In mycobiome studies, most primers currently designed and promoted as broadly-fungal specific exclude the deep-branching and evolutionarily ancient fungal or fungal-like organisms in specific phyla (e.g. ChytridiomycotaGlomeromycota and Oomycota). In turn, these taxa must  be targeted by group-specific (e.g. Glomeromycota) or broadly eukaryotic primers (e.g. ChytridiocotaOomycota) to generate amplicons that sufficiently capture such taxonomic groups (Geisen et al. 2019; Lucking et al. 2020; Řezáčová et al. 2019; Stockinger et al. 2010; Wurzbacher et al. 2016). Previous efforts have applied universal fungal primers to analyze arbuscular mycorrhizal fungal communities in both root and soil samples, and reveal similar alpha-diversity estimates using such an approach as compared to sequencing amplicons generated with taxon-specific primers, albeit with much shallower depth. This is because the representation of Glomeromycota in the amplicons generated by supposedly fungal-specific primers is often suppressed as compared to Asco- and Basidiomycota, particularly when working with soil samples (Berruti et al. 2017). 
References
3. Carr A, Diener C, Baliga NS, Gibbons SM. 2019. Use and abuse of correlation analyses in microbial ecology. ISME J 1.
4. Young IM, Crawford JW. 2004. Interactions and Self-Organization in the Soil-Microbe ComplexNew Series.
5. Vos M, Wolf AB, Jennings SJ, Kowalchuk GA. 2013. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol Rev. Oxford University Press.
6. Or D, Smets BF, Wraith JM, Dechesne A, Friedman SP. 2007. Physical constraints affecting bacterial habitats and activity in unsaturated porous media - a review. Adv Water Resour 30:1505–1527.
7. Strong DT, De Wever H, Merckx R, Recous S. 2004. Spatial location of carbon decomposition in the soil pore system. Eur J Soil Sci 55:739–750.
8. Ananyeva K, Wang W, Smucker AJM, Rivers ML, Kravchenko AN. 2013. Can intra-aggregate pore structures affect the aggregate’s effectiveness in protecting carbon? Soil Biol Biochem 57:868–875.
9. Erktan A, Or D, Scheu S. 2020. The physical structure of soil: Determinant and consequence of trophic interactions. Soil Biol Biochem.
10. Bar-On YM, Phillips R, Milo R. 2018. The biomass distribution on Earth. Proc Natl Acad Sci U S A 115:6506–6511.
11. Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N. 2018. A global atlas of the dominant bacteria found in soil. Science (80- ) 359:320–325.
12. Becker JM, Parkin T, Nakatsu CH, Wilbur JD, Konopka A. 2006. Bacterial activity, community structure, and centimeter-scale spatial heterogeneity in contaminated soil. Microb Ecol 51:220–231.
13. Wolfe BE, Mummey DL, Rillig MC, Klironomos JN. Small-scale spatial heterogeneity of arbuscular mycorrhizal fungal abundance and community composition in a wetland plant community.
14. Franklin RB, Mills AL. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field.
15. Carini P, Delgado-Baquerizo M, Hinckley ELS, Holland-Moritz H, Brewer TE, Rue G, Vanderburgh C, McKnight D, Fierer N. 2020. Effects of spatial variability and relic DNA removal on the detection of temporal dynamics in soil microbial communities. MBio 11.
16. Štursová M, Bárta J, Šantrůčková H, Baldrian P. 2016. Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiol Ecol 92:fiw185.
17. Ladau J, Eloe-Fadrosh EA. 2019. Spatial, Temporal, and Phylogenetic Scales of Microbial Ecology. Trends Microbiol. Elsevier Ltd.
18. Chernov TI, Zhelezova AD. 2020. Russian Text © The Author(s), 2020. Eurasian Soil Sci 53:590–600.
19. Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. 2016. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol 2:16242.
20. Lennon JT, Muscarella ME, Placella SA, Lehmkuhl BK. 2018. How, When, and Where Relic DNA Affects Microbial Diversity. mbio.asm.org 9:1659–1677.
21. Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. 2013. Evaluating rRNA as an indicator of microbial activity in environmental communities: Limitations and uses. ISME J. Nature Publishing Group.
22. Schostag MD, Albers CN, Jacobsen CS, Priemé A. 2020. Low Turnover of Soil Bacterial rRNA at Low Temperatures. Front Microbiol 11:1–5.
23. Gołębiewski M, Tretyn A. 2020. Generating amplicon reads for microbial community assessment with next-generation sequencing. J Appl Microbiol. Blackwell Publishing Ltd.
24. Coenen AR, Hu SK, Luo E, Muratore D, Weitz JS. 2020. A Primer for Microbiome Time-Series Analysis. Front Genet 11:1–15.
25. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. 2017. Microbiome datasets are compositional: And this is not optional. Front Microbiol 8:1–6.
26. Louca S, Doebeli M, Parfrey LW. 2018. Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome 6:41.
27. Morton JT, Marotz C, Washburne A, Silverman J, Zaramela LS, Edlund A, Zengler K, Knight R. 2019. Establishing microbial composition measurement standards with reference frames. Nat Commun 10.
28. Edgar RC. 2017. Accuracy of microbial community diversity estimated by closed- and open-reference OTUs. PeerJ 5:e3889.
29. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward D V., Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSantis TZ, Petrosino JF, Knight R, Birren BW. 2011. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504.
30. Callahan BJ, Mcmurdie PJ, Holmes SP. 2017. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11:2639–2643.
31. Callahan BJ, Mcmurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. dada2: high-resolution sample inference from illumina amplicon data 13.
32. Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, Kightley EP, Thompson LR, Hyde ER, Gonzalez A, Knight R, Amir CA, Xu ZZ. Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns OBSERVATION Novel Systems Biology Techniques crossm Downloaded from 2:2020.
33. Mcmurdie PJ, Holmes S. 2014. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Comput Biol 10:1003531.
34. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550.
35. Robinson MD, Oshlack A. 2010. A scaling normalization method for differential expression analysis of RNA-seq data.
36. Aitchison J. 1982. The Statistical Analysis of Compositional DataJournal of the Royal Statistical Society. Series B (Methodological).
37. Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C. 2003. Isometric Logratio Transformations for Compositional Data Analysis 1Mathematical Geology.
38. Silverman JD, Washburne AD, Mukherjee S, David LA. 2017. A phylogenetic transform enhances analysis of compositional microbiota data. Elife 6.
39. Coenye T, Vandamme P. 2003. Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729.
40. Klappenbach JA, Saxman PR, Cole JR, Schmidt TM. 2001. Rrndb: The ribosomal RNA operon copy number database. Nucleic Acids Res 29:181–184.
45. Zhang Z, Qu Y, Li S, Feng K, Wang S, Cai W, Liang Y, Li H, Xu M, Yin H, Deng Y. 2017. Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa. Sci Rep 7:1–11.
46. Kleyer H, Tecon R, Or D. 2017. Resolving Species Level Changes in a Representative Soil Bacterial Community Using Microfluidic Quantitative PCR. Front Microbiol 8:2017.
47. Kralik P, Ricchi M. 2017. A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Front Microbiol 8:1–9.
48. Bressan M, Gattin IT, Desaire S, Castel L, Gangneux C, Laval K. 2015. A rapid flow cytometry method to assess bacterial abundance in agricultural soil. Appl Soil Ecol 88:60–68.
49. Frossard A, Hammes F, Gessner MO. 2016. Flow Cytometric Assessment of Bacterial Abundance in Soils, Sediments and Sludge. Front Microbiol 7:903.
50. Piwosz K, Shabarova T, Pernthaler J, Posch T, Šimek K, Porcal P, Salcher MM. 2020. Bacterial and Eukaryotic Small-Subunit Amplicon Data Do Not Provide a Quantitative Picture of Microbial Communities, but They Are Reliable in the Context of Ecological Interpretations. mSphere 5:1–14.
51. Choi J, Yang F, Stepanauskas R, Cardenas E, Garoutte A, Williams R, Flater J, Tiedje JM, Hofmockel KS, Gelder B, Howe A. 2017. Strategies to improve reference databases for soil microbiomes. ISME J 11.
52. Liu J, Meng Z, Liu · Xiaoyue, Zhang X-H. 2019. Microbial assembly, interaction, functioning, activity and diversification: a review derived from community compositional data 1:112–128.
53. Nunan N, Schmidt H, Raynaud X. 2020. The ecology of heterogeneity: Soil bacterial communities and C dynamics. Philos Trans R Soc B Biol Sci.
54. Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, Van Gestel N, Koch BJ, Liu CM, Mchugh TA, Marks JC, Morrissey EM. 2015. Quantitative Microbial Ecology through Stable Isotope Probing.
55. Regalado J, Lundberg DS, Deusch O, Kersten S, Karasov T, Poersch K, Shirsekar G, Weigel D. 2020. Combining whole-genome shotgun sequencing and rRNA gene amplicon analyses to improve detection of microbe–microbe interaction networks in plant leaves. ISME J.
56. Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. 2015. Analysis of composition of microbiomes: a novel method for studying microbial composition.
57. Morton JT, Sanders J, Quinn RA, Mcdonald D, Gonzalez A, Vázquez-Baeza Y, Navas-Molina JA, Song J, Metcalf JL, Hyde ER, Lladser M, Dorrestein PC, Knight R. 2017. Balance Trees Reveal Microbial Niche Differentiation.
58. Nuzzo R. 2014. Scientific method: statistical errors. Nature.
59. Amrhein V, Greenland S, McShane B. 2019. Scientists rise up against statistical significance. Nature. Nature Publishing Group.
60. Wasserstein RL, Schirm AL, Lazar NA. 2019. Moving to a World Beyond “p < 0.05.” Am Stat. American Statistical Association.
61. Benjamin DJ, Berger JO, Johannesson M, Nosek BA, Wagenmakers E, Berk R, Bollen KA, Brembs B, Brown L, Camerer C, Cesarini D, Chambers CD, Clyde M, Cook TD, De Boeck P, Dienes Z, Dreber A, Easwaran K, Efferson C, Fehr E, Fidler F, Field AP, Forster M, George EI, Gonzalez R, Goodman S, Green E, Green DP, Greenwald A, Hadfield JD, Hedges L V, Held L, Hua Ho T, Hoijtink H, Hruschka DJ, Imai K, Imbens G, A Ioannidis JP, Jeon M, Holland Jones J, Kirchler M, Laibson D, List J, Little R, Lupia A, Machery E, Maxwell SE, McCarthy M, Moore D, Morgan SL, Munafó M, Nakagawa S, Nyhan B, Parker TH, Pericchi L, Perugini M, Rouder J, Rousseau J, Savalei V, Schönbrodt FD, Sellke T, Sinclair B, Tingley D, Van Zandt T, Vazire S, Watts DJ, Winship C, Wolpert RL, Xie Y, Young C, Zinman J, Johnson VE. 2017. Redefine statistical significance Strength of evidence from P values.
62. Ioannidis JPA. 2019. Retiring statistical significance would give bias a free pass. Nature. NLM (Medline).