
for some e > 0. If F € By, x By, for some 6 and p with 0 <0 <1 and 1 <p < oo, then
HFLHB(,,prO,p < 3|’ﬁ\|39,px39,p-

19



With these preliminaries in hand, the abstract result on boundedness of mappings of inter-

mediate spaces can be established.

Lemma 3.6 Let B] and B be Banach spaces such that B} D B] with continuous inclusion
mappings, j = 1,2. Let X\ and q lie in the ranges 0 < A < 1 and 1 < q¢ < 400. Suppose A is
a mapping such that

(i).A: B;, x By, — B§ x Bj and for F=(fi,f),G=(g1,9) € Bj, % B},

JAF = AGllgzrs < CollFlly xmy, + 1Glny e MIF = Gllpyem

and

(ii).A: B} x B! — B2 x B2 and for H = (hy, hy) € B! x B},
1AH | g2z < Cr(1H |3y x5y Al 151

where C; are continuous nondecreasing functions, j = 0,1. Then if (6,p) > (X, q), A maps
B}, x B}, into B} x B3 and for F € B} x B} .
[AF g cn. < CUF sy cm DIFlsy o )

Proof. Let F € By, x By, and for each € > 0, choose F. € B} x B! such that

1 = Fellgyspy + €l Fllpyxm < 2K(F, ).

Let (0,p) > (X, q), then B; , C By ,, we have Fe By - From Lemma 3.5, we get ||F1||Bi «Bl <
> ’ ’ »q »d

3HﬁHBi,qui,q' Hypotheses (i) and (ii) therefore yield

|AF = AR \lppms < ColllFllsy oy + 1Elly sy E = Ellycny

< 2041 Fllpy cpy VK(F, o
and

ellAFcllpzxn: < CrlllFellsy 1 )ellFellpixn;

< 20131 Fll g e VK (F ).
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Let Go(e) = AF — AF.,G(€) = AF., we get AF = Gy(e) + G4(¢), then

+o00

M; =2C((4— )| Fllpy m V([ K(F 65 ds)»
»q »q 0
=204 = DI Py o I Fllng sy
1 =0,1. From Lemma 3.4, we establish the stated conclusion. 0]
To prove that estimate(3.4) holds for 0 < s < 1, choose B} x Bj = Yy, B x B} =

Yar, B3x B2 = L1(0,T; Ly(0,1))x L1 (0, T: L(0, 1)), B2x B2 = L, (0, T: H'(0,1))x L1 (0, T; H(0, 1)).

For given 0 < s < 1, choose p = 2,0 = s. Then
B, x By, = Li(0,T; H*(0,1)) x L1(0,T; H*(0,1)), Bg,, x By, = Ysr.

In this case, assumption(ii) of Lemma 3.6 has been proved with s = 1. So we only need

to verify assumption(i). Let &i,dy satisfy (3.1)-(3.3), @) = (ug,v1)?,ds = (ug,v2)T, By =
6u, —2bvi, By — O6Uoy —2bv9, then
3U1$ 0 31}233 0

| B1dy — Bala| 1y (0,75L5(0,1))x L1 (0,7 L (0,1))

T T T

<6 / lera (tr — ) ooy + 6 / usuirs — o)l zaonydt + 20 / lora(or — v2) oo dt
0 0 0

T

T T
+25/ V2 (V12 — V22| Lo(0,1)dt + 3/ V12 (w1 — u2) || Lo(0,1)dt + 3/ w2 (V12 — Voz) || Lo(0,1)dt,
0 0 0

by the Poincare inequality, we have

”ulw("? t)(ul('v t) - u2('? t))HLQ(OJ)

IN

lur(-t) — w2, )| oo, |uaa (- )l Logo,1)

1 1
< Cllua (1) = wal D)l Loy + (1) = ua( )N £y oy lluaa () — 2w ()1 £y 0.1 1022 (5 D)l La0.1)

integrating these two terms with respect to ¢, we have

T
/ ur (- 1) = u2(-, )| Loco,n) Ju1a (-, )] oo,y dt
0
T
< sup ||U1(',t)—U2('at)\|L2(0,1)/ |10 (5 1) || o0,y dE
0<t<T 0

T
1 1
< Thsuprcierllun(+0) = s Dllaon ([ a0
0
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1., — — —
< CTz|dy — dallyy (191 vo 2 + 162 ve )

and

T 1 1
/ Jur () = wa (5 )17, 0,0y lua (1) — w2 (D7, 01y luaa (5 )l 2ag0,1y
0
T

T
1 1 2 3
< SUPOStSTHu1<'7t) - u2('7 t)“[2,2(071)(/0 ||u1x('7 t) - u2x<'7t)|’%2(0,1)dt)2(/0 ||ulx<’7t)||22(0,1)dt)4

1 — — — —
< CTs ||w1 - w2HYO,T<||w1||Y0,T + ||w2||YO,T)'
Other calculations in the same way, we can get

| B1id1 — Bo@s || £, (0.7:25(0,1)) x L1 (0,73 L20,1)) < C(T'2 + T'3)[|1 — Wallyy (161 |1vo 1 + |62 7)-

Thus assumption(i) of Lemma 3.6 is satisfied. Estimate(3.4) is established for 0 < s < 1 by
invoking Lemma 3.6. The proof of Lemma 3.1 is now complete. 0

Next, we discuss that the IBVP(3.1)-(3.3) is locally well-posed on the space X 1.

Lemma 3.7 Assume that ((E, h:,h;,h;) € Xor X Xor,T > 0, then there exists a T* €
(0,T] such that the IBVP(3.1)-(3.3) admits a unique solution W € Y+, where T* relies
on ||(, hﬁl,h_;,h_;,)||X0YTXx0,T. Furthermore, for any T' < T*, there exists a neighborhood U
of (5, hy, ha, h;) such that the IBVP (3.1)-(3.3) admits a unique solution in the space Yo 1,
where (Q,Z, h_fl, ﬁg, ]’jg) € U and the corresponding solution map from U to Yy is Lipschitz

continuous.

Proof. We covert (3.1)-(3.3) to an integral equation (w(t) ~ w(z,t)) :

w(t) = Pg(t)$+ Qv(t)H — /Ot Py(t — 7)Bwi(T)dr

where Qp(t) is given in Section 2. Assume that (qg, hq, h;, h;,) € Xor X Xor,Sp, = {W €
Yo, |W]|y, o <7}, where r > 0,6 > 0 are constants. Let Sy, is a closed, convex and bounded
subset of the space Y( 4, then Sy, is a complete metric space. We give a map I' on Sy, as

follows:

(i) = Py(t)p + Qu(t)H — /0 t Py(t — 7)Bui(7)dr, @ € Sy,
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then we have

Hr<w)HY0,0 < COH((b’ hl? h27 h3)HX0,T><X0,T + ||Bu_jHLl(Oﬁ;LﬂO:l))><L1(079;L2(071))

o oo o o 1 FENT.
< CO||(¢7 hl? h27 h3)HX0,T><X0,T + Cl<92 + 93)”11)“%/0’9
where Cy, C'y are constants, choosing r > 0,6 > 0 so that
r= 200”(957 l;l» h_;v h_;) ||X0,T><X0,T

C1(67 +65)r <

N | —

then
IT(@)||v, , < 7,0 € Spyr

we can get

- — ]' — —
[T () — T(ha) |lyp,p < §Hw1 — Wal|yy

where W, Wy € Sp,. Which means that the map I' is a contraction mapping of Sp,. And its
fixed point @ = I'(w) is the unique solution of IBVP (1.1)-(1.5) in Sy, O
The next lemma gives an estimate for solution of the following forced linear problem (3.5)-

(3.7) in the space Y; 1, where 0 < s < 3.

w(z,0) = o) (3.6)
B(0,1) = by (t), B(1, ) = ha(t), wo(1,t) = hs(t) (3.7)

Lemma 3.8 Assume that T > 0,s € [0,3],s # 3,3, for given F e Ws([0,T]; L(0,1)) x
WSL([0,T];

L5(0,1)), (¢, by, by, hs) € X1 X Xsr satisfying the compatibility conditions



then there exists a unique solution W € Ysr of (3.5)-(3.7) and

|l » < C([(, h1 ha, i3)] (3.8)

XooxXor T 1l s o120 w2 (013 L20.0))

where C' is a positive constant. Furthermore, if s = 3, we have W, € Yo and

—

|@ellve.r < CUIB, s hay ha) || xs px Xz + |1 E w0120,y x Wt (0,77 L2(0.1)))-

Proof. Using the linear estimates obtained in Section 2, for (qy, hz, h;,h;) € Xor x Xor
and F € L;(0,T; Ly(0,1)) x L1 (0, T; Ly(0,1)), there exists a solution @ of (3.5)-(3.7) satisfies

w € Yo and

—

||U_j||YO,T < C'(H(gb, hla h27 h3)||X0,T><X0,T + HFHLl(O,T;Lz(O,l))><L1(0,T;L2(0,1))) (39)

where C'is a constant. Let Z'= j;, then the system (3.5)-(3.7) can be written as

Z(x,0) = F(z,0) — ¢" (x) (3.11)
Z(0,t) = K4 (t), 2(1, 1) = By(t), Z,(1, 1) = R4(t) (3.12)

from (3.9) we can get the solution Z(z,t) of system (3.10)-(3.12) satisfies

||5||Y0»T < C(HFt”L1(0,T:L2(0,1))xL1(0,T;L2(0,1)) + H(F(’ O) - ¢,/,(I)7 hlla h,27 h/3)HXO,T><XO,T)
let
¢ —
@(ant) = [ 2ar)ir +
0

then we get

t

— — — —

Ry(T)dT + $(0) = hy(t) — hi(0) + $(0) = I (t)

= ¢()
/ (0, 7)dr + $(0) =

/ (1,7)dr + ¢(1) =

0

O

—» - — — —

7 H(T)dT + 6(1) = h(t) — ha(0) + (1) = hal?)

c\c\

/;;:17'd7'+¢ /0 dT+¢ 1) = Es(t)_53<0)+$(1):ﬁ3(t)

0
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then
t iy
(2, 1) + Taaa (2, 1) = F(z,8) + / Zralr, )7+ F"(2)
0
t
= Z(x,0) +/ Fi(z,7)dr + ¢" (x) = F(x,t)
0
thus w(x,t) is a solution of system (3.5)-(3.7), then we have
Woge = F — W, = F — 2

thus @ € Y31 and (3.8) holds with s = 3.

The estimate(3.8) holds for 0 < s < 3 will be established by invoking Lemma3.6. Let
B} x B} = Xor x Xor x L1(0,T; La(0,1)) x Ly1(0,T; Ly(0,1)), B} x Bl = X37 X X37 X
W0, T; Ly(0,1)) x W0, T; Ly(0,1)), B2 x B2 = Yor, B} x B? = Yyr. Let A be the
solution map of the IBVP(3.5)-(3.7): @ = A(¢, hy, ha, hs, F). For given 0 < s < 3, choose
p=20=2% Then, Bf, x Bf , =Y,p,Bj, x By, = Xor x Xgp X W31(0,T; Ly(0,1)) x
W30, T; Ly(0,1)). In this case, assumption(ii) of Lemma3.6 has been proved with s = 3. So
we only need to verify assumption(i). Let o, = A((EM hzl, h;b h;l, ﬁl),(ﬁg = A((Z_sé, h:g, h;2, hgg, ]32), Z=

W1 — Wy. Then 2 satisfies the following problem:

Zﬁ+5xx$:ﬁl_ﬁ2
5(1?,0):51—52

2(0,t) = hyy — hyg, Z(1,8) = hay — ha, Za(1,8) = hgy — hsy.

Similar to the proof of Lemmad.1, the result for values of 0 < s < 3 can be established by
Lemma3.6 and (3.9).
For a given s € R and € being R or a finite interval (0, L), we define H*(Q)) as the

restriction of the space H*(R) to Q2 :

Q) ={fla | f € H*(R)}

with

1l = inf{I|f sy f € H*(R), fla = f}.

25



Other equivalent definitions of H*(£2) can be found in [16]. The space H$(R") is the subspace
which is the closure of the class of functions in H*(R) whose support lies in R*. It transpires
that the standard interpolation space [H;(R"), L*(R")]s = H?(R') for 0 < # < 1 and that
[Hy(RY), L*(R%)]g = HJ(R") for 0 < 6 < 1,6 # %. For the special case § = 3, this inter-
polation gives the Lions-Magenes space HO%0 which is neither algebraically nor topologically
equivalent to Ho% (R*). Similar remarks apply to bounded domains. So, for the convenience
of our discussion of the traces of functions in H*(R), we cut two points for s = %, 5= % The

proof is complete. O

Lemma 3.9 For given T > 0,8 > 0. Assume that ((5, h_i,h_;,h_é) € Xsr x Xgr satisfies

the s-compatibility conditions, then there exists a T* € (0,T] such that the IBVP (3.1)-

(3.3) admits a unique solution © € Y, 1+, where T* relies on ||(¢, hy, ha, hs)| XorxXypr 0Nd
o e Yiosjr,j = 0,1,2,...,[5] = 1,[3]. Furthermore, for any T' < T*, there exists a
neighborhood U of (¢, hy, ha, hs) such that the IBVP (3.1)-(3.3) admits a unique solution in
the space Y1/, where (1/7, ﬁl,ﬁQ,ﬁg) € U and the corresponding solution map from U to

Y v is Lipschitz continuous.

Proof. Let (q;, hz, hz, h;) € X1 x X, satisfy the s-compatibility conditions, » > 0,6 >
0.Sp, is a collection of functions Z in the space (C([0,0]; L2(0,1)) N Ly(0,6; H'(0,1))) x
(C([0,0]; Ly(0,1)) N Ly(0,0; H(0,1))) satisfying

07 € Ya0,j =012, [5] - 1

o'z e Ys-3151,0,

and
) o
||at3 Z 3/3,3[%],9 + Z HatJEHYS,Q S r
j=0
define

2]-1
Voo = Yogpzyo x T Yo

then the set Sy, is a closed, convex and bounded subset of the space )y via the mapping

7= (2,07, ... ,81{5]2) = Z and therefore is a complete metric space in the topology induced
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from )Y 9. For any given Z € Sy, consider the following system

wi" + @), = E(x,1) (3.13)
w(x,0)® = gp(z) (3.14)
@ ®(0,1) = B (1), 7P (1, 1) = b (1), TP (1,£) = B (1) (3.15)
where
E(z,t)
: k! () (k=) : k! () (k—4) : k! (k—i)\T
:_(333:(23,!(%_ TR )—bax(zj!(k_ T ),38I(Zﬁzl Dpzs 7))
Jj= Jj=0 Jj=0

(3.16)

k=0,1,2,...,[5] and W) = Ofdf, 2 B) = gF 2y, 2P = 9F 2y 1 k)( t) is the k-th order derivative

of fzj(j =1,2,3) and

do() = plx)
Or(x) = = (1 (2) + By (@) + (@5]( )br—i-1(x)))
satisfy the following compatibility conditions
G1(0) = 1 (0), r(1) = Ry (0), (1) = B (0)
define a map I from Sy, to the space Vg, similar to Lemma 3.3, we have

Ty < O, Frs hay hy) | xo oo + C(02 +605)] 2],

where Z = (21, 29)7,C is a constant independent of h1, ha, by, and 6. Thus, with an ap-
propriate choice of r and 6, the map I' is a contraction mapping of Sp,. Its fixed point
W = I'(W) € Sp, is the unique solution of (3.5)-(3.7). Thus in case s < 3, the proof is
complete.

When s > 3, we have:

o5 € (C([0,6); H*(0,1)) N Ly([0, 0); H(0,1))) x (C([0,0); H*(0, 1)) N L ([0, 6]; H*(0,1)))
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@ € Yiggz o (C([0,6) H*=3(0,1)) 1 Lu([0, 0] H*-%8(0,1))
x(C((0, 0] 7*-51(0, 1)) N Ly ([0, 0); 7**155)(0,1)))

where j =0,1,...,[3] — 1 and &k = [3]

— 1, we get
. (151-1) e
gL _ [] ) (30, Z CJ[] > A0 15 —J))
& ) _(151-1-9) N ) s (21-1-9)
=003 Clyn'a )30 Cly o’ )
=0 =0

then we have

@50 e (C((0,0); H55(0,1)) 1 Lo ([0, 0); H+715)(0,1)))

x(C([0,6); H1512(0, 1)) 0 Ly([0, 0); B 72150, 1))

which means

e (C(0,0]; H*(0,1)) N Ls([0, 6]; H*1(0, 1)) x (C([0, ]; H*(0,1)) N Lo([0, 6]; H*1(0, 1))

ol e (C([0,6]; H*%(0,1)) N Ly([0,0); H*17%(0,1))) x (C([0,8]; H*=3(0,1))
ﬂL?([Ov 9]7 Hs+li3j(0’ 1)))

where j =1,2,...,[3] — 1 and

(C([0,6]; HE1(0,1)) N Ly([0, ]; H*7361(0,1)))
x(C([0,0); H**131(0,1)) N Lo ([0, 0); H731(0, 1))

The proof is complete.

4 Global well-posedness

In this section, we discuss the global well-posedness of the nonlinear IBVP (3.1)-(3.3).
For any fixed T" > 0, s > 0, and € > 0, we set

Zor=H*(0,1) x HH5(0,T) x HH 5 (0,T) x HH 5% (0,T), (0< s < 3);

Zs,T = Xs,T7 (S 2 3)
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Then, we have the following prior H*®—estimate for global smooth solutions of the nonlinear

IBVP(3.1)-(3.3).

Lemma 4.1 Assume s > 0,T > 0, then for any smooth solution to the nonlinear IB-

VP(3.1)-(3.3), denoted &, we have:

mexeo,n) < Cll(6, by, hy, hs)

supo<i<r||&(-, )] ZorxZors (4.1)

where C' is a constant.

Proof. First, we consider the case that s = 0. We divide & into two parts as & = Wy + W

such that J; satisfies:

(«Ult + (Ijlzma: - 67 (42)
W (ZE, O) - 77/7([)3), (43)
@1(0,8) = hy(t),31(1,1) = ha(t), Bra(1,) = hy(t), (4.4)

where

(@) = (1= 2)h1(0) + why(0) + x(1 — 2) (h3(0) — ha(0) + =1 (0)), &1 = (ur,v1)";
and o, satisfies
Wt + Wogee = —B(W1 + W), (4.5)
G (,0) = p(a) — p(x), (4.6)
@2(0,t) = 0,da(1,¢) = 0, Dy (1,¢) = 0, (4.7)
where B = (g:ji —Qé)vx) Wy = (ug,v9)T, then u = uy + ug,v = v; + vy9. According to

Lemma 3.8, we see

vir < C|(, o, hay h)|

||('L_j1 XS,TXXS,T'
By Multiplying (4.5) by &s and then integrating the product over (0,1) with respect to x,

we have

d . _ o R
%HMZ(Wt)”%g(O,l)XLg(O,l) < [[B@a|| 20,0 x Lo (0,0) |91 | Lo (0,1)x L2 (0,1)
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+|| Ba|| £5(0,1)% L (0,1) 1692 £2(0,1)x L2(0,1)
with a similar discussing in the proof of Lemma 3.1, the following can be deduced:
1Bl L20,1)xL20.1) < Clld2| L20,1)xL20,1)-

Then, by applying the Gronwall’s inequality, the estimate (4.1) with s = 0 follows.

Next, for the cases that s = 3. Let 2= J;, such that 2" satisfies:

Z + Zoge + Bid + BZ =0, (4.8)
#(x,0) = ¢, (4.9)
20,8) = hy (£), Z(1,1) = h (1), Z,(1,1) = hy (1), (4.10)

where & = (u,v)?,7 = &; = (ug,v))T, B = (ZZj _ng’”> .B, = (gzz _2gvt"”> L (z) =
—¢"(x) — Bo(z). Then, for the system(4.8)-(4.10), there exists a constant C' > 0 such that

for any 7" < T,
HZHYO,T’ < CH(¢ vh/h h/2= hé)HXo,TXXO,T + C(T/2 + T/S)HWHYO,T”ZHYO,T’
Let T" < T satisfies C(T"z + T/%)”Q”YO,T =1 then

||5||Y0,T/ < 20” (gg*, l_i/l? 5/27 }_ié)HXO,TXXo,T‘

Since 1" depends on [|d||y, .., it depends on (&, a, oo, H3)HZO,T><ZO,T' Therefore, we have

||Z||YO,T S Cl||<¢7 hl? h27 h3) ||Z37T><Zg,T7

where €y is a constant depends on T and ||(, hy, ho, lﬁzg)HZO’TXzM. Since 7 = —(Wyqe + BW),
the estimate (4.1) with s = 3 follows.

The estimate (4.1) for values of 0 < s < 3 can be established by Lemma 3.6, which is a
consequence in interpolation theory. To see this, we take By X B} = Zor x Zor, B] X B =
Zsrx Zyr, B2 x B2 = C([0,T]; Ly(0,1)) x C([0, T]; L2(0, 1)), B2 x B2 = C([0, T]; H(0, 1)) x
C(]0,T); H3(0,1)). We assume (¢, hy, ha, hs) satisfy s-compatibility condition.

Let A be the solution map of the IBVP(3.1)-(3.3): @ = A(¢, by, by, hs). For given s with
0 < s < 3,choosep = 2,6 = £. Then By xBj , = C([0,T]; H*(0,1))xC([0,T]; H%(0,1)), Bj , %
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Bj, = Zs1wx Z . In this case, assumption(ii) of Lemma 3.6 corresponds to (4.1) with s = 3,

which we have already proved. So we only need to verify assumption(i).

Let ¢y = A(¢17h11,h21,h31),072 = A(¢2,h12,h22,h32),§ = — c31,6«71 = (UbUl)T,@ =

—2b —2b
(ug,v2)T, By (gzlx Ole) By = (gifl’ sz) satisfy
1x 2z

By Lemma 3.8, we see for any 0 < 7T < T,

I€llv, 0 < CUI( D1, v, Ba, hat) — (G2, o, Baa, s | o0
+|| B16d1 — Bala|| 1,077 L2(0,1))x L1 (0,77 L(0,1)) )
- o — — - - — — 1 1 - —
< C(I(1, hars hory hsr) — (@2, huz, hag, hao) || xg o xx00 + C(T72 + TIE)HSHYO,T/ 1€ 11vo.-

With a similar discuss in the proof of s = 3, we can deduce:

HgHyom < C(H(<;b ﬁn, 521, ﬁm)”zo,ﬂzo,;p + H(G;z, 512, 522, 532)szxzw)-

We take 7" such that C/(T"z + T’%)||g||yoyT = 1, then we have

I\E’HYW < 20(|(¢1, hnr, han, Bigt) — (o, haa, 5227}_1’32)”)(07Txxw)-

Since 7" only depends on ||E||YO,T, which in turn only depends on ||(¢1, A1y, hiat, Ii31) | Zo % Zo =+

H(égz, B2, hao, ]_7:32)HZO,T><ZO,T7 one can arrive at

HgHYO,T < C(H(qsla h117h21> h'31)”Z0,T><ZO,T + H(¢27 hl?a h’227h‘32)HZO,T><ZO,T) ’

(61, Fvas ars st) — (B, iy oy Fuso) || o X -

by a standard extension argument. Therefore, we see assumption(i) of Lemma 3.6 is satisfied.

Estimate (4.1) for 0 < s < 3 is established by invoking Lemma 3.1.
Next, we give the proof for the cases that 3 < s < 6, and the cases that s > 6 can be

established by the same method. Let @ be a smooth solution of the IBVP(3.1)-(3.3), we set
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Z = &, satisfies(4.8)-(4.10), then for the system(4.8)-(4.10), there exists a constant C' > 0

such that for any 0 < 7" < T,

1Zlly_, 1 < CI(S, huy by, B3|z, gz, g + C(T72 + T'3)||5

o
Y31 ”ZHYS,;J,,T/?

Let T' < T satisfies (T2 + T'3)||&

_1
Y, sr = 3, then

1Zlly, v < 2C1(, b1, o, B3) 2, px 2,

Since 7" depends on |[vecw||y,_, ., it depends on (&, oy, o, his) | 2, 7x 7,0+ Lherefore, we have

1Zlly,_yr < Cill(, B, o, Ri3)|

ZS,TXZS,T :

Consequently, we have

1G]y, < CIN(D, B, bz, ho) 2, 7x 2,

This complete the proof. 0

Directly, we obtain the following theorem:

Theorem 4.2 For any T > 0,s > 0 the IBVP(3.1)-(3.3) with s-compatible condition
(5, ﬁl,ﬁg,ﬁg) € Zso X Zsr, admits a unique solution & € Yy such that 8,?@ € Yo s

forj=0,1,...,[3]. Furthermore, the corresponding solution map is Lipschitz continuous.

Acknowledgments This work is supported by the NSFC (No. 11731014, No.11571254).

References

[1] R.Hirota and J.Satsuma, Soliton solution of a coupled KdV equation, Phys.Lett, 85 (1981),
407-408.

[2] Q.R.Chowdhury and R.Mukherjee, On the complete integrability of the Hirota-Satsuma sys-
tem, J.Phys.A, Math Gen, 17 (1977), 231-234.

[3] Bona.J.L, Scott.L.R, Solutions of the Korteweg-de Vries equation in fractional order Sobolev
spaces, Duke Math.J, 43 (1976), 87-97.

[4] Pazy.A, Semigroups of Linear Operators and Applications to Partial Differential Equation-
s, Applied Mathematical Sciences 44. New York-Berlin-Heidelberge-Tokyo:Springer-Verlag,
(1983).

32



[5]

[11]

[12]

[13]

[15]

[16]

Zhang.B.Y, A remark on the Cauchy problem for the Korteweg-de Vries equation on a periodic
domain, Diff.Integral Eq, 8 (1995), 1191-1204.

Zhang.B.Y, Analyticity of solutions for the generalized Korteweg-de Vries equation with re-
spect to their initial datum, STAM J.Math.Anal, 26 (1995), 1488-1513.

Zhang.B.Y, Taylor series expansion for solutions of the KdV-equation with respect to their
initial values, J.Funct.Anal, 129 (1995), 293-324.

Zhang.B.Y, Exact boundary controllability of the Korteweg-de Vries equation on a bounded
domain, STAM J.Control Optim, 37 (1999), 543-565.

Bona.J.L;, S.M.Sun, B.Y.Zhang, A Nonhomogeneous Boundary-Value Problem for the
Korteweg-de Vries equation posed on a finite domain, Communications in Partial Differen-
tial Equations, 28 (2003) 1391-1436.

Colin. T, Ghidaglia.J.M, An initial-boundary-value problem for the Korteweg-de Vries equation
posed on a finite interval, Advances Diff.Eq, 6 (2001), 1463-1492.

Bona.J.L, Dougalis.V.A, A n initial- and boundary-value problem for a model equation for
propagation of long waves, J.Math.Anal.Appl, 75 (1980), 503-522.

Bona.J.L, Pritchard. W.G, Scott.L.R, An evaluation of a model equation for water waves,
Philos.Trans.Royal Soc. London Ser.A, 302 (1981), 457-510.

Bona.J.L, Smith.R, The initial-value problem for the Korteweg-de Vries equation, Phi-
los. Trans.Royal Soc. London Ser.A, 278 (1978), 555-601.

Bubnov.B.A, Generalized boundary value problems for the Korteweg-de Vries equation in a
bounded domain, Diff.Eq, 15 (1979), 17-21.

Bubnov.B.A, Solvability in the large of nonlinear boundary-value problems for the Korteweg-de
Vries equations, Diff.Eq, 16 (1980), 24-30.

J.L.Lions, E.Magenes, Non-homogeneous boundary value problems and applications, vol.1,
Spring-Verlag, Berlin-Heidelberg-New York, 1972.

J.L.Bona, S.M.Sun, B.Y.Zhang, Nonhomogeneous boundary-value problems for one-
dimensional nonlinear Schroding equations, J.Math. Pures Appl, 109(2018), 1-66.

33



	Introduction and main results
	Linear estimates and smoothing properties
	Local well-posedness
	Global well-posedness

