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ABSTRACT 

Discrete-time models, or difference equations, of some well-known SI, SIR, and 
SIS epidemic models are considered. The discrete-time SI and SIR models give rise 
to systems of nonlinear difference equations that are similar in behavior to their 
continuous analogues under the natural restriction that solutions to the discrete-time 
models be positive. It is important that the entire system be considered since the 
difference equation for infectives I in an SI model has a logistic form which can 
exhibit period-doubling and chaos for certain parameter values. Under the restric- 
tion that S and I be positive, these parameter values are excluded. In the case of a 
discrete SIS model, positivity of solutions is not enough to guarantee asymptotic 
convergence to an equilibrium value (as in the case of the continuous model). The 
positive feedback from the infective class to the susceptible class allows for more 
diverse behavior in the discrete model. Period-doubling and chaotic behavior is 
possible for some parameter values. In addition, if births and deaths are included in 
the SI and SIR models (positive feedback due to births) the discrete models exhibit 
periodicity and chaos for some parameter values. Single-population and multi-popu- 
lation, discrete-time epidemic models are analyzed. 

1. INTRODUCTION 

Discrete-time models or difference equations are used to formulate 
some standard SZ, SIR, and SZS epidemic models. The continuous 
approximations of these models are used more often in modeling 
situations because of their mathematical tractability. Difference equa- 
tions are not as well-behaved as their continuous approximations. 
Simple nonlinear difference equations can exhibit chaotic behavior. The 
following logistic difference equations are two examples that have 
received much attention (e.g., [ 16,191): 

X .+l=(l+r>Xn(1-X,) 

X,+! =X,exp(r(l-X,)). $1 

As the value of r increases above 2, there is period doubling and 
eventually chaos. The difference equations for infectives in the standard 
discrete-time SZ and SZS models studied in Sections 2 and 4 have the 
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form of (1) and therefore, for sufficiently large time steps the number of 
infectives can behave chaotically. 

Schaffer and Kot [22] fit the logistic equation (2) to Poincare sections 
of measles data and found that the estimated range of parameters was 
in the region where Y > 2. Schaffer [211 and Olsen and Schaffer [17] 
showed that measles data closely agreed with an SEIR differential 
equation model with a periodic contact rate. The parameter values were 
in a range that exhibited chaotic dynamics [3,17,21]. These results 
indicate a deterministic component in the underlying model (with 
possible seasonal forcing). However, the underlying model cannot be a 
simple continuous SIR-type model (with constant parameters) because 
such models do not exhibit periodic behavior [lo]. It is shown in the 
present investigation that the simple discrete-time SZ and SIR models 
do not have periodic behavior either. They behave qualitatively similar 
to their continuous counterpart under the necessary restriction that 
solutions remain positive. However, if there is positive feedback to the 
susceptible class, as in discrete SZS models or SIR models with births 
and deaths, then periodic behavior is possible. 

When the time step is sufficiently small, differential equations are 
good approximations to the discrete formulations. In the case of simple 
epidemics these continuous approximations are justified for an SZ or an 
SIR model, since the behavior in the discrete-time model with any time 
step that yields positive solutions is the same qualitatively as in the 
continuous model (when the time step approaches zero>. However, in 
the case of discrete SZS models or SIR models with births and deaths, 
the continuous approximation is only justified for certain parameter 
values. 

In the following sections, SZ, SIR, and SZS discrete-time models are 
analyzed and their solutions compared with their analogous continuous 
models. The analysis is straightforward, but has not been presented 
elsewhere for all of these basic discrete-time models. Allen et al. [ll, 
Longini [14], and Rvachev and Longini [20] have presented some of the 
basic properties for general multi-population, discrete-time SIR models. 
Hethcote [8,9] gives some excellent reviews of the continuous SZ, SIR, 
and SZS epidemic models and discusses many variations of these basic 
models. 

2. SZ MODEL 

The discrete-time SZ epidemic model, where S represents suscepti- 
bles and Z represents infectives has the following form: 

S 1 
I n+ I 
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with positive initial conditions S, > 0 and I,, > 0 satisfying S, + I,, = N, 
where cx ( > 0) is the contact rate, i.e., the average number of individu- 
als with whom an infectious individual makes sufficient contact (to pass 
infection) during a unit time interval [1,8,20], N is the total population 
size, and the subscript n represents the time II At ( > 0). Thus, S, is the 
size of the susceptible subpopulation at time II At. The above system is 
deterministic; however, S, and Z, could represent the expected values 
of random variables from a stochastic model [15]. 

There are two basic assumptions in these simple epidemic models: (9 
the population mixes homogeneously (each individual is equally likely to 
contract the disease), and (ii) the total population size remains constant. 
This latter assumption follows directly from the system of difference 
equations (S, + Z, = N, n = 1,2,. . . > and the assumption that solutions 
are positive. 

To ensure solutions to (3) and (4) are positive, restrictions must be 
put on the parameters. A necessary and sufficient condition to ensure 
that S, is positive for all initial conditions (and I,, < N) is 

aAt< (5) 

or At < l/ (Y. This latter inequality implies that the time step At must 
be less than the average time required for a successful contact. 

It is easy to establish the global behavior of this model. First note 
that S, decreases monotonically and Z,, increases monotonically. Thus, 
they approach an equilibrium, (S*, I* >, where Z* > 0. The unique 
equilibrium for which Z” is positive is S* = 0 and I” = N. Therefore, 
the entire population eventually becomes infected. 

The parameter CY is expressed as a rate so that the continuous 
analogue of (3) and (4) can be obtained easily. With the approximation, 

(S n+ I - S,>/At = dS/dt, the analogous differential system has the fol- 
lowing form: 

with positive initial 
The solution for 

dS 
dt- --xsz 
dZ 
-& = $sz, 

conditions satisfying S(0) + Z(0) = N. 
the continuous model can be obtained exactly [4,8]. 

In the SZ differential equation model, substitution of N - Z for S leads 
to a logistic differential equation for Z whose exact solution is Z(t) = 
Z(O)N/[Z(O) + exp( - (_yt>( N - Z(O))]. Z(t) approaches N monotonically. 
The continuous model exhibits the same behavior as the discrete model. 

An alternate way to verify the global behavior of the discrete model 
is to use the same type of argument that was used for the continuous 
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model. Substitute X, = (YA~Z~ /(NC1 + a At)) and S,, = N - I, into (3) 
and (4). This leads to the discrete logistic equation 

~,+,=(l+(~At)n,(l-x,,). (6) 

The additional restriction that I,2 < N requires the inequality x, < x* = 
(~At/(l + a At). The inequality will hold for all initial conditions x,) 
if and only if x* < 0.5. (The maximum of y =(l+ cyAt)x(l- x) 
must occur to the right of the line x = x* [5,12].) Thus, it follows 
that cy At G 1; (5) holds. Solutions converge monotonically to the equil- 
ibrium x*. 

Another form for a discrete equation for the infective class can be 
obtained from the solution of the continuous model (logistic equation 
for infectives). It does not require condition (5) because solutions are 
positive for positive initial conditions. However, it cannot be justified 
biologically. The exact logistic difference equation is given by [lg]: 

I 
NAI,, 

‘+I= N+(h-l)Z,,’ 

where A = exp( (Y At). Equation (7) and the identity, S, = N - I,, give the 
same solutions at y1= 0, 1,. . . as the continuous SZ model. 

The discrete-time, multi-population SI model has the same mono- 
tonic behavior as the single-population model. Consider the following 
SZ model with K subpopulations: 

where i= l,..., K and with initial conditions S:, > 0, Zi > 0 <I,” > 0 for 
some k) satisfying Sb + Z,f = N’ = the size of the ith subpopulation. The 
parameter aik is the average number of contacts per unit time of an 
infective in group k with individuals in group i [9]. Again the total 
subpopulation size remains constant; S:, + Zj = N’ and solutions to the 
above system are nonnegative for all initial conditions if and only if 
max,{Cf_ , CY,~ AtNk/N’) G 1. Each SL is strictly monotonically decreas- 
ing for each i and must approach zero since this is the only steady-state 
value other than N’; I,: approaches N’. 

The requirement that solutions to the discrete-time SI system be 
positive guarantees that the discrete and continuous systems behave 
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similar qualitatively and ensures that the differential system approxi- 
mates well the discrete system. However, as indicated in Figure 1, the 
continuous and discrete models approach the equilibrium at different 
rates. 

3. SIR MODEL 

The discrete model for the standard SIR model divides the popula- 
tion into three subgroups: susceptibles, infectives, and removed or iso- 
lated (R). The difference equations have following form: 

s ,*+,=Sn l+& 
( 1 

I 
cvAt 

1-yAtiNS, (9) 

R ,,+I = R, + yAtI,> (10) 

with S, > 0, I, > 0, and R, 2 0 satisfying S, + I, + R, = N, where y 
( > 0) is the probability that one infective will be removed from the 
infection process during a unit time interval (relative removal rate). 
Unlike the SZ model, individuals in the SIR model recover from the 
disease and become permanently immune (R subgroup). It is easy to 

FIG. 1. Number of infectives in the discrete (000) and continuous (O-O-O) SZ 
models, At = 0.25, N = 100, and I, = 1. (a) (Y = 2, (b) a = 3. 
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see that the total population size remains constant, S, + I,, + R, = N. 
Solutions to the discrete system are positive for n = 1,2,. . . for all initial 
conditions if and only if 

max{ yAr, LY At} G 1. (11) 

Thus, At G min{l/ cr, l/y}; the time step must be less than the average 
time required for a successful contact and less than the average infec- 
tious period. 

The global behavior of system (81, (91, and (10) is easy to establish. 
Let 5Y = S,,cu/(Ny) be the reproductive rate [2]. The value of 35? 
determines the global behavior of the discrete SIR model. It is impor- 
tant to note that S, is strictly decreasing and R, is strictly increasing. 
Let S,=lim,,, S, 2 0, which depends on the initial conditions. If 
S, G Ny/ Q or 5%’ G 1, then I, G I,, and because S, is decreasing, I, + 1 G 
I,; there is no epidemic. In the other case, if S, > Ny/a, then I, > I,,; 
the infective class initially increases. It must be the case that S, < N-y/a 
(no more epidemics can occur) because otherwise 1, increases to a 
positive equilibrium Z, which implies R, approaches infinity as n +x, 
an impossibility. Also, the infective class eventually decreases and 
approaches zero. In addition, it can easily be shown that S, > 0 (see 
Lemma 1 in the Appendix); there always remain some susceptibles after 
the epidemic has ended. The behavior of the discrete SIR model is 
illustrated in Figure 2. 

The continuous version of this SIR model behaves in the same 
manner as the discrete model 181. The continuous SIR model has the 
following form: 

dS 
-=-$1 
dt 

dR 
dt = R + yI, 

where S(O)+ 1(O)+ R(O) = N. The reproductive rate in the continuous 
case is 357 = S(O>a/(Ny). If 5%’ G 1, there is no epidemic, but if W > 1, 
there is an epidemic [Sl. 

The discrete-time, multi-population SIR model exhibits the same 
characteristic behavior as the single-population model. The SIR model 
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FIG. 2. Number of infectives in the discrete SIR model, At = 0.25, N = 100, 
S,, = 99, and I,, = I. (a) (Y = 2, y = 1, and LZ’= 1.98. (b) cy = 3, y = 2, and W= 1.485. 

with K subpopulations has the following form: 

s’ n+l =s:, l- 

I’ 
K aik At 

nt I =Z;(l-y,At)+S; c -1; 
k=l 

R’,,l =R:,+y,AtI,f, 

where i = 1,. . . , K and initial conditions Sg > 0, Z,j > 0 <I,” > 0 for some 
k), and Rb 2 0 satisfying Sb + I,j + Rb = N’. Again, the total population 
size remains constant, SL + 1: + Rf, = N’ for all n and solutions are 
nonnegative for all initial conditions if and only if maxi{C~=,~ik 
AtNk/Ni, yj At} G 1. Note that Si is monotonically decreasing, R’, is 
monotonically increasing, and they are both bounded; therefore, they 
must approach a limit. It follows from the difference equation for Rk 
that Ij, approaches zero as n + cc. 

To determine whether an epidemic occurs within a subpopulation of 
the multi-population SIR model is not as straightforward as in the 
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single-population case. If the value of 9Pi = Sb ail /(nN’> > 1, then the 
number of infectives in the ith subpopulation will initially increase as in 
Figure 3. However, 5Yi G 1 is not enough to ensure that there will be no 
epidemic in the ith subpopulation; the size of the other infective 
subpopulations is required also as in Figure 4. Instead of considering 
infective subpopulations separately, the size of the entire infective 
population may be considered: Z, = C,“, , Ii. If max,{CF= 1Si, aik /(-yk N’)) 
< 1, then Z, decreases with n; there is no epidemic as in Figure 5. 
However, if min,{Ci<= ,SAaik /(Y~N’)J > 1, then Z, increases with n; 
there is an epidemic (see Figure 3). A reproductive rate cannot be 
simply defined because it depends on initial conditions. 

4. SZS MODEL 

The SZS epidemic model has been used to describe sexually transmit- 
ted diseases [8,11,131. Individuals that are cured do not develop perma- 
nent immunity as in the SIR model, but are immediately susceptible to 
the disease again. The SZS model removes individuals from the infective 
class to the susceptible class; hence, there is no removed class. The 

FIG. 3. Number of infectives in a two-population, discrete SIR model (population 
1: @-O-O, population 2: O-O-O), At = 0.25, LY ], = 2, = N,> 0.5, (Yl, = 4, cx*z = 2, 
7, = 2, y2 = 1, N’ = 100, and N* = 200. The initial conditions are 1: = 10, SA = 90, 
I,? = 50, and $ = 150. Note the 2, = 0.9, s2 = 1.5, and min,(~~= ,S;, qk /(yk N’)) = 
1.95. There is an epidemic in both populations. 
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FIG. 4. Number of infectives in a two-population discrete SIR model with the 
same parameters as in Figure 3. The initial conditions are Id = 10, S,i = 90, 1; = 150, 
and Si = 50. Note that ~27, = 0.9 and s2 = 0.5. There is an epidemic in the first 
population. 

difference equations have the following form: 

S ,l+,=Sn l-$I,, l tyAtI, 1 
I 

aAt 
l-yAt+TS, , 

i 

(12) 

(13) 

with positive initial conditions S, > 0 and I, > 0 satisfying S, + Z0 = N. 
The population size remains constant and solutions are positive for all 
initial conditions if and only if the following inequalities hold (see 
Lemma 2 in the Appendix): 

yAt<l and aht < (l+m)‘. (14) 

The basic reproductive rate for this model is 3? = (w/y. If 9 G 1, then 
it follows that In+, < Z, because 0 < S, < N (solutions are positive). In 
this case, it is easy to show that the monotonic limit is (S*, I*> = (N,O). 
Suppose S” < N, then there exists IZ, and E such that for all IZ z n,, 
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FIG. 5. Number of infectives in a two-populations discrete SIR model with the 
same parameters as in Figure 3. The initial conditions are I,’ = 50. SA = 50, 1; = 150, 
and Si = 50. Note that 9, = 0.5, & = 0.5, and maxk(I.f= ,S;, qk /(yk N’)) = 1. There 
is no epidemic in either population. 

S, < S* + E < N, and 

I n+ I < Zn( l- yAt + aAt( S* + e)/N) 

= PI,. 

Because p < 1 it follows that I* = 0, contradicting the fact that S* < N. 
In the case that L%‘> 1, substitution of S,, = N - Z, and x,, = 
cx AtZ, /[ NC1 + a At - y At)] into (13) yields the normalized logistic dif- 
ference equation: 

X ,r+, =(l+ aAt - yAt)x,(l-x,,). 

For 9’> 1 the restriction on the parameters necessary for positive 
solutions, inequality (14), is not sufficient to guarantee convergence. If, 
in addition to inequality (141, (Y is restricted so that a At < 2 + y A t, 
then solutions will converge to a stable endemic equilibrium, S* = 
yN,‘cu, I* = N-S* as in Figure 6. If 0.25 < yAt < 1 and 2+ yAt < 
LY At G (1 + m>‘, then monotonic convergence to an endemic equi- 
librium is no longer possible. It is the positive feedback to the suscepti- 
ble class through the recovery parameter y and a sufficiently large 
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b.00 0125 0:so 0:75 1100 

x =yAt 

FIG. 6. Parameter space where solutions to the discrete SIS model are positive: 
0 < yAt < I and 0 < aAt <(l+Jybt)‘. If, in addition, cy At < 2+ yAt, solutions 
converge to an equilibrium value. Note that if the horizontal axis is relabeled as 
x = y At + PAt, then the parameter space again defines regions where solutions are 
positive and where solutions converge to an equilibrium value for the discrete SIS 
model with birth and deaths. 

contact rate (Y that allows for period-doubling and chaotic behavior, the 
same behavior as in (1) and in Figure 7. 

The continuous S1S model does not exhibit periodicity. If 

dS 
z= -$sz+yz 

where S(O)+ Z(O) = N, the exact solution can be calculated. If 9 < 1, 
then the disease dies out, and if 9 > 1, then there is a globally stable 
endemic equilibrium [8]. Two particular cases for 9 > 1 are illustrated 
for the discrete and continuous models in Figure 7. 

There are other discrete models that behave exactly as their continu- 
ous counterpart. They can be obtained from the solution to the continu- 
ous model (infective class has a logistic solution). The particular form of 
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FIG. 7. Number of infectives in the discrete (000) and continuous (O-O-O) 
SZS models, y = 2., ht = 0.5, N = 100, and I, = 1. (a) (Y = 7, Z* = 71.4, and /GY = 3.5, 
a four-point cycle in the discrete model corresponding to r = 2.5 in (1). (h) (Y = 7.5, 
Z* - 73.3, and 9 = 3.75; the exact period is difficult to ascertain in the discrete 
model. It corresponds to r = 2.75 in (1). 
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the discrete model depends on the value of 2%‘. If 92 # 1, then 

95 

I 
I’“hI, 

n+‘= I* +I,(A-1) (15) 

and S, = N- I,,, where I* =(a - y)N/a and A= exp((a - y)At). In 
the case that 9 = 1, the infectives have the following form: 

I 
NI, 

“+l= N+ cxAtI,, (16) 

If 9%‘~ 1, I, approaches zero (S,, approaches N). If 9 > 1, the infec- 
tives I, approach the positive equilibrium I* and S, approaches 
N - I*. These difference equations do not exhibit period-doubling or 
chaos; only convergence to an equilibrium value is possible. 

The discrete-time, multi-population SIS model with K subpopula- 
tions has the following form: 

s 
K aik At 

l- c PI,” 
k=, N’ 

I’ 
K qkAt 

n+ I =I;(l-y,At)+S; c ,,I;, 
k=l 

where S;, + I:, = N’, S/, > 0 and I: & 0 (I/ > 0 for some k). Solutions 
~I 

satisfy Sf + Ii = N’ and are nonnegative if and only if 

max{aj, ‘y, At} G 1 and 
i 

(Y,, At < id= + m)*. 

for i=l,..., K where a, = Ck zi~,k AtNk/N’ (see Lemma 3 in the 
Appendix). Nonnegativity requires a relatively small between-popula- 
tion contact rate (a,) as well as a relatively small within-population 
contact rate (ai,>. However, even the conditions for nonnegative solu- 
tions do not rule out periodicity or chaos. 

Although global stability for the discrete-time, multi-population 
model is not easy to establish, local stability of the noninfection state is 
straightforward and similar to the continuous case [13]. Substitution of 
SA = N’ - Ii into the equation for IL +’ and linearization of the in- 
fective equations about the origin yields I,, , = AI,, where I, = [Ii], 
A = [ajj], a,, = 1 - ‘y, At + cqi At, and alj = q, At. Since the matrix A is 
positive, by Perron’s Theorem [7], there is a positive eigenvalue h of 
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maximum modulus. If h < 1, the origin is locally stable and the infection 
dies out. 

In the continuous case the maximum real part of the eigenvalues of 
the linearized matrix A (s(A)) determines global behavior. Lajmano- 
vich and Yorke [131 showed that if s(A) G 0, then the origin is globally 
stable and if s(A) > 0, then there is a globally stable endemic equilib- 
rium. The latter result was verified with Lyapunov-type arguments. 

In the case of two subpopulations (K = 2) with (Y,~ = 0, a basic 
reproductive rate &Z’ can be simply defined in the continuous model [13]. 
The condition s(A)< 0 is equivalent to 9 G 1, where 2 = (Y,~ LYE, / 
(ri-y2). This same reproductive rate was found in a special case for the 
discrete-time model when K = 2 by Martin et al. Il.51 in a study of a 
sexually transmitted disease. For simplification purposes let I’ = X, 
I2 = y, N’ = W, and N2 = M (I’ represents females and I2 represents 
males). The model is given below: 

X ,I+ I = x,,( 1 - y, At) + V(W- x,)y,, 

Y,+I =~,(1-~2Af>+ q(M-y,*)x,. 

(17) 

(18) 

In this model it was assumed there are no homosexual contacts; males 
do not infect other males and females do not infect other females 
((Y,, = 0) and ‘Y,~M = aZ,W. The SfS model gives positive solutions if 

,?‘??“, {a,, AtN’/N’, yi At) < 1. 

Martin et al. [15] showed for system (17) and (18) (using Lyapunov-type 
arguments) that if the basic reproductive rate 9 G 1 (and solutions are 
positive), then solutions tend to the zero state; there is no epidemic. In 
the other case, if %‘> 1 and 

max{2cw,iAt+y;At}<1, 
i,i+ j 

then solutions converge monotonically to an endemic equilibrium, x* = 

(U12Q?l - r,r2)MW/(a2,(W9, + Mcx,~)) and y* = (a12a2, - 

y, ~~)MW/(a,,(h4y, + Wa,,)). (Another weaker, but more complicated 
condition than inequality (19) was also given in reference [15].) Numeri- 
cal solutions indicate that the restriction (19) is sufficient, but not 
necessary for global stability of an endemic equilibrium as in Figure 8. 
In the particular case considered by (17) and (181, where aii = 0, it 
appears that solutions converge to an equilibrium and the only require- 



DISCRETE-TIME MODELS 91 

8 
-1 

FIG. 8. Number of infectives in the two-population, discrete SIS model (17) and 
(18), females (x,, O-O-O), males (y,, O-O-O), At = 0.25 (Y,~ = 2, czzI = 4, y, = 2 = 
‘-y2, M = 200, IV= 100, 2 = 2, x* = 33.3, and y* = 50. (a) x,) = 5 and y,, = 5, (b) 
x0 = 90 and y,, = 10. (Note that maxi , 1 i , {ai, AtNi/N’, yi At} f 1, but inequality (19) 
does not hold.) 

ment is that solutions are positive. Further analysis is required to verify 
this conclusion. However, if aii > 0 and sufficiently large, there are 
parameter values that give rise to periodicity and chaos just as in the 
single-population case. 

5. MODELS WITH BIRTHS AND DEATHS 

Next we consider the basic models with births and deaths. To keep 
the population size constant it is assumed that birth rate (p> equals 
death rate. The discrete-time SIS model with births and deaths has the 
following form: 

S n+,=Sn I-- t 
$In) + y Atl,, + /?At( N - S,) 

I n+,=In I-yAt-pAt+-@ 
i 

aAt 

with positive initial conditions S, > 0 and I, > 0 satisfying S, + I0 = N. 
Assume y > 0 and (Y, p > 0. Thus, the SZ model is a special case of the 
above SZS model; if y = 0 the SZ model is obtained. Solutions of the 
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above system are positive and satisfy S, + I, = N for all initial condi- 
tions if and only if 

(-y+P)At~l and a At < cl+ dm)‘. 

(See the note following Lemma 2 in the Appendix.) The basic reproduc- 
tive rate for the above system is 9 = cu/(y + p>. If 9 < 1, it can be 
shown in a manner similar to the case without births or deaths ( /3 = 0) 
that lim .+J, = 0 and lim,,,, S, = N. If 9 > 1, the SI and SZS model 
with births and deaths may experience the same diverse behavior as (1). 
This can be seen by considering the normalized logistic difference 
equation for infectives. Let x, = aAtZ,, /[N(l+ crAt - yht - PAt)], 
then x,+ , =x,(1+ czAt - yAt - pAtIC - x,,>. However, if aAt G 2+ 
y At + /3 At (see Figure 6 with the horizontal axis relabeled as y At + 
PAt), the value of ~87 completely determines the behavior of the SZS 
model; if 5? G 1, then solutions converge to (N,O) and if 9 > 1, then 
solutions converge to the endemic equilibrium, S* = (y + PIN/, and 
I* = N - S*. This latter behavior describes the behavior of the continu- 
ous-time SZS model with births and deaths; the behavior is determined 
by the value of 9 [S]. A difference equation that mimics the behavior of 
the continuous-time model can be formulated using the continuous-time 
model; (15) and (16) are obtained, where A = exp((a - y - P) At) and 
I” = N(CX - y - p>/cy. 

For the discrete-time SIR model with births and deaths the same 
wide array of behavior is possible as in the discrete-time SIS model. 
Consider 

S n+l=Sn l- ( $In]+pAt(N-S,,) 

aAt 
1 - yAt - ,6At + NS, 

R n+ I = R,( 1- pat) + yAtI,, 

where S,, I,, > 0 and R,, a 0, S,, + I,, + R,, = N, and cu, P, y > 0. Sob- 
tions are nonnegative for all initial conditions if and only if 

(y+p)At<l and cuAtg(l+@)‘. 

(See the note following Lemma 3 in the Appendix.) If the basic 
reproductive rate s= a/(y+P>~l, then lim,, I,=O, but if s>l, 
numerical simulations show that periodic behavior is possible as in 
Figure 9. However, if (Y and p are sufficiently small, then the behavior 
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8 
-1 

FIG. 9. Number of infectives in the discrete SIR model with births and deaths, 
y = 0.1, p = 1.9, At = 0.5, N = 100, S,, = 99, I, = 1, and R,, = 0. (a) a = 7, I* = 67.9, 
and 2P = 3.5, a two-point cycle. (b) LY = 7.7, I* = 70.3, and .2 = 3.85; the exact 
period is difficult to ascertain. 
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is completely determined by .9; if 9 G 1, then solutions converge to 
(S,,O, R,) and if 9 > 1, numerical simulations show that solutions 
converge to S* = N(y + ,6>/cw, I* = pN(, - y - @>/(a(~ + PI>, and 
R* = yN(a - y - j3 ),4 a( y + /3>) (the same behavior as the continu- 
ous-time SIR model with births and deaths [S]). 

Discrete-time, multi-population SZ, SZS and SIR models with births 
and deaths are more difficult to analyze, but as in the case of the 
multi-population SZS model, conditions for nonnegative solutions and 
local stability can be established. Consider the multi-population SZS 
model with births and deaths: 

S’ =s:, l- c 7 
i 

K cqk At 
II+1 

k=, N’ 
+y,AtZ;+p,At(N’-S;) 

I’ 
K cqk At 

n+ 1 =Z,f(l-y,At-p,At)+S:, c -Z;, 
X=l 

where S[, + Z; = N’, SA > 0 and ZA 2 0 (I,” > 0 for some k). Solutions 
satisfy SA + Z; = N’ and are nonnegative for all initial conditions if and 

only if 

y,At+p,At<l and cw,;At <(J1-a,+~+p,2, 

for i = l,..., K. Recall that a, = C k + i ali AtNk/ N i. The multi-popula- 
tion SIR model with births and deaths has the form: 

S’ n+l + ,Bi At( N’ - S;) 

I' 
K qk At 

II+1 =Z;(l-yiAt-pLAt)+S:, c --I,“, 
kc, N’ 

R;,, = R;(l-p,At)+y,AtZ,:, 

where Sh + 1; + Rb = N’, St > 0, Ii > 0 <Z,f > 0 for some k), and Ri, a 0. 
Solutions satisfy SL + ZL + Rf, = N’ and are nonnegative for all initial 
conditions if and only if 

y,At+p,At<l and a,,At <(dG+@)*, 

for i=l , . . . , K. (See the notes following Lemma 3 in the Appendix.) For 
both of these models there is only one noninfection state, a state where 
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some Zj = 0. The noninfection state is given by S’ = N’, I’ = 0, and 
R’ = 0 for all of the i subpopulations. The local stability conditions for 
this state can be obtained by checking that the Jury conditions are 
satisfied [6]. From the results of the single-population models with 
births and deaths, it is clear that periodic@ and chaos are possible for 
sufficiently large (Y;( At and pi At. 

6. FINAL REMARKS 

The simple discrete-time S1 and SIR epidemic models without births 
or deaths mimic the behavior of the continuous-time models, simple 
covergence to an equilibrium. However, the behavior in the discrete-time 
SI, SIR, and SIS models with some type of positive feedback to the 
susceptible class (i.e., through recovery or births) differs from their 
continuous analogues. The same type of behavior that occurs in the 
well-known difference equation 

X n+I=(l+~T)Xn(l-XX,), 

(periodicity and chaos) is possible in these discrete-time models with 
positive feedback. The fact that the time step At must be sufficiently 
large for this behavior to occur is not surprising. However, the magni- 
tude of the time step alone is not sufficient to guarantee period-dou- 
bling or chaos. In addition, the contact rate (a or aii> must be 
sufficiently large. Although this behavior is not possible in the continu- 
ous-time analogues, Aron and Schwartz [3] showed the significance of 
the contact rate in a continuous-time SEIR model with a periodic 
contact rate; periodicity and chaos are possible for a sufficiently large 
mean contact rate. 

It should be noted that an alternate formulation for the discrete-time 
epidemic models can be obtained under the assumption that the proba- 
bility a susceptible individual does not become infective in time At is 
exp( - aAtZ, /N) Cd erived from the Poisson probability distribution) [l]. 
For example, in the SZ model, S,, , = S, exp( - aA tZ,, /N) and Z, + , = 
Z, + S,(l - exp( - aAtZ, /N)). These equations are approximated by (3) 
and (4). 

APPENDIX 

LEMMA I 

In the single-population, discrete-time SIR model, S, > 0. 

First, note that 
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Furthermore, since lim n _ +Y, = S, < Ny / CY, there exists and n, such 
that for all n>n,, S, < Ny/ a. Thus, l-yAt+~AtS,/Ncl. Let 
rk=l-yAt+aAtS,/N for n=n,+k, k=0,1,2 ,.... Note that rk+, 
< rk because S,, is strictly monotonically decreasing. Now choose n2 > n, 
such that for all n > n2, cr(,I,, <l-r,,, where c = aAt/N. This is 
possible since I,, approaches zero. Now S,>+ , = Son;2 ,Jl - ~1~) = S,, K 
> 0 and 

n2+ I, 

S n>+n+ I =S,K n (l-cZk) 
k=n2+l 

>S,,Kfi (~-cF~Z,,~) 
k=l 

i 

J 

&S,,K 1-Q c Fk 
k= I i 

where r=l-yAt+~s,,~. 

Fk&’ 

The above inequalities hold because In2 + k G 
and I-I!= 1(l - c?~Z,,) > 1 - Z,,zcC~= ,?“. The right-hand side of the 

last inequality is strictly positive and independent of n because n2 was 
chosen so that ~91,~~ < 1 - f. Hence, S, > 0; there always remains some 
susceptibles in the population after the epidemic has ended. 

An implicit expression for S, in terms of R, can be obtained in the 
continuous-time model by integrating dS/S = - (Y dR/(yN) [9l. This is 
not possible in the discrete-time model; however, from expression (20) 
S, = S,,n;=,<l -(aAt/N>Z,), which clearly shows the dependence of 
S, on the initial conditions. 

LEMMA 2 

Solutions to the single-population, discrete-time SIS model are positive 

for all initial conditions if and only if y At G 1 and Ly At < Cl+ m>‘. 

Let I,, = E and S,, = N - E, where 0 < E < N. We show that 0 < I, < N 

if and only if the above conditions hold. It follows from (13) that 

Z,=E l-yht+uA&N;E)) 
i 

aAte 
=-p+~(l--Adt+cwAt) 

N 

= P(E). 
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Thus, we need to show that the parabola P(E) satisfies 0 < p(e) < N for 
0 < E < N. Note that p(O) = 0, p(N) = N(1 - y At>, and the vertex of p 
is (~*,p*), where E * = N(l- yAt + aAt>/(2aAt) and p* = N(l- 
yht + (rAt>2/(4aAt>. Thus, 0 <P(E) < N for 0 < E < N if and only if 

(9 y At G 1 and either 
(ii) l *>Nor 
(iii) E* < N and p* < N. 

Condition (ii) is equivalent to a At < 1 - y At. Condition (iii> requires 
c_yAt > 1- yht and (l- yht + aAt12 < 4aAt. The latter two inequali- 
ties hold if and only if I- -yAt < a!At <(l +m)‘. Thus, the lemma 
follows. 

Note that Lemma 2 can be applied to the discrete-time SIS model 
with births and deaths. If, in the proof of Lemma 2, y is replaced by 
y + /3, then solutions to the discrete-time SZS model are positive for 
all initial conditions if and only if (y + /3> At G 1 and a At < (1 

+ JWJ2. 

LEMMA 3 

Solutions to the multi-population, discrete-time SIS model are nonnega- 
tive for all initial conditions if and only if maxi(aj, yi At) < 1 and aii At G 
<dE + mj2, where a, = Ck $; i~ik AtNk/N’. 

Assume Ii > 0 and Sb 2 0 for all i. We show that Si > 0 and 1; & 0 if 
and only if the above conditions hold. First note that ZI > 0 if and only 
if y,At<l.Let Si=~and Z~=N’-E,O<E<N~.NOW 

S;~E l-aa,-acviiAt+e-$- 
i 

(Y.. At 
+y;At(N’-E) 

=E 2 %i At 
N’ 

+~(l-aai-y,At-ajiAt)+yiAtN’ 

=P(E). 

Note that p(O)= y,AtN, and p(N’)= N’(l- a,>. Then for St 2 0 we 
must have ai G 1. The minimum of p occurs at the vertex (~*,p*), 
where E* = N’(cx~, At + ai + y, At - 1)/(2a,i At) and p* = yi AtN’ - 
N’(l- ai - y, At + asii At)‘/(4cuii At). If cyii At < 1- a, - y, At or if 
aii At G ai + y, At - 1, then the minimum of p occurs outside the inter- 
val (0, N’). If the minimum of p occurs on the interval (0, N’), then we 
must have p* 3 0. The latter inequality is equivalent to aii At G 
<,/E + w)‘. Since S; > 0 for all initial conditions if and only if 
P(E) & 0, the lemma follows. 
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Note that the discrete-time SIR model with births and deaths can be 
shown to have nonnegative solutions by applying an argument similar to 
the one in Lemma 3. Note that 1, > 0 if and only if (y + P) At G 1; 
/3At G 1 implies R, 2 0. By applying an argument similar to the one 
above: Si > l (l- a At + EaAt/N)+ PAt(N - E) = c2LuAt/N + ~(l- 
a At - @At)+ pAtN =P(E). In the proof above, let ui = 0, replace a,, 
by (Y and yi by p, then the required condition on aAt follows: 
a At < Cl+ m12. 

Nonnegativity of solutions in the multi-population, discrete-time SZS 
and SIR models with births and deaths follows in a manner similar to 
the proof of Lemma 3. In the SZS model replace yi by y, + pi. In the 
SIR model, first note that it is necessary that yj At + pi At G 1 for 
I’ n+ 1 a 0 and p, At G 1 implies Ri + , 2 0. In the proof of Lemma 3, if 
y,At is replaced by pi At, the nonnegativity condition follows: ail At G 

Cd= + ml’. 
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