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Abstract. In this article, we introduce a new concept of quantum integrals which is called κ2Tq-
integral. Then we prove several properties of this concept of quantum integrals. Moreover, we present

several Hermite-Hadamard type inequalities for κ2Tq-integral by utilizing differentiable convex func-

tions. The results presented in this article are unification and generalization of the comparable results
in the literature.

1. Introduction

In mathematics, the quantum calculus is equivalent to usual infinitesimal calculus without the con-
cept of limits or the investigation of calculus without limits (quantum is from the Latin word “quantus”
and literally it means how much, in Swedish “Kvant”). It has two major branches, q-calculus and the
h-calculus. And both of them were worked out by P. Cheung and V. Kac [13] in the early twentieth
century. In the same era FH Jackson started worked on Quantum Calculus or q-calculus, but Euler
and Jacobi had already figured out this type of calculus. A number of studies have recently been
widely used in the field of q-analysis, beginning with Euler, due to the vast necessity for mathematics
that models of quantum computing q-calculus exist in the framework between physics and mathe-
matics. Tariboon and Ntouyas [22] proposed the quantum calculus concepts on finite intervals and
obtained several q-analogues of classical mathematical objects. This inspired other researchers and, as
a consequence, numerous novel results concerning quantum analogues of classical mathematical results
have already been launched in the literature. Noor et al. [17] obtained new q-analogues of inequality
utilizing first order q-differentiable convex function. In [1], Alp et al. acquired some bonds for left hand
side of q-Hermite Hadamard inequalities and quantum calculations by using convex and quasi-convex
functions for midpoint form inequalities. For more details, see [13]-[21] and references cited therein.
In various mathematical fields, it has many applications, like number theory, combinatorics, orthog-
onal polynomials, simple hyper-geometric functions and other sciences, quantum theory, physics and
relativity theory. Many of the fundamental aspects of quantum calculus. It has been shown that
quantum calculus is a subfield of the more general mathematical field of time scales calculus. New de-
velopments have recently been made in the research and methodology of dynamic derivatives on time
scales. The research offers a consolidation and application of traditional differential and difference
equations. Moreover, it is a unification of the discrete theory with the continuous theory, from the a
theoretical perspective. Time scales provide a unified framework for studying dynamic equations on
both discrete and continuous domains. In studying quantum calculus, we are concerned with a specific
time scale, called the q-time scale, defined as follows: T := qN0 := {qt : t ∈ N0} see [1]-[10] and ref-
erences cited therein. The Hermite-Hadamard inequality was introduced by Hermite and Hadamard,
see [11]. It’s one of the most recognized inequalities in the theory of convex functional analysis, which
is stated as follows:

Let F : [κ1, κ2]→ R be a convex mapping and κ1 < κ2. Then

(1.1) F
(
κ1 + κ2

2

)
≤ 1

κ2 − κ1

κ2∫
κ1

F (κ) dκ ≤ F (κ1) + F (κ2)

2
.

If F is concave, both inequalities hold in the reverse direction.
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The important purpose of this article is to derive some new quantum integral Inequalities of the
convex function for midpoint formula. Moreover, when q → 1, several examples of Hermite-Hadamard
form inequalities are derived as special cases.

2. Preliminaries of q-Calculus and Some Inequalities

Several fundamental inequalities that are well known in classical analysis, like Hölder inequality,
Ostrowski inequality, Cauchy-Schwarz inequality, Grüss-Chebyshev inequality, Grüss inequality. Using
classical convexity, other basic inequalities have been proven and applied to q-calculus. For more
details, please see, [1, 3, 7, 9, 16, 17, 20, 23].

In this section, we discuss some required definitions of quantum calculus and important quantum
integral inequalities for Hermite-Hadamard on left and right sides bonds.

[n]q =
1− qn

1− q
= 1 + q + q2 + ...+ qn−1, q ∈ (0, 1) .

Jackson derived the q-Jackson integral in [12] from 0 to κ2 for 0 < q < 1 as follows::

(2.1)

κ2∫
0

F (κ) dqκ = (1− q)κ2
∞∑
n=0

qnF (κ2q
n)

provided the sum converge absolutely.
The q-Jackson integral in a generic interval [κ1, κ2] was given by in [12] and defined as follows

κ2∫
κ1

F (κ) dqκ =

κ2∫
0

F (κ) dqκ −
κ1∫
0

F (κ) dqκ .

Definition 1. [22] We suppose that a function F : [κ1, κ2]→ R is continuous. Then qκ1
-derivative of

F at κ ∈ [κ1, κ2] is defined as follows

(2.2) κ1DqF (κ) =
F (κ)−F (qκ + (1− q)κ1)

(1− q) (κ − κ1)
, κ 6= κ1.

Since F is a continuous function from [κ1, κ2] to R, so κ1
DqF (κ1) = lim

κ→κ1
κ1
DqF (κ) . The func-

tion F is said to be q- differentiable on [κ1, κ2] if κ1DqF (t) exists for all κ ∈ [κ1, κ2]. If κ1 = 0

in (2.2), then 0DqF (κ) = DqF (κ) , where DqF (κ) is familiar q-derivative of F at κ ∈ [κ1, κ2]
defined by the expression (see [13])

DqF (κ) =
F (κ)−F (qκ)

(1− q)κ
, κ 6= 0.

Definition 2. [4] We suppose that a function F : [κ1, κ2] → R is continuous, then qκ2-derivative of
F at κ ∈ [κ1, κ2] is defined as follows

κ2DqF (κ) =
F (qκ + (1− q)κ2)−F (κ)

(1− q) (κ2 − κ)
, κ 6= κ2.

Definition 3. [22] We suppose that a function F : [κ1, κ2] → R is continuous, then the qκ1-definite
integral on [κ1, κ2] is defined as follows

κ2∫
κ1

F (κ) κ1dqκ = (1− q) (κ2 − κ1)

∞∑
n=0

qnF (qnκ2 + (1− qn)κ1) = (κ2 − κ1)

1∫
0

F ((1− t)κ1 + tκ2) dqt .

In [1], Alp et al. established the qκ1
-Hermite-Hadamard inequalities for convexity, which is defined as

follows,

Theorem 1. Let F : [κ1, κ2]→ R be a convex differentiable function on [κ1, κ2] and 0 < q < 1. Then
q-Hermite-Hadamard inequalities are as follows:

(2.3) F
(
qκ1 + κ2

1 + q

)
≤ 1

κ2 − κ1

κ2∫
κ1

F (κ) κ1dqκ ≤ qF (κ1) + F (κ2)

1 + q
.
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The authors of [15] and [1] have set certain boundaries for the left and right sides of the inequality
(2.3).
On the other hand, the following new description and related Hermite-Hadamard form inequalities
were given by Bermudo et al.:

Definition 4. [4] Let F : [κ1, κ2] → R be a continuous function. Then, the qκ2-definite integral on
[κ1, κ2] is defined as

κ2∫
κ1

F (κ) κ2dqκ = (1− q) (κ2 − κ1)

∞∑
n=0

qnF (qnκ1 + (1− qn)κ2) = (κ2 − κ1)

1∫
0

F (tκ1 + (1− t)κ2) dqt .

Theorem 2. [4] Let F : [κ1, κ2] → R be a convex function on [κ1, κ2] and 0 < q < 1. Then,
q-Hermite-Hadamard inequalities are as follows:

(2.4) F
(
κ1 + qκ2

1 + q

)
≤ 1

κ2 − κ1

κ2∫
κ1

F (κ) κ2dqκ ≤ F (κ1) + qF (κ2)

1 + q
.

From Theorem 1 and Theorem 2, one can the following inequalities:

Corollary 1. [4] For any convex function F : [κ1, κ2]→ R and 0 < q < 1, we have
(2.5)

F
(
qκ1 + κ2

1 + q

)
+F

(
κ1 + qκ2

1 + q

)
≤ 1

κ2 − κ1


κ2∫
κ1

F (κ) κ1dqκ +

κ2∫
κ1

F (κ) κ2dqκ

 ≤ F (κ1)+F (κ2)

and

(2.6) F
(
κ1 + κ2

2

)
≤ 1

2 (κ2 − κ1)


κ2∫
κ1

F (κ) κ1
dqκ +

κ2∫
κ1

F (κ) κ2dqκ

 ≤ F (κ1) + F (κ2)

2
.

Alp and Sarikaya, by using the area of trapezoids, introduced the following generalized quantum
integral which we will called κ1

Tq-integral.

Definition 5. [2] Let F : [κ1, κ2]→ R is continuous function. For κ ∈ [κ1, κ2]

(2.7)

κ2∫
κ1

F (ξ) κ1
dTq ξ =

(1− q) (κ2 − κ1)

2q

[
(1 + q)

∞∑
n=0

qnF (qnκ2 + (1− qn)κ1)−F (κ2)

]

where 0 < q < 1.

Theorem 3 (q-Hermite-Hadamard). [2] Let F : [κ1, κ2] → R be a convex continuous function on
[κ1, κ2] and 0 < q < 1. Then we have

(2.8) F
(
κ1 + κ2

2

)
≤ 1

κ2 − κ1

κ2∫
κ1

F (κ) κ1d
T
q κ ≤ F (κ1) + F (κ2)

2

3. New generilazed Quantum Integrals

In this section, we introduce to a new generalized quantum integral which is called κ2Tq-integral.
We also prove several properties of this integral.

As can see from Figure 1, the area of nth-trapezoid is

Bn = (1− q) qn (κ2 − κ1)
F
(
qn+1κ1 +

(
1− qn+1

)
κ2
)

+ F (qnκ1 + (1− qn)κ2)

2
.
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Figure 1. Areas of Trapezoids

By summing of the all area of Bn, n = 1, 2, ..., we have

∞∑
n=0

Bn =
(1− q) (κ2 − κ1)

2

[ ∞∑
n=0

qnF
(
qn+1κ1 +

(
1− qn+1

)
κ2
)

+

∞∑
n=0

qnF (qnκ1 + (1− qn)κ2)

]

=
(1− q) (κ2 − κ1)

2

[
1

q

∞∑
n=0

qn+1F
(
qn+1κ1 +

(
1− qn+1

)
κ2
)

+

∞∑
n=0

qnF (qnκ1 + (1− qn)κ2)

]

=
(1− q) (κ2 − κ1)

2

[
1

q

∞∑
n=1

qnF (qnκ1 + (1− qn)κ2) +

∞∑
n=0

qnF (qnκ1 + (1− qn)κ2)

]

=
(1− q) (κ2 − κ1)

2

[
1

q

{
F (κ1)−F (κ1) +

∞∑
n=1

qnF (qnκ1 + (1− qn)κ2)

}
+

∞∑
n=0

qnF (qnκ1 + (1− qn)κ2)

]

=
(1− q) (κ2 − κ1)

2

[
1

q

{
−F (κ1) +

∞∑
n=0

qnF (qnκ1 + (1− qn)κ2)

}
+

∞∑
n=0

qnF (qnκ1 + (1− qn)κ2)

]

=
(1− q) (κ2 − κ1)

2q

[
(1 + q)

∞∑
n=0

qnF (qnκ1 + (1− qn)κ2)−F (κ1)

]

=

κ2∫
κ1

F (ξ) κ2dTq ξ .

Now we can give the following definition.

Definition 6. Let F : [κ1, κ2]→ R is continuous function. For κ ∈ [κ1, κ2],

(3.1)

κ2∫
κ1

F (ξ) κ2dTq ξ =
(1− q) (κ2 − κ1)

2q

[
(1 + q)

∞∑
n=0

qnF (qnκ1 + (1− qn)κ2)−F (κ1)

]

where 0 < q < 1. This integral is called κ2Tq-integral.

Theorem 4. Let F : [κ1, κ2]→ R be a continuous function. Then we have

(3.2) κ2Dq

κ2∫
κ

F (ξ) κ2dTq ξ = −F (κ) + F (qκ + (1− q)κ2)

2
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for κ ∈ [κ1, κ2] .

Proof. From definition of κ2Tq-integral, we have
κ2∫
κ

F (ξ) κ2dTq ξ =
(1− q) (κ2 − κ)

2q

[
(1 + q)

∞∑
n=0

qnF (qnκ + (1− qn)κ2)−F (κ)

]
.

From the Definition 2, we obtain

κ2Dq

κ2∫
κ

F (ξ) κ2dTq ξ

= κ2Dq

{
(1− q) (κ2 − κ)

2q

[
(1 + q)

∞∑
n=0

qnF (qnκ + (1− qn)κ2)−F (κ)

]}

=
1

(1− q) (κ2 − κ)

{
(1− q) (κ2 − κ) q

2q

[
(1 + q)

∞∑
n=0

qnF
(
qn+1κ +

(
1− qn+1

)
κ2
)
−F (qκ + (1− q)κ2)

]

− (1− q) (κ2 − κ)

2q

[
(1 + q)

∞∑
n=0

qnF (qnκ + (1− qn)κ2)−F (κ)

]}

=
1

2q

[
(1 + q)

(
q

∞∑
n=0

qnF
(
qn+1κ +

(
1− qn+1

)
κ2
)
−
∞∑
n=0

qnF (qnκ + (1− qn)κ2)

)

F (κ)− qF (qκ + (1− q)κ2)]

= −F (κ) + F (qκ + (1− q)κ2)

2
.

The proof is completed. �

Theorem 5. Let F : [κ1, κ2]→ R be a function and 0 < q < 1. Then we have

(3.3)

1∫
0

F (ξκ2 + (1− ξ)κ1) 1dqξ =
1

κ2 − κ1

κ2∫
κ1

F (t) κ2dTq t .

Proof. From definition of κ2Tq-integral, we have

1∫
0

F (ξκ2 + (1− ξ)κ1) 1dqξ

=
(1− q) (1− 0)

2q

[
(1 + q)

∞∑
n=0

qnF ([qn0 + (1− qn) 1]κ2 + (1− [qn0 + (1− qn) 1])κ1)

−F (0b+ (1− 0)κ1)]

=
(1− q)

2q

[
(1 + q)

∞∑
n=0

qnF (qnκ1 + (1− qn)κ2)−F (κ1)

]

=
1

κ2 − κ1

κ2∫
κ1

F (t) κ2dTq t .

The proof is completed. �

Theorem 6. Let F : [κ1, κ2]→ R be a continuous function. Then we have

(3.4)

κ2∫
κ

κ2Dq F (ξ) κ2dTq ξ =
(1 + q)F(κ2)− qF(κ)−F(qκ + (1− q)κ2)

2q
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for κ ∈ (κ1, κ2)

Proof. From Definition 2, we have

κ2
Dq F (ξ) =

F (qξ + (1− q)κ2)−F (ξ)

(1− q) (κ2 − ξ)
.

By using Definition 6, we have

κ2∫
κ

κ2Dq F (ξ) κ2dTq ξ

=

κ2∫
κ

F (qξ + (1− q)κ2)−F (ξ)

(1− q) (κ2 − ξ)
κ2dTq ξ

=
(1− q) (κ2 − κ)

2q

[
(1 + q)

∞∑
n=0

qnF
(
qn+1κ +

(
1− qn+1

)
κ2
)

(1− q) qn (κ2 − κ)
− F (qκ + (1− q)κ2)

(1− q) (κ2 − κ)

]

− (1− q) (κ2 − κ)

2q

[
(1 + q)

∞∑
n=0

qnF (qnκ + (1− qn)κ2)

(1− q) qn (κ2 − κ)
− F (κ)

(1− q) (κ2 − κ)

]

=
1 + q

2q

∞∑
n=0

F
(
qn+1κ +

(
1− qn+1

)
κ2
)
−F (qnκ + (1− qn)κ2)]

+
1

2q
[F (qκ + (1− q)κ2) + F(κ)]

=
(1 + q)F(κ2)− qF(κ)−F(qκ + (1− q)κ2)

2q

The proof is complated. �

Theorem 7. Assume that F , g : [κ1, κ2]→ R are continuous functions. Then we have

(3.5)

κ2∫
κ

[F (ξ) + g (ξ)] κ2dTq ξ =

κ2∫
κ

F (ξ) κ2dTq ξ +

κ2∫
κ

g (ξ) κ2dTq ξ

for κ ∈ [κ1, κ2] .

Proof. Using the definition of κ2Tq-integral, we can write that

κ2∫
κ

[F (ξ) + g (ξ)] κ2dTq ξ

=
(1− q) (κ2 − κ)

2q

{
(1 + q)

∞∑
n=0

qn [F (qnκ + (1− qn)κ2) + g (qnκ + (1− qn)κ2)]

−F (κ)− g (κ)}

=
(1− q) (κ2 − κ)

2q

[
(1 + q)

∞∑
n=0

qnF (qnκ + (1− qn)κ2)−F (κ)

]

+
(1− q) (κ2 − κ)

2q

[
(1 + q)

∞∑
n=0

qng (qnκ + (1− qn)κ2)− g (κ)

]

=

κ2∫
κ

F (ξ) κ2dTq ξ +

κ2∫
κ

g (ξ) κ2dTq ξ

which finishes proof. �
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Theorem 8. Assume that F : [κ1, κ2]→ R are continuous functions and α ∈ R. Then

(3.6)

κ2∫
κ

(αF) (ξ) κ2dTq ξ = α

κ2∫
κ

F (ξ) κ2dTq ξ

for κ ∈ [κ1, κ2] .

Proof. Bt the definition of κ2Tq-integral, we have

κ2∫
κ

(αF) (ξ) κ2dTq ξ =
(1− q) (κ2 − κ)

2q

[
(1 + q)

∞∑
n=0

qn (αF) (qnκ + (1− qn)κ2)− (αF) (κ)

]

= α
(1− q) (κ2 − κ)

2q

[
(1 + q)

∞∑
n=0

qnF (qnκ + (1− qn)κ2)−F (κ)

]

= α

κ2∫
κ

F (ξ) κ2dTq ξ .

�

Theorem 9. Assume that F , g : [κ1, κ2]→ R are continuous functions. Then we have

κ2∫
κ

F (ξ) κ2Dq g (ξ) κ2dTq ξ(3.7)

=
qF (ξ) g (ξ) + F (qξ + (1− q)κ2) g (qξ + (1− q)κ2)

2q

∣∣∣∣κ2

κ

−
κ2∫
κ

g (qξ + (1− q)κ2) κ2Dq F (ξ) κ2dTq ξ

for κ ∈ [κ1, κ2] .

Proof. Using Definition 2, we get

κ2Dq (F (ξ) g (ξ))(3.8)

=
F (qξ + (1− q)κ2) g (qξ + (1− q)κ2)−F (ξ) g (ξ)

(1− q) (κ2 − ξ)

= F (ξ)
g (qξ + (1− q)κ2)− g (ξ)

(1− q) (κ2 − ξ)
+ g (qξ + (1− q)κ2)

F (qξ + (1− q)κ2)−F (ξ)

(1− q) (κ2 − ξ)
= F (ξ) κ2Dq g (ξ) + g (qξ + (1− q)κ2) κ2Dq F (ξ) .

By taking κ2Tq-integral of the equality (3.8), we get

κ2∫
κ

κ2Dq (F (ξ) g (ξ)) κ2dTq ξ(3.9)

=

κ2∫
κ

F (ξ) κ2Dq g (ξ) κ2dTq ξ +

κ2∫
κ

g (qξ + (1− q)κ2) κ2Dq F (ξ) κ2dTq ξ
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By applying Theorem 2.4, we have

κ2∫
κ

κ2Dq (F (ξ) g (ξ)) κ2dTq ξ(3.10)

=
(1 + q)F (κ2) g (κ2)− qF (ξ) g (ξ)−F (qξ + (1− q)κ2) g (qξ + (1− q)κ2)

2q

=
qF (ξ) g (ξ) + F (qξ + (1− q)κ2) g (qξ + (1− q)κ2)

2q

∣∣∣∣κ2

κ
.

From the equalities (3.9) and (3.10), we obtain

κ2∫
κ

F (ξ) κ2Dq g (ξ) κ2dTq ξ =
qF (ξ) g (ξ) + F (qξ + (1− q)κ2) g (qξ + (1− q)κ2)

2q

∣∣∣∣κ2

κ

−
κ2∫
κ

g (qξ + (1− q)κ2) κ2Dq F (ξ) κ2dTq ξ .

This completes the proof. �

Theorem 10. Assume that F , g : [κ1, κ2] → R are continuous functions and F(ξ) ≤ g(ξ) for all
ξ ∈ [κ, κ2]. Then we have

κ2∫
κ

F (ξ) κ2dTq ξ ≤
κ2∫
κ

g (ξ) κ2dTq ξ

for κ ∈ [κ1, κ2] .

Proof. Bt the definition of κ2Tq-integral, we have

κ2∫
κ

F (ξ) κ2dTq ξ =
(1− q) (κ2 − κ)

2q

[
(1 + q)

∞∑
n=0

qnF (qnκ + (1− qn)κ2)−F (κ)

]

=
(1− q) (κ2 − κ)

2q

[
(1 + q)

∞∑
n=1

qnF (qnκ + (1− qn)κ2) + qF (κ)

]

≤ (1− q) (κ2 − κ)

2q

[
(1 + q)

∞∑
n=1

qng (qnκ + (1− qn)κ2) + qg (κ)

]

=
(1− q) (κ2 − κ)

2q

[
(1 + q)

∞∑
n=0

qng (qnκ + (1− qn)κ2)− g (κ)

]

=

κ2∫
κ

g (ξ) κ2dTq ξ .

�

Proposition 1. For α ∈ R\ {−1} , we have the following equality

(3.11)

b∫
x

(b− s)α bdqs =
1 + qα

2 [α+ 1]q
(b− x)

α+1
.
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Proof. Using the definition of κ2Tq-integral, we have

κ2∫
κ

(κ2 − ξ)α κ2dTq ξ =
(1− q) (κ2 − κ)

2q

[
(1 + q)

∞∑
n=0

qn (κ2 − (qnκ + (1− qn)κ2))
α − (κ2 − κ)

α

]

=
(1− q) (κ − κ1)

2q

[
(1 + q)

∞∑
n=0

qn (qn (κ2 − κ))
α − (κ2 − κ)

α

]

=
(1− q) (κ2 − κ)

2q

[
(1 + q) (κ2 − κ)

α
∞∑
n=0

(
qα+1

)n − (κ2 − κ)
α

]

=
(1− q) (κ2 − κ)

α+1

2q

[
(1 + q)

1− qα+1
− 1

]
=

1− q
1− qα+1

1 + qα

2
(κ2 − κ)

α+1

=
1

[α+ 1]q

1 + qα

2
(κ2 − κ)

α+1
.

The proof is completed. �

4. Hermite-Hadamard Inequalities for κ2Tq-integral

In this section, we present some Hermite-Hadamard type inequalities for κ2Tq-integral by utulizing
convex functions .

Theorem 11. Let F : [κ1, κ2]→ R be a convex continuous function on [κ1, κ2] and 0 < q < 1. Then
we have

(4.1) F
(
κ1 + κ2

2

)
≤ 1

κ2 − κ1

κ2∫
κ1

F (κ) κ2dTq κ ≤ F (κ1) + F (κ2)

2

Proof. Since F is differentiable function on [κ1, κ2], there is a tangent line for the function F at the
point κ1+κ2

2 ∈ (κ1, κ2). This tangent line can be expressed as a function Ψ1 (κ) = F
(
κ1+κ2

2

)
+

F ′
(
κ1+κ2

2

) (
κ − κ1+κ2

2

)
.

Figure 2. Graphs of a convex function F and some tangent lines
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Since F is a convex function on [κ1, κ2], then we have the following inequality

(4.2) Ψ1 (κ) = F
(
κ1 + κ2

2

)
+ F ′

(
κ1 + κ2

2

)(
κ − κ1 + κ2

2

)
≤ F(κ)

for all κ ∈ [κ1, κ2] (see Figure 2). From Theorem 10, we have

κ2∫
κ1

Ψ1 (κ) κ2dTq κ ≤
κ2∫
κ1

F (κ) κ2dTq κ .

By Definition 6, we have

κ2∫
κ1

Ψ1 (κ) κ2dTq κ

=

κ2∫
κ1

[
F
(
κ1 + κ2

2

)
+ F ′

(
κ1 + κ2

2

)(
κ − κ1 + κ2

2

)]
κ2dTq κ

= (κ2 − κ1)F
(
κ1 + κ2

2

)
−F ′

(
κ1 + κ2

2

) κ2∫
κ1

(
κ2 − κ +

κ1 − κ2
2

)
κ2dTq κ

= (κ2 − κ1)F
(
κ1 + κ2

2

)
−F ′

(
κ1 + κ2

2

)
×

[(
1− q
1− q2

)(
1 + q

2

)
(κ2 − κ)

2

∣∣∣∣κ2

κ1

+
κ1 − κ2

2
(κ2 − κ1)

]

= (κ2 − κ1)F
(
κ1 + κ2

2

)
−F ′

(
κ1 + κ2

2

)[
(κ2 − κ1)

2

2
− (κ2 − κ1)

2

2

]

= (κ2 − κ1)F
(
κ1 + κ2

2

)

This gives the proof of first inequality in (4.1).

On the other hand, we have the function Ψ2 (κ) = F (κ2) + F(κ2)−F(κ1)
κ2−κ1

(κ − κ2) (see Figure 2).

Since F is convex function on [κ1, κ2], we have the inequality

F(κ) ≤ Ψ2 (κ)

and thus, by Theorem 10, we get

κ2∫
κ1

F (κ) κ2dTq κ ≤
κ2∫
κ1

Ψ2 (κ) κ2dTq κ
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for all κ ∈ [κ1, κ2]. By definition of κ2Tq-integral, we have

κ2∫
κ1

Ψ2 (κ) κ2dTq κ

=

κ2∫
κ1

(
F (κ2) +

F(κ2)−F(κ1)

κ2 − κ1
(κ − κ2)

)
κ2dTq κ

= (κ2 − κ1)F (κ2)− F(κ2)−F(κ1)

κ2 − κ1

κ2∫
κ1

(κ2 − κ) κ2dTq κ

= (κ2 − κ1)F (κ2)− F(κ2)−F(κ1)

κ2 − κ1

(
1− q
1− q2

)(
1 + q

2

)
(κ2 − κ1)

2

= (κ2 − κ1)F (κ2)− F(κ2)−F(κ1)

κ2 − κ1
(κ2 − κ1)

2

2

= (κ2 − κ1)
F(κ1) + F(κ2)

2
.

The proof is completed. �

Remark 1. In Theorem 4.1, if we take the limit q → 1−, we recapture the classical Hermite-Hadamard
inequality for convex function.

Theorem 12. Let F : [κ1, κ2] → R be a convex differentiable function on [κ1, κ2] and 0 < q < 1.
Then we have
(4.3)

F
(
qκ1 + κ2

1 + q

)
+
q − 1

1 + q

(κ2 − κ1)

2
F ′
(
qκ1 + κ2

1 + q

)
≤ 1

κ2 − κ1

κ2∫
κ1

F (κ) κ2dTq κ ≤ F (κ1) + F (κ2)

2
.

Proof. Since F is differentiable function on [κ1, κ2], there is a tangent line for the function F at the

point qκ1+κ2

1+q ∈ (κ1, κ2). This tangent line can be expressed as a function Ψ3 (κ) = F
(
qκ1+κ2

1+q

)
+

F ′
(
qκ1+κ2

1+q

)(
κ − qκ1+κ2

1+q

)
. Since F is a convex function on [κ1, κ2], then we have the following

inequality

(4.4) Ψ3 (κ) ≤ F(κ)

for all κ ∈ [κ1, κ2] (see Figure 2). From Theorem 10, we have

κ2∫
κ1

Ψ3 (κ) κ2dTq κ ≤
κ2∫
κ1

F (κ) κ2dTq κ .
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By definition of κ2Tq-integral, we get

κ2∫
κ1

Ψ3 (κ) κ2dTq κ

=

κ2∫
κ1

[
F
(
qκ1 + κ2

1 + q

)
+ F ′

(
qκ1 + κ2

1 + q

)(
κ − qκ1 + κ2

1 + q

)]
κ2dTq κ

= (κ2 − κ1)F
(
qκ1 + κ2

1 + q

)
−F ′

(
qκ1 + κ2

1 + q

) κ2∫
κ1

(
κ2 − κ + q

κ1 − κ2
1 + q

)
κ2dTq κ


= (κ2 − κ1)F

(
qκ1 + κ2

1 + q

)
−F ′

(
qκ1 + κ2

1 + q

)[(
1− q
1− q2

)(
1 + q

2

)
(κ2 − κ1)

2
+
κ1 − κ2
1 + q

q (κ2 − κ1)

]
= (κ2 − κ1)F

(
qκ1 + κ2

1 + q

)
−F ′

(
qκ1 + κ2

1 + q

)[
(κ2 − κ1)

2

2
− q (κ2 − κ1)

2

1 + q

]
which completes the proof. �

Theorem 13. Let F : [κ1, κ2] → R be a convex differentiable function on [κ1, κ2] and 0 < q < 1.
Then we have
(4.5)

F
(
κ1 + qκ2

1 + q

)
+

1− q
1 + q

(κ2 − κ1)

2
F ′
(
κ1 + qκ2

1 + q

)
≤ 1

κ2 − κ1

κ2∫
κ1

F (κ) κ2dTq κ ≤ F (κ1) + F (κ2)

2
.

Proof. Since F is differentiable function on [κ1, κ2], there is a tangent line for the function F at the

point κ1+qκ2

1+q ∈ (κ1, κ2). This tangent line can be expressed as a function Ψ4 (κ) = F
(
κ1+qκ2

1+q

)
+

F ′
(
κ1+qκ2

1+q

)(
κ − κ1+qκ2

1+q

)
. Since F is a convex function on [κ1, κ2], then we have the following

inequality

(4.6) Ψ4 (κ) ≤ F(κ)

for all κ ∈ [κ1, κ2] (see Figure 2). By Theorem 10, we have

κ2∫
κ1

Ψ4 (κ) κ2dTq κ ≤
κ2∫
κ1

F (κ) κ2dTq κ .

By definition of κ2Tq-integral, we get

κ2∫
κ1

Ψ4 (κ) κ2dTq κ

=

κ2∫
κ1

[
F
(
κ1 + qκ2

1 + q

)
+ F ′

(
κ1 + qκ2

1 + q

)(
κ − κ1 + qκ2

1 + q

)]
κ2dTq κ

= (κ2 − κ1)F
(
κ1 + qκ2

1 + q

)
−F ′

(
κ1 + qκ2

1 + q

) κ2∫
κ1

(
κ2 − κ +

κ1 − κ2
1 + q

)
κ2dTq κ

= (κ2 − κ1)F
(
κ1 + qκ2

1 + q

)
−F ′

(
κ1 + qκ2

1 + q

)[(
1− q
1− q2

)(
1 + q

2

)
(κ2 − κ1)

2
+ (κ2 − κ1)

κ1 − κ2
1 + q

]
= (κ2 − κ1)F

(
κ1 + qκ2

1 + q

)
−F ′

(
κ1 + qκ2

1 + q

)[
(κ2 − κ1)

2

2
− (κ2 − κ1)

2

1 + q

]
.

This gives the proof of theorem. �
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Theorem 14. Let F : [κ1, κ2] → R be a convex differentiable function on [κ1, κ2] and 0 < q < 1.
Then we have

(4.7) max {I1, I2, I3} ≤
1

κ2 − κ1

κ2∫
κ1

F (κ) κ2dTq κ ≤ F (κ1) + F (κ2)

2
.

where

I1 = F
(
κ1 + κ2

2

)
,

I2 = F
(
qκ1 + κ2

1 + q

)
+
q − 1

1 + q

(κ2 − κ1)

2
F ′
(
qκ1 + κ2

1 + q

)
I3 = F

(
κ1 + qκ2

1 + q

)
+

1− q
1 + q

(κ2 − κ1)

2
F ′
(
κ1 + qκ2

1 + q

)
.

Proof. A combination of (4.1), (4.3), and (4.5) gives (4.7) and the proof is completed. �

5. Conclusion

In this article, we proved a new idea of quantum integrals which is called κ2Tq-integral. By using
this idea, we proved several properties for quantum integrals. Further, we presented several Hermite-
Hadamard type κ2Tq-integral inequalities within class of convexity. It is also shown that some classical
results can be obtained by the results presented in the current research by taking the limit q → 1−. It
will be an interesting problem to prove similar inequalities for the functions of two variables.
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14 HASAN KARA, HÜSEYIN BUDAK, NECMETTIN ALP, HUMAIRA KALSOOM, AND MEHMET ZEKI SARIKAYA

[22] J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations,
Adv. Difference Equ. 282 (2013) 1-19.

[23] H. Zhuang, W. Liu, J. Park, Some quantum estimates of Hermite-Hadmard inequalities for quasi-convex functions,

Mathematics 2019, 7, 152.

Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
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