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Summary

The Gillespie algorithm, which is a stochastic numerical simulation of continuous-time

Markovian  processes,  has  been  proposed  for  simulating  epidemic  dynamics.  In  the

present study, using the Gillespie-based epidemic model,  we focused on each single

trajectory by the stochastic simulation to infer the probability of controlling an epidemic

by  non-pharmaceutical  interventions  (NPIs).  The  single  trajectory  analysis  by  the

stochastic  simulation  suggested  that  a  few  infected  people  sometimes  dissipated

spontaneously without spreading of infection. The outbreak probability was affected by

basic reproductive number but not by infectious  duration and susceptible  population

size.　A comparative  analysis  suggested  that  the mean trajectory  by the stochastic

simulation has equivalent dynamics to a conventional deterministic model in terms of

epidemic forecasting. The probability of outbreak containment by NPIs was inferred by

trajectories derived from 1000 Monte Carlo simulation trials using model parameters

assuming  COVID-19  epidemic.  The  model-based  analysis  indicated  that  complete

containment of the disease could be achieved by short-duration NPIs if performed early

after the import of infected individuals. Under the correctness of the model assumptions,

analysis of each trajectory by Gillespie-based stochastic model would provide a unique

and valuable output such as the probabilities of outbreak containment by NPIs. 

Keywords:  Gillespie  algorithm,  epidemic  model,  stochastic  simulation,  COVID-19,

non-pharmaceutical interventions
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1 | Introduction

The coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 was first

identified in Wuhan, China,  in December 2019 (Li et  al.,  2020a). Since then,  it  has

rapidly spread globally, partly owing to pre-symptomatic or asymptomatic transmission

(Ferretti  et  al.,  2020;  Cheng  et  al.,  2020;  He  et  al.,  2020).  Non-pharmaceutical

interventions  (NPIs),  such  as  school  closures,  social  distancing,  and  lockdown

measures, have been applied to contain the pandemic. NPIs will be continuously needed

to control COVID-19 propagation until  the development  of a vaccine or therapeutic

agent as recurrent outbreaks are projected after the initial pandemic wave (Kissler et al.,

2020). However, it is essential to select effective and appropriate NPIs because some

measures can result in significant adverse damage to society and the economy.

The  effectiveness  of  NPIs  has  been  largely  evaluated  using  epidemic

mathematical models (Prem et al., 2020; Wu, Leung, and Leung, 2020; Ferguson et al.,

2020; Kraemer et al., 2020; Tian et al., 2020). Various deterministic models involving

the  solution  of  ordinary  differential  equations  have  realized  epidemic  forecasting

producing different types of output data (Anderson, 1991). Stochastic models are also

important for predicting disease outbreaks because epidemic patterns are variable and

highly associated with human mobility, which could be assumed to consist of stochastic

random events (Grassly and Fraser, 2008). In studies on COVID-19, the probability of

occurrence of a large outbreak based on the number of imported cases (Kucharski et al.,

2020) and the probability of an outbreak being controlled by the isolation of cases and

contacts (Hellewell et al., 2020) have been inferred using different stochastic models: a

geometric random walk process and a branching process model. However, information
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on the probability of COVID-19 containment by NPIs is still limited, and evaluating the

controlling probability using different stochastic model is important for complementary

or alternative evaluation of the effectiveness of NPIs.

The  Gillespie  algorithm,  which  is  a  stochastic  numerical  simulation  of

continuous-time  Markovian  processes,  has  been  widely  used  in  chemical  reaction

simulations (Gillespie, 1977; Gillespie, 2007). The algorithm has proven useful for the

simulation of epidemic process in a population (Cota and Ferreira, 2017; Masuda and

Rocha 2018). Accumulation of stochastically simulated trajectories using the Gillespie-

based  epidemic  model  leads  to  numerical  solutions  equivalent  to  those  of  the

deterministic model. Nevertheless, there are few instances for the practical application

of the Gillespie-based epidemic model for inferring actual epidemic information (e.g.,

the case of COVID-19) (Choi, Lee, and Kim, 2017). In the present study, we exploited a

single trajectory of the Gillespie-based epidemic simulation to infer the probability of

controlling  an  epidemic  by  NPIs.  Here,  we first  characterized  the  dynamics  of  the

Gillespie-based  epidemic  model  and  compared  them  to  those  of  an  equivalent

deterministic model using ordinary differential equations. Then, the probability of the

containment  of  COVID-19  using  NPIs  was  evaluated  using  the  Gillespie-based

epidemic model for specific model parameters relevant to the COVID-19 epidemic.

2 | Methods

2.1 | Model construction2.1.1 | Stochastic epidemic model based on

the Gillespie algorithm
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The basic algorithm used in this study is shown in Figure 1A. For the stochastic

epidemic model, we classified an epidemic population of fixed density in seven classes:

susceptible  (S),  exposed  (E),  infectious-asymptomatic  (Ia),  infectious-mild  (Im),

infectious-severe  (Is),  recovered  (R),  and  deceased  (D)  (Figures  1B  and  1C).  The

corresponding  quarantined  populations  were  denoted  by  QIa,  QIm,  and  QIs;  these

classes presumably dissipated the infectiousness through isolation (Figures 1B and 1C).

In the model, 1 out of 15 events (shown in Figure 1D) was randomly selected, and class

transition was performed at a time point (¿ τ ) according to the rule shown in Figure 1A.

The probability of event selection depends on uniform random number generated at

each time point (Figure 1A) and parameters relevant to the events (Figure 1D). For our

epidemic analysis,  we assumed  ∆ t=1,  corresponding to one day. The parameters in

Figure 1D were calculated using the base and simulation parameters shown in Table 1

and  Table  2,  respectively.  In  the  present  model,  population  density  is  fixed,  and

population mobility, birth, and natural death are ignored.

2.1.2 | Deterministic epidemic model

For comparative  analysis  with our  stochastic  model,  the  ordinary  differential

equations  of  the  deployed  deterministic  model,  named  SEIamsQamsRD,  were

constructed as shown in Eqs. (1)–(10):

dS ( t )

dt
=−βS ( t ) {Ia (t )+ℑ (t )+ Is ( t ) }

(1 )

dE (t )

dt
=βS (t ) { Ia ( t )+ℑ ( t )+ Is ( t ) }−(onset Ia+onse tℑ+onse t Is ) E ( t )

(2 )

5



dIa ( t )

dt
=onset Ia E(t )−(quarantine¿¿ Ia+recoverIa)Ia (t)¿ (3 )

dIm ( t )
dt

=onset ℑE(t )−(quarantine¿¿ ℑ+recoverℑ)ℑ(t)¿ (4 )

dIs ( t )

dt
=onset IsE (t)−(quarantine¿¿ Is+recover Is+dead Is) Is(t)¿ (5 )

dQIa ( t )
dt

=quarantine Ia Ia ( t )−recoverQIaQIa ( t )

(6 )

dQIm (t )

dt
=quarantineℑ ℑ (t )−recoverQImQIm (t )

(7 )

dQIs ( t )

dt
=quarantine Is Is(t )−(recover¿¿QIs+deadQIs)QIs (t)¿ (8 )

dR (t )

dt
=recover Ia Ia (t )+recoverℑ ℑ (t )+recover Is Is ( t )+recoverQIaQIa ( t )

+recoverQImQIm ( t )+recoverQIsQIs (t )

(9 )

dD (t )
dt

=dead Is Is ( t )+deadQIsQIs ( t )

(10 )

The system of  differential  equations  is  equivalent  to  susceptible-exposed-infectious-

recovered  (SEIR)  compartment  model  which  is  often  used  in  several  COVID-19

research (Tian et al. 2020, Wu, Leung, and Leung, 2020, Barbarossa et al. 2020). On the

other hand, the model classes and parameters expressed by Eqs. (1)–(10) are identical to

those of the stochastic model illustrated in Figure 1.

2.2 | Characterization of the Gillespie-based epidemic model
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A simulation program for the stochastic epidemic model based on the Gillespie

algorithm was constructed using Visual Basic Applications in Microsoft Excel. For the

deterministic model, simulations based on the  SEIamsQamsRD model shown in Eqs.

(1)–(10) were performed on R version 3.6.1 using the same parameter settings as in the

stochastic  model.  The  dynamics  of  the  stochastic  and  deterministic  models  were

compared  for  different  parameters,  as  described  in  Sections  2.2.1–2.2.5.  For  the

stochastic model, 300 Monte Carlo simulation trials were performed to obtain a result

for each parameter setting.  An outbreak was defined as the appearance of over  100

infected individuals (Ia, Im, and/or Is), and the probability of an outbreak was calculated

by the 300 simulations. In addition, the mean number of infectious individuals when the

outbreak was recorded was used as a representative trajectory of the stochastic model in

the particular parameter setting. The simulated results of the deterministic model were

output  in  CSV files,  and  both  stochastic  and  deterministic  data  were  visualized  in

Microsoft  Excel.  Statistical  analysis  for  the  outbreak  probability  based  on  two-way

analysis  of  variance  (two-way  ANOVA)  was  performed  on  R  version  3.6.1  using

package dplyr.

2.2.1 | Initial number of infected people

The onset ratio of Im (Orm) and infectious duration of Im (Idm) were fixed to 1

and  14  days,  respectively,  indicating  that  the  infected  population  enters  the  Im

(infectious-mild) stage with an infectious duration of 14 days. Each simulation of 800

days was performed assuming that 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 100 infected individuals

(E) invaded a susceptible population of 10,000. All simulations were performed for four

different values of R0 (1.5, 2.0, 2.5 and 3.0). 
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2.2.2 | Infectious duration

The  model  dynamics  for  infectious  durations  of  7,  14,  and  21  days  were

compared,  and  Orm was  fixed  to  1.  Each  simulation  of  800  days  was  performed

assuming  that  1  infected  person  invaded  a  susceptible  population  of  10,000.  All

simulations were performed for four different values of the basic reproductive number

R0 (1.5, 2.0, 2.5, and 3.0).  

2.2.3 | Size of susceptible population

Orm and Idm were fixed to 1 and 14 days, respectively. Each simulation of 800

days was performed assuming that 1 infected person invaded a susceptible population of

1,000, 10,000 or 100,000. All simulations were performed for four different values of R0

(1.5, 2.0, 2.5, and 3.0).

2.2.4 | Ratios of Ia, Im, and Is

To validate the ratios of Ia, Im, and Is, the onset rates of Ia (Ora), Im (Orm), and

Is (Ors) were set to 0.1–0.7, 0.1–0.7, and 0.2, respectively, so that they summed to 1. The

infectious durations of  Ia (Ida),  Im (Idm), and  Is (Ids) were fixed to 7, 14, and 21 days,

respectively.  Each simulation of 800 days was performed assuming that 10 infected

individuals invaded a susceptible population of 10,000. All simulations were performed

with R0 = 2.5. 

2.2.5 | Quarantine setting

Quarantine setting was investigated when Orm was fixed to 1 and Idm was set to

7,  14,  or  21  days.  Qdm was  fixed  to  5  days,  meaning  that  Im populations  were

quarantined and isolated at 5 days after infectiousness onset. The rate of quarantine of
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Im (Qrm) was set to 0, 0.5, and 1.0 for comparison. Each simulation of 800 days was

performed assuming that 100 infected individuals invaded a susceptible population of

10,000. All simulations were performed with R0 = 2.5.

2.3 | Parameter assumption for COVID-19

All parameters  used to simulate  the COVID-19 epidemic were estimated as

follows. We adopted R0 = 2.5 (Ferretti et al., 2020; Prem et al., 2020; Wu, Leung, and

Leung, 2020; Kucharski et al., 2020; Wu et al., 2020) and a mean incubation period of

5–6 days (Wu et al., 2020; Backer, Klinkenberg, and Wallinga, 2020). However, the

periods of transmission from a pre-symptomatic person (Cheng et al., 2020; Tong et al.,

2020; Rothe et al., 2020) and viral shedding before symptom onset (Zou et al., 2020;

Pan et al., 2020) should also be considered. The infectiousness onset was estimated to

be 2–3 days before symptom onset (He et al., 2020). Therefore, a latency period of 4

days was used instead of the incubation period. The ratios of the asymptomatic (Ora),

mildly symptomatic (Orm), and severely symptomatic populations (Ors) were assumed to

be  0.3,  0.6,  and 0.1,  respectively,  based  on previous  studies  (Nishiura  et  al.,  2020;

Mizumoto et al., 2020; Gao et al., 2020). With respect to the infectious duration, it is

reported that the virus could be transmitted within 5 days of symptom onset (Cheng et

al., 2020), and the infectiousness declines quickly within 7 days (He et al., 2020). In

viral-shedding data, the viral genome is detected by real-time PCR for approximately 20

days in the saliva or sputum of patients, whereas the viral load peak appears in the first

week after symptom onset (He et al., 2020; Zou et al., 2020; Pan et al., 2020; To et al.,
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2020; Wolfel et al., 2020; Zhou et al., 2020). No virus is isolated from sputum samples

after 8 days from symptom onset, which could be a significant biological indicator of

virus transmission (Wolfel et al., 2020). Additionally, transmission from asymptomatic

carriers is confirmed (Bai et  al.,  2020), and prolonged duration of virus detection is

reported  more  often  in  severely  symptomatic  patients  than  in  mildly  symptomatic

patients  (Zheng  et  al.,  2020).  Considering  the  abovementioned  epidemiological

information of COVID-19, the infectious durations for Ia,  Im, and Is were assumed to

be  5,  10,  and  15  days,  respectively.  In  the  stochastic  model,  the  size  of  the  fatal

population could be output if the fatality rate (Fr) of Is was fixed. Although the fatality

information was not considered for the evaluation in this study, Fr was fixed to 0.1, i.e.,

10% of severe cases (1% of all infected individuals) were fatal in our simulations (Wu

et al., 2020a; Verity et al., 2020). 

2.4 | Evaluation of NPIs

The effectiveness of NPIs was evaluated by utilizing the stochastic model using

parameters  relevant  to  the  COVID-19  epidemic.  Four  scenarios  were  compared  for

different NPI durations (30, 60, 90, 120, 150, and 180 days). Scenario 1 only considered

an  80%  reduction  of  β,  assuming  city  lockdown.  Scenarios  2,  3,  and  4  assumed

populations  Im and  Is were quarantined 7,  5,  and 3 days  after  infectiousness onset,

respectively, in addition to the city lockdown. Simulations were performed assuming

that 10 imported cases invaded a susceptible population of 100,000. The NPIs were

established  10,  20,  30,  40,  50,  and  60  days  post  invasion  (dpi)  of  the  infected

individuals.  Each  simulation  of  730  days  involved  the  mean  patient  number  and
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probability  of  outbreak  containment  calculated  by  performing  1,000  Monte  Carlo

simulation trials. The mean patient numbers were simply the sums of Ia, Im, and Is, and

the detection ratio of the infected population and delay in case reporting were not taken

into account. The probability of outbreak containment was calculated by the numbers of

single trajectories when the number of infected individuals was 0 and there was no

recurrence of the epidemic after NPI relaxation within 1,000 simulations.

3 | Results and Discussion

3.1 | Characterization of the Gillespie-based epidemic model

3.1.1 | Dynamics of single trajectory by stochastic simulation

We evaluated the dynamics of the Gillespie-based stochastic model using several

fixed  parameters  and  simultaneously  compared  them  with  those  obtained  from  an

equivalent deterministic model using the same parameters. First, the dynamics of the

Gillespie-based epidemic simulation were determined by focusing on a single trajectory

in  a  fixed  condition.  The  results  indicate  that  the  output  single  trajectories  by  the

stochastic  simulation  were  varied  in  each  simulation  trial,  whereas  the  trajectory

between the mean of 300 trials and the deterministic model was quite similar (Figure.

2A). Interestingly, the infected people are sometimes spontaneously dissipated without

causing  an  outbreak,  even in  the  same parameter  setting  (Figure.  2B).  Because  the

Gillespie-based  epidemic  model  assumes  Poisson  processes,  which  are  assigned  to
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presumed individuals,  the  dissipated  result  of  infected  people  is  considered  to  be  a

statistically exact event (Masuda and Rocha, 2018). Namely, each single trajectory by

the stochastic simulation is a possible prediction from the parameter setting; hence, the

probability of the outbreak for each parameter setting was calculated based on the single

trajectory analysis via 300 Monte Carlo simulation trials. The probability of an outbreak

is less than 50% for a single infected individual (E), and R0 is less than 2.0 (Table 3),

which  seems  to  be  a  plausible  disease  spread  scenario  considering  random  human

mobility and contact processes. Therefore, an outbreak caused by the introduction of a

few infected individuals could be prevented if the effective reproductive number (Re) is

reduced by adopting appropriate NPIs.

3.1.2 | Parameters affecting probability of outbreak

We next analyzed the model dynamics for different values of R0, the infectious

duration,  and initial  size of susceptible population (S0).  The results indicated that  R0

affected the total number of infected individuals, i.e., when R0 was 1.5, 2.0, 2.5, and 3.0,

the cumulative percentage of the population infected was approximately 60%, 80%,

90%,  and  95%,  respectively.  The  speed  of  the  disease  outbreak  increased  with

increasing R0 (Figures 3 and 4), and the infectious duration was inversely related to the

speed of the disease outbreak (Figure 3).  Although  S0 did not affect the cumulative

percentage of the population infected, the epidemic duration was prolonged when  S0

was larger because the disease took longer to spread (Figure 4). The results indicate that

an epidemic in a small town could cease quickly, whereas pandemics at larger scales

could be prolonged for  years.  With  respect  to  the  probability  of  outbreak,  two-way

ANOVA analyses  indicated  that  the  infectious  duration  and  S0 did  not  affect  the
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probability of outbreak. Contrarily,  R0 and the initial value of  E significantly affected

the probability of outbreak when E was less than 5 (P < 0.01), suggesting that R0 or Re

and the number of infected persons could be key factors for disease containment using

NPIs. The trajectory by the deterministic model, which had the same composition as our

stochastic  model,  was  almost  identical  to  the  mean  trajectory  by  the  stochastic

simulation regardless of R0, the infectious duration, and S0 (Figure 3 and Figure 4). 

3.1.3 | Dynamics of constructed epidemic model

Finally,  we  examined  the  ratios  of  the  infectious  populations  and  model

dynamics  under  different  quarantine  parameters  which  were  incorporated  into  the

epidemic model (Figure 1). Each infectious population was divided into subclasses Ia,

Im, and Is according to specified parameters (Figure 5A). Further, infectious individuals

were quarantined on specified days when the quarantine rate was 100% or 0% (Figure

5B).  However,  more  infectious  individuals  than  the  specified  rate  were  quarantined

when the infectious duration was much longer than the specified quarantine day under

50%  quarantine  rate  (Figure  5B).  This  phenomenon  occurred  because  quarantine

measures were applied to the present infectious population instead of the cumulative

infectious population. The obtained results were confirmed by the deterministic model

(Figure 5B), indicating that the Gillespie-based stochastic model accurately inferred the

effectiveness of quarantine measures for a specified infectious population, duration, and

rate. Both stochastic and deterministic model constructed in this study adhere to systems

of SEIR compartment  model,  but  extended to  account  for  asymptomatic,  mild,  and

severe cases. The expansion enables simulating feasible quarantine measure, e.g., the

asymptomatic population can be excluded for quarantine simulation as they are hardly
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to be quarantined unless active surveillance.

3.2 | Inference of NPIs effects for COVID-19

3.2.1 | Model parameters for COVID-19 and NPIs

The results of the previous section indicate that R0 constitutes a critical factor

for epidemic progression, including the probability of disease outbreak determined from

the  Gillespie-based  epidemic  simulation.  In  this  study,  R0 was  set  to  2.5  for  the

simulation baseline of the COVID-19 epidemic, as previous studies give an estimate of

2-3 (Ferretti et al., 2020; Prem et al., 2020; Wu, Leung, and Leung, 2020; Kucharski et

al., 2020; Wu et al., 2020). Based on the COVID-19 studies, the infectious durations for

Ia, Im, and Is were assumed to be 5, 10, and 15 days, respectively (Figure 6). When Ora,

Orm, and Ors were fixed to 0.3, 0.6, and 0.1, respectively, the mean infectious duration

was calculated to be 9 days, which is a plausible value considering the epidemic data of

infectiousness (He et al., 2020) and virus isolation period (Wolfel et al., 2020). With

respect to NPIs, an 80% reduction of β, which is equivalent to the reduction of human

mobility  and  contact,  was  applied  for  all  scenarios  assuming  city  lockdown.  As

symptoms are considered to appear 2.4 days after infectiousness onset in this study, the

quarantining of  Im and  Is was enforced 4.6, 2.6, and 0.6 days after symptom onset in

Scenarios  2,  3,  and  4,  respectively  (Figure  6).  Quarantining  was  not  imposed  on

population  Ia in  the simulation  because it  is  impossible  to estimate the size of  QIa
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quantitatively  unless  PCR  testing  targeting  all  population  or  active  surveillance  is

performed.

3.2.2 | Evaluation of NPIs

We compared  four  NPI  scenarios  for  the  COVID-19  epidemic  assuming  10

infected individuals were invaded in a population of 100,000. In 1,000 Monte Carlo

simulation trials, the trajectories, which were either completely contained or recurred

after  NPI relaxation,  were observed;  hence,  the probability  of  outbreak containment

could  be  calculated  by  analysis  of  each  trajectory.  The  results  indicated  that  the

epidemic  could  be  completely  contained  through  short-duration  NPIs  if  they  were

enforced immediately after the introduction of infected individuals (Figure 7A).  For

example, in Scenario 1, when NPI was enforced at 10 dpi of the infected individuals, an

outbreak  exceeding  80%  was  inferred  to  be  contained  by  the  NPI  for  90  days.

Contrarily, an NPI of 180 days was required to achieve a similar level for the probability

of outbreak containment if NPI was enforced at 60 dpi. In fact, New Zealand imposed a

lockdown measure in March 2020 when the number of COVID-19 cases was still ~200

and successfully contained the disease within two months. 

Our simulation results also indicate that implementing a lockdown combined

with  quarantining  the  symptomatic  populations  is  essential  to  control  COVID-19

effectively  (Figure  7).  Nearly  half  a  year  was  required  to  contain  the  outbreak

completely  when  an  80%  reduction  of  β was  achieved  via  lockdown  (Figure  7A,

Scenario  1).  In  contrast,  over  80%  of  the  outbreak  was  controlled  by  applying  a

combination of NPIs for 2 months, which consisted of a lockdown and quarantining the
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symptomatic populations immediately after symptom onset (Figure 7A, Scenario 4). A

comparison of Scenarios 2, 3, and 4 indicates that the effectiveness of the quarantine

measure is  higher when the period between symptom and quarantine onset is  short.

Similar results have been reported previously using another stochastic epidemic model:

a branching process model (Hellewell et al., 2020). Those simulation results indicated

that early isolation of symptomatic individuals as much as possible should be imposed,

even when asymptomatic or pre-symptomatic populations cannot be not quarantined.

Currently,  PCR-based  testing  is  the  primary  measure  for  early  isolation  of  infected

individuals (To et al., 2020) but notifying the contacts of positive cases using a digital

contact tracing tool could also lead to early self-isolation (Ferretti et al., 2020).

After NPI relaxation, a second wave is unavoidable if the infected population is

not completely dissipated by the NPIs (Figure 7C). This implies that further NPIs will

be enforced to control the outbreak. The probability of outbreak containment suggests

that prolonged NPIs causing significant damage to human society are required once the

magnitude of epidemic is large. Thus, elimination of infected individuals by imposing

early  NPIs  seems to  be  a  reasonable  measure  for  mitigating  the  damage in  human

society. The newly introduction of infected individuals can be preventable by adopting

quarantine measures at border control. Currently, countries applying early lockdown and

strict  border  control  seem  to  control  the  COVID-19  epidemic

(https://covid19.who.int/table).  The  probability  of  outbreak  containment  by  the

Gillespie-based epidemic simulation could be a useful indicator to infer the elimination

of infected individual in the population when the duration and magnitude of NPIs will

be determined.
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To the best of our knowledge, this is the first report on the effectiveness of

NPIs for the COVID-19 epidemic inferred using Gillespie-based epidemic modelling.

Although the Gillespie algorithm has been discussed in epidemic simulations (Cota and

Ferreira,  2017;  Masuda  and  Rocha  2018),  there  exist  limited  simulations  of  actual

disease epidemics. The proposed epidemic model provides unique outputs, such as the

probability of outbreak containment, which are useful for making inferences about the

effectiveness of NPIs. However, our simulation results for the COVID-19 epidemic may

be  weakened  because  they  are  highly  associated  with  the  asymptomatic  population

(Hellewell et al., 2020; Fraser et al., 2004), whose actual magnitude remains unclear

(Ferretti et al., 2020; Nishiura et al., 2020; Mizumoto et al., 2020; Gao et al., 2020).

Thus, more data for the asymptomatic population are required to infer feasible measures

for the containment of the COVID-19 pandemic.
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Tables

TABLE 1 Base parameters for the epidemic model.

Base

Parameter
Explanation

Value for

COVID-19
Reference

R0 Basic reproductive number 2.5

Ferretti et al., 2020

Prem et al., 2020

Wu, Leung, and Leung, 2020

Kucharski et al., 2020

Hellewell et al., 2020

Ld Days of latent period 4 days

He et al., 2020

Wu et al., 2020

Backer,  Klinkenberg,  and

Wallinga, 2020

Ora
† Onset rate of asymptomatic case 0.3

Nishiura et al., 2020

Mizumoto et al., 2020

Gao et al., 2020

Orm
† Onset rate of mild case 0.6

Nishiura et al., 2020

Mizumoto et al., 2020

Gao et al., 2020

Ors
† Onset rate of severe case 0.1

Nishiura et al., 2020

Mizumoto et al., 2020

Gao et al., 2020

Qda
Days between onset and quarantine 

of asymptomatic case 
NA‡ -

Qdm
Days between onset and quarantine 

of mild case
NA -

Qds
Days between onset and quarantine 

of severe case
NA -

Qra Quarantine rate of asymptomatic case NA -

Qrm Quarantine rate of mild case NA -

Qds Quarantine rate of severe case NA -
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I da Infectious days of asymptomatic case 5

Wolfel et al., 2020

Bai et al., 2020

Zheng et al., 2020

I dm Infectious days of mild case 10

Wolfel et al., 2020

Bai et al., 2020

Zheng et al., 2020

I ds Infectious days of severe case 15

Wolfel et al., 2020

Bai et al., 2020

Zheng et al., 2020

F r Fatality rate of severe case 0.1
Wu et al., 2020

Verity et al., 2020
†Ora+Orm+Ors=1
‡NA (not applicable); depends on the case.

TABLE 2 Simulation parameters for the epidemic model.

Simulation

Parameter
Explanation Calculation

β Transmission rate R0 / {S0
†

(Ora I da+O rm I dm+Ors Ids ) }

onse t Ia Rate of onset from E to Ia Ora /Ld
onse tℑ Rate of onset from E to ℑ Orm/Ld
onse t Is Rate of onset from E to Is Ors /Ld

quarantine Ia Rate of quarantine from Ia to QIa Qra /Qda
quarantineℑ

Rate of quarantine from ℑ to QIm Qrm /Qdm
quarantine Is Rate of quarantine from Is to QIs Qrs /Qds
recover Ia Rate of recovery from Ia to R (1−Q ra)/I da
recoverℑ

Rate of recovery from ℑ to R (1−Q rm)/ I dm
recover Is Rate of recovery from Is to R (1−Q rs)(1−F r )/ I ds
recoverQIa

‡ Rate of recovery from QIa to R 1/ ( I da−Qda )

recoverQIm
§ Rate of recovery from QIm to R 1/ ( I dm−Qdm )

recoverQIs
¶ Rate of recovery from QIs to R (1−F r ) /( I ds−Qds )

deceased Is Fatality rate from Is to D F r(1−Q rs)/I ds
deceasedQIs Fatality rate from QIs to D F r/ ( I ds−Qds )

†S0: Initial size of susceptible population
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‡If Ida ≤ Qda, then recoverQIa is 0.

§If Idm ≤ Qdm, then recoverQIm is 0.

¶If Ids ≤ Qds, then recoverQIs is 0.

TABLE 3 Probability of outbreak (%) for different E and R0.

R0

E

1 2 3 4 5 6 7 8 9 10 100

1.5 37.0 58.3 70.7 80.7 86.0 92.3 95.3 95.7 96.7 98.7 100.0

2.0 47.7 70.7 88.7 94.0 96.7 100.0 98.3 99.7 99.7 100.0 100.0

2.5 61.3 82.3 93.3 98.0 98.7 99.0 100.0 100.0 100.0 100.0 100.0

3.0 65.0 90.7 96.3 99.3 99.7 100.0 100.0 100.0 100.0 100.0 100.0

27



Figure legends

FIGURE 1 Stochastic epidemic model based on the Gillespie algorithm developed in

this study. (A) Schematic diagram of the Gillespie algorithm used in this study. Variable

k  corresponds  to  the  event  numbers  shown in  Figure  1D.  Event ( t , k ) indicates  the

parameter  shown  in  Figure  1D  when  the  event  number  is  k  at  the  time  point  t .

Event 0(t , k ) indicates the sum of all parameters shown in Figure 1D at the time point t .

In the simulation model, t=1 was assumed to be 1 day, and the simulation program was

constructed so that a specified number of days could be simulated. (B) Classes in the

epidemic population used in this study. (C) Schematic image of class transition in the

stochastic model. Branches and event numbers corresponding to the class transition are

indicated.  (D) Parameters  relevant  to  events  and class  transitions are  indicated.  The

calculation method for each parameter is shown in Table 1 and Table 2. In this model,

quarantined  individuals  (QIa,  QIm,  and  QIs)  were  isolated  completely  and  did  not

contribute to the production of new infected individuals.

FIGURE 2 Dynamics of the Gillespie-based epidemic simulation. R0, Orm, and Idm were

set to 2.5, 1, and 14 days, respectively. Each simulation of 800 days was performed

assuming that 1 infected individual invaded a susceptible population of 10,000 people.

(A) Grey dashed lines represent the randomly selected 16 trajectories by the stochastic

simulation.  Black  dashed  lines  indicate  the  single  trajectories  of  maximum  and

minimum progression of the cumulative infected people in 150 days. The red solid line

and blue dotted line indicate the mean trajectory of the stochastic simulation and single

trajectory calculated by the deterministic model,  respectively.  (B) Black dotted lines
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indicate  the  single  trajectories  when  the  infected  individuals  were  spontaneously

dissipated, indicating there was no outbreak in the stochastic simulation.

FIGURE 3  Comparison of infectious duration and  R0. (A) The pink, blue, and gray

areas indicate the newly introduced numbers of infected people (Im) when infectious

duration was set to 7, 14, and 21 days, respectively. The line and dot charts in red, blue,

and black indicate  the  cumulative numbers  of  infected people  (Im)  when infectious

duration was set to 7, 14, and 21 days, respectively. The lines and dots indicate the

simulation results of the stochastic and deterministic models, respectively. (B) The red,

blue,  and  grey  charts  indicate  probability  of  outbreak  in  300 stochastic  simulations

when the infectious duration was set to 7, 14, and 21 days, respectively.

FIGURE 4 Comparison of susceptible population size and R0. (A) The pink, blue, and

gray areas indicate the newly introduced numbers of infected people (Im) when the size

of the susceptible population was set to 1,000, 10,000, and 100,000 people, respectively.

The line and dot charts in red, blue, and black indicate the cumulative ratios of infected

people (Im) when the size of the susceptible population was set to 1,000, 10,000, and

100,000 people, respectively. The lines and dots indicate the simulation results of the

stochastic and deterministic models,  respectively.  (B) The red,  blue,  and grey charts

indicate  probability  of  outbreak  in  300  stochastic  simulations  when  the  size  of  the

susceptible population was set to 1,000, 10,000, and 100,000 people, respectively. 

FIGURE 5 Dynamics of the constructed epidemic model assuming symptom division

and  quarantine  setting.  (A)  Comparison  of  ratio  of  onset.  The  stacked  area  charts

simulated by the stochastic model when onset rate of asymptomatic cases (Ora), mild

cases (Orm), and severe cases (Ors) were set to 0.1–0.7, 0.1–0.7, and 0.2, respectively, so

29



that their sum would equal 1. The sky blue, gray, and pink areas indicate the cumulative

numbers of asymptomatic cases (Ia), mild cases (Im), and severe cases (Is), respectively.

The stacked line charts in blue, black, and red indicate the cumulative numbers of  Ia,

Im,  and  Is,  respectively, which were simulated by the deterministic model using the

same parameters as the stochastic model. (B) Comparison of quarantine setting. The

multiple line and dot charts indicate the cumulative numbers of infected people (Im) and

quarantined people (QIm),  respectively,  simulated by the stochastic  model  (left)  and

deterministic  model  (right).  The  red,  blue,  and  black  charts  indicate  the  simulation

results  when  the  quarantine  rate  (Qrm)  was  set  to  0,  0.5,  and  1.0,  respectively.  Idm

indicates the infectious duration of the infected people (Im).  

FIGURE 6 Schematic image of the estimated progression of COVID-19 and quarantine

measures for epidemic simulation. Grey-filled cells indicate the latency period (4 days).

Orange, pink, and red cells indicate the infectious durations of populations Ia,  Im, and

Is, respectively. The incubation period was assumed to be 6.4 days (Backer et al. 2020).

The period between symptoms onset and case report was set to 7, 5, and 3 days for

Scenarios 2, 3, and 4, respectively.

FIGURE 7 Inference of NPI effect based on the Gillespie-based epidemic simulation.

The following four  scenarios of  NPIs  were compared:  Scenario 1 assumed an 80%

reduction of β (city lockdown); Scenarios 2, 3, and 4 involved the implementation of a

quarantine measure such that all  Im and Is were quarantined and isolated at 7, 5, or 3

days  after  the  start  of  infectiousness,  respectively,  in  addition  to  the  condition  of

Scenario  1.  (A)  Probability  of  outbreak  containment  in  1,000  simulations  of  each

scenario. The line charts in blue, green, light green, yellow, orange, and red indicate the
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probabilities when NPIs were started from 10, 20, 30, 40, 50, and 60 dpi, respectively.

(B)  Total  patient  numbers  (=sum  of  Ia,  Im,  and  Is)  in  the  first  100  days  of  the

simulations when NPIs were performed for 180 days. The results are the mean values of

1,000 simulations. The line charts in blue, green, light green, yellow, orange, and red

indicate the total numbers of patients when NPIs were started at 10, 20, 30, 40, 50, and

60 dpi,  respectively.  The black dashed lines indicate  the simulation results  obtained

when no NPI were performed (No-NPI). (C) Total patient numbers in 500 days when

NPIs were started at  60 dpi  and outbreak recurred after  releasing of  the NPIs.  The

results are the mean values only when more than 100 re-outbreaks were confirmed in

1,000 simulations.  The line charts  in red,  pink,  orange,  light green,  green,  and blue

indicate the total numbers of patients when NPIs were performed for 30, 60, 90, 120,

150, and 180 days, respectively. The black dashed lines indicate the simulation results

obtained when no NPIs were performed (No-NPI).
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