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Abstract

This research is about the transfer of heat of a generalized fractional Casson fluid
on an unsteady boundary layer which is passing through an infinite oscillating plate, in
vertical direction combined with the Newtonian heating. The results are obtained by
using modified Riemann-Liouville fractional derivative. The present fluid model, starts
with the governing equations which are then converted to a system of partial differ-
ential equations(linear) by using some suitable non-dimensional variables. Using the
method of integral balance and the Laplace transform technique, an analytical solution
is obtained. The velocity and temperature expressions are derived and the effects of
modelling parameters re shown in tables and graphs to validate the obtained theoretical
results.
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1 Introduction

Many scientists extensively analyse the boundary layer flow of viscous and non-Newtonian

fluids due to its significance in continuous casting, polymer extrusion, paper production,

aerodynamic extrusion of plastic sheet and many more. The study of unsteady boundary

layer is valuable in various physical problems such as flow over a helicopter in translation

motion, blades of turbines and compressors, aerodynamic surfaces of vehicles in manned

flight, etc. The unsteadiness in the flow field is induced either by time dependent motion

of the external stream or by impulsive motion of the external stream.

When the motion of fluid over a body is established impulsively, the inviscid flow is

generated instantaneously over the body but in the mean time the viscous layer is devel-

oped slowly near the body and it become as fully developed steady state viscous flow after
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a certain period of time. Velocity, temperature and concentration are studied for differ-

ent parameters like magnetic field, Prandtl number, chemical reaction and heat source.

Convective heat transfer interprets a major role during the handling and processing of non-

Newtonian fluid flows. Mechanics of non-Newtonian fluid flows gives a special inspiration

to engineers, chemists, physicists and mathematicians.

The non-Newtonian fluids are generally categorized into three cases, namely differential,

rate, and integral. The straight forward subclass of the second type of fluids is the Maxwell

model which can predict stress relaxation. This rheological model eliminates the compli-

cated effects of shear-dependent viscosity from any boundary layer analysis. Another type

of non-Newtonian fluid is known as Casson fluid, which indicates yield stress. Casson is a

shear thinning liquid which is assumed to have an infinite viscosity at zero rate of shear.

Below the yield stress there is no flow, and at an infinite rate of shear, the viscosity is zero,

that is when a shear stress is less than the yield stress, the fluid performs like a solid, but

when a shear stress is greater than the yield stress, the fluid starts moving Mathematicians

as well as researchers working in the medical field are broadly working on Casson fluid

model. Some well known examples of the Casson fluid are honey, soup, jelly, tomato sauce,

etc. In the literature, the Casson model is erratically claimed to fit rheological data that

are preferable than the general visco-plastic models for many materials. Human blood is

the best example of Casson fluid due to the existence of several substances such as protein,

fibrinogen and globulin in aqueous base plasma and human red blood cells can form a train

structure, known as stacks or aggregations. If it behaves like a plastic solid, then there

exists a yield stress that can be determined with the constant yield stress in Cassons fluid.

On the other hand, in view of the applications, Newtonian fluids follow a linear relation-

ship between the stress and the rate of strain that is limited. Over the range of shear stresses

and shear rates that we come across in our day-to-day life, water, air, alcohol, glycerol, thin

motor oil, etc are some examples of Newtonian fluids . Single-phase fluids consist of small

molecules that are generally Newtonian. The process of heat transfer into the convective

fluid through bounding surface having finite heat capacity is called as Newtonian heating.

This type of phenomenon exists in the system of conventional flows if the heat is injected by

solar radiation. In all the above studies, the flow is driven by a prescribed surface temper-

ature or by heat flux. Here a new different driving mechanism for unsteady free convection

along a vertical surface is considered where the flow is set up by Newtonian heating from the

surface. The characteristics of heat transfer depend on the thermal boundary conditions.

In general, the heat is transferred from one object to another via three processes, namely

conduction, radiation, and convection.

The interface temperature is initially unknown but relate to the intrinsic properties of

the system, such as the thermal conductivity of the solid and fluid respectively. The heat

transfer rate with a finite heat capacity from the bounding surface is directly proportional

to the local surface temperature and is generally referred as the conjugate of the convective

flow. This type of formation occurs in many cases of engineering, such as heat exchangers
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in which (i) the conduction in solid tube wall is highly influenced by the convection in

the flow of fluid; (ii) for conjugate heat transfer around fins where the conduction within

the fin and the convection in the fluid encircling it must be concurrently analysed in order

to attain the vital design information; and (iii) convective flows set up by solar radiation

where the bounding surfaces absorb heat. Hence the standard assumption of no interaction

of conduction-convection effects is not normally feasible and it might be assumed in many

practical engineering applications when evaluating the conjugate heat transfer processes.

2 Review of Literature

The Newtonian heating condition has been recently applied in convective heat transfer.

Merkin [23] was the first to examine the free-convection boundary layer over a vertical flat

plate involved in a viscous fluid. Hussanan et al, [11, 12] started studying the Newtonian

heating of the natural convection flow passing through an oscillating plate and unsteady flow

and heat transfer of a Casson fluid on oscillating vertical plate. From the above literature, it

should be noted that there are several contributions on Newtonian heating [9,13,19]. On the

other side, many authors have discussed various methods to handle linear and non-linear

fractional differential equations which have great influence in scientific and technological

disciplines.

The flow of Casson fluids (for example, drilling muds, liquid chocolates, clay coatings

and other suspensions, certain oils and greases, polymer melts, blood, and emulsions) in the

presence of heat transfer, is an emerging area of research due to its relevance to the optimized

processing of chocolates, ice-creams, and other food-stuffs [6]. Boundary layer flow and heat

transfer of non-Newtonian fluids are analysed in ref. [8]. There are so many techniques avail-

able in the literature such as differential transform method, homotopy perturbation method,

and variational iteration method for identifying the solutions of extensive applications in

various areas of bio-chemical, rheology, physics and petroleum industries [1–3,5,10,29]. Be-

cause of these applications, the perception and the study of non-Newtonian fluids become

a fascinating topic of current research in this field. In all the above cases, the solutions

of generalized fractional Casson fluid are determined by either using approximate or any

numerical methods. Only very few studies are available in which the analytical solutions of

generalized fractional Casson fluid are obtained. These solutions are rare when the fluid in

free convection flows with constant wall temperature. Representative studies dealing with

the non-Newtonian model can be found in [4, 21,22,25,27,28,30–34].

The concept of fFractional differential equations is considered as an alternative tool to

model nonlinear differential equations. The history of fractional calculus is mainly based on

the article by, Miller and Ross [24] and recent review articles. Podlubny [26] unites both the

derivative and the integral representation in a single expression and has given a connection

between the Riemann-Liouville fractional derivative and the Grunwald-Letnikov fractional

derivative. Then in 1967 M. Caputo [6] introduced a few format of fractional derivative

which is in contrast to the Riemann-Liouville fractional derivative; while solving differential
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equations using Caputo’s definition, it is not necessary to define the fractional order initial

conditions. Since then, many researchers have tried to extend and find new definitions for

the fractional derivative. Kilbas [20] provided an encyclopaedic mathematical treatment of

fractional integrals and derivatives.

The above generalized Casson fluid model along with Jumaries modified Riemann-

Liouville fractional derivative, which was originated by Jumarie for the first time [14–18],

has some advantages compared with Riemann-Liouville and Caputo derivatives since the

Riemann-Liouville derivative of a constant is not zero and the Caputo derivative is de-

fined only for differentiable functions, for instance, some functions that have no first order

derivatives but have fractional derivatives of all orders less than one. To overcome such sit-

uations, modified Riemann-Liouville derivative might be applied. The (Jumarie)modified

Riemann-Liouville fractional derivative of a constant is equal to zero and it is defined for

any continuous (non-differentiable) functions.

To the best knowledge of the author, the study of unsteady boundary layer flow of

a Casson fluid past an oscillating vertical plate with constant wall temperature with Ju-

maries modified Riemann-Liouville derivative has not been obtained yet. Exact solutions

are extracted by using the Laplace transform technique. Graphical results are presented

and discussed for various physical parameters. The solutions obtained in this study are

essential for the fundamental flow situations and for describing the flow physics in detail as

well as for validation of other solutions obtained via approximate and numerical techniques.

3 Basic definitions and preliminaries

This section focus on the tools in fractional calculus; that is the fractional differential

and integral operators. The definitions of fractional integral, Riemann-Liouville derivative,

Caputo derivative, Modified Riemann-Liouville (Jumarie) derivative and their associated

Laplace transforms are discussed.

Definition 3.1 [26] The fractional order integral of the function f on a given interval

[a, b] of order α ∈ R+ is defined by

Iαa f(t) =
1

Γ(α)

∫ t

a

f(s)

(t− s)1−α
ds,

provided that the right-hand side is pointwise defined on [0,∞), where Γ(.) is the gamma

function.

Definition 3.2 [26] The αth Riemann-Lioville fractional derivative of the function f on

a given interval [a, b] is defined by

(Dα
a,tf)(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(s)

(t− s)α+1−nds,

where n = [α] + 1 and [α] denotes the integer part of α.
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Definition 3.3 [26] The Caputo fractional derivative of order α, for the function f on a

given interval [a, b] is defined by

(cDα
a,tf)(t) =

1

Γ(n− α)

∫ t

a

f (n)(s)

(t− s)α+1−nds,

where n = [α] + 1 and [α] denotes the integer part of α.

In the definition of Caputo, first differentiate the function f(t) by n− times and then

integrate it by n − α times. The disadvantage of this derivative is that the function f(t),

must be differentiable by n− times then only the α−th order derivative will exist, where

n−1 ≤ α < n. If the function is not differentiable then the Caputo fractional derivative will

not be applicable. There are two main advantages of this derivative, which are (i) fractional

derivative of a constant is zero (ii) the Caputo type fractional differential equation has initial

conditions of classical derivative type but the Riemann-Liouville type differential equations

has initial conditions of fractional type i.e lim
t→a a

Dα−1
t [f(t)] = b.

With this, a fractional differential equation together with Riemann-Liouville fractional

derivatives require concept of fractional initial stats, are very tough to interpret physically.

To overcome the fractional derivative of a constant, non-zero, another modification of the

definition of left Riemann-Liouville type fractional derivative of the function f(t), in the

interval [a, b] was proposed by Jumarie in the following form.

Definition 3.4 [15] The Modified Riemann-Liouville (Jumarie) fractional derivative of

order α for the function f on a given interval [a, b] is defined by

(JDα
a,tf)(t) =



1

Γ(−α)

∫ t

a
(t− s)−α−1ds, α < 0.

1

Γ(1− α)

d

dt

∫ t

a
(t− s)−α[f(s)− f(a)]ds, 0 < α < 1.

(fα−n(t))(n), n ≤ α < n+ 1.

We consider that f(t)−f(a) = 0, for t < a. In the definition of Jumarie, the first expression is

just fractional integration; the second line is Riemann-Liouville derivative of order 0 < α < 1

of offset function that is f(t) − f(a). For α > 1, we use the third line; that is first we

differentiate the offset function with order 0 < (α − n) < 1, by the formula of second line,

and then apply whole n order differential to it. Here we choose integer n, just less than the

real number α; that is n ≤ α < n+ 1.

Remark 3.5 The Laplace transform of the modified Riemann-Liouville fractional deriva-

tive(Jumarie) of the function f(t) is

L{f (α)(t)} = sαl{f(t)} − sα−1f(0)− sα−2f ′(0)− ...− sα−(n+1)f (n)(0),

for n ≤ α < n+ 1, n ≥ 1.
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4 Formulation of the Casson model

Let us consider the transfer of heat of a Casson fluid on an unsteady boundary layer passing

through an infinite oscillating plate in vertical direction, which is fixed at y = 0, the flow

being restricted to y > 0, where y is the coordinate axis normal to the plate. Initially, for

time t = 0, both plate and the fluid are at stational condition with the constant temperature

T∞. At time t = 0+, the plate started to move in an oscillatory motion in its plane (y = 0)

according to

U = V F (t)cos(ωt)~i; t > 0,

where U = u(x, t)~i, V is the amplitude of the motion, F (t) is the unit step function, ~i is

the unit vector in the vertical direction of the flow and ω is the frequency of an oscillating

plate. Concurrently, the transfer of heat from the plate to the fluid is directly proportional

to the temperature T in the local surface. Let the rheological equation for an isotropic and

incompressible Casson fluid, reported by Casson, is

ρ = ρ0 + λβ,

correspondingly,

ρij =


2(λA +

py√
2π

)τij , π > πe

2(λA +
py√
2πe

)τij , π < πe.

Here ρ is the stress, ρ0 is the Casson yield stress, λ is the dynamic viscosity, β is the shear

rate, τij is the (i, j)th component of the deformation rate, π is the product of the component

of deformation rate with itself, that is π = τijτij , πc is a critical value of this product based

on the non-Newtonian case, λA is the plastic dynamic viscosity of the non-Newtonian fluid

and py is the yield stress of fluid.

With these assumptions the heat transfer of a Casson fluid on an unsteady boundary

layer is governed by momentum and energy equations, is given by

µ

[
∂U

∂t
+ (U.∇)U

]
= divT + µb,

µCp
∂T

∂t
= −∂p

∂t
+ k∇2T,

where T is the Cauchy stress tensor, µ is the fluid density of the fluid, µb refers the body

force, p is the pressure, Cp is the heat capacity at constant pressure and k is the thermal

conductivity. Assume that the pressure is uniform across the boundary layer and by using

the Boussinesq approximation, we get the set of partial differential equations as follows

∂u

∂t
= v(1 +

1

β
)
∂2u

∂x2
+ sγ(T − T∞,

µCp
∂T

∂t
= k

∂2T

∂x2
,
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with the initial and boundary conditions

u(x, 0) = 0, T (x, 0) = T∞, for all x ≥ 0,

u(0, t) = F (t)V cos(ωt),
∂T

∂x
(0, t) = −hsT (0, t), t > 0,

u(∞, t) → 0, T (∞, t)→ T∞, t > 0,

where u is the axial velocity, v is the kinematic viscosity, t is the time, β is the fluid param-

eter, s is the acceleration due to gravity, γ is the volumetric coefficient of thermal expansion

and hs is the heat transfer coefficient. The schematic diagram of the model(geometry of

the problem) is presented in the Figure-1.

Figure 1: Schematic diagram of the model

We introduce the following non-dimensional quantities to shorten the above equations as,

x∗ =
V

v
x, t∗ =

V 2

v
t, u∗ =

u

V
, v =

T − T∞
T∞

, ω∗ =
v

V 2
ω.

Substituting the above quantities into the set of partial differential equations, we attain

the following non-dimensional partial differential equations (∗symbols are dropped out for

simplicity)

∂u

∂t
= (1 +

1

β
)
∂2u

∂x2
+Gr v, (4.1)

Pr
∂v

∂t
=

∂2v

∂x2
. (4.2)

7



Next the following equations describes the motion of the fractional generalized Casson fluid

model

JDαu = (1 +
1

β
)
∂2u

∂x2
+Gr v, (4.3)

combined with the fractional diffusion heat equation

JDαv =
1

Pr

∂2v

∂x2
, (4.4)

with the Goodman boundary conditions given by

u(0, t) = v(0, t) = 1, u(θ) = v(κ) =
∂u(θ, t)

∂t
=
∂v(κ, t)

∂t
, t ≥ 0.

The parameters κ and θ denotes the penetration depths of the model and from the assump-

tions that for x ≥ κ.

4.1 Solution of the formulated model

Here the algorithm of the solutions of the above model is described by adopting integral

balance method: the heat balance integral and the double integral methods. The methods

are considered as follow.

According to Goodman proposition, the approximate analytical solutions are provided as

v(x, t) =
[
1− x

κ

]n
, (4.5)

where κ is the penetration depth as illustrated in the presentation of the model, and n is

the exponent of the approximate solution, which will be determined by using the matching

method. The second step consists of integrating the fractional differential equation between

0 to κ, taking into account the approximate solution (4.5) in the equation (4.4).

The last step consists of solving the obtained fractional differential equation after single

integration between 0 to κ, which depends eventually on time. For the double integral

methods, according to Goodman proposition, conserve the approximate analytical solution

given in equation (4.5). The second step consists of applying the double integration on

the fractional differential equation, the first integration between 0 to κ,and the second

integration between x to κ by taking into account the approximate solution in the equation

(4.4). The last step consists of solving the obtained fractional differential equation after the

double integration.

To experiment with these methods, start the procedure of solutions by applying the

heat balance integral method. Let the fractional diffusion equation defined by (4.4), and

integrating between 0 to κ is∫ κ

0

JDαvdx =

∫ κ

0

1

Pr

∂2v

∂x2
dx,

JDα

∫ κ

0
vdx =

1

Pr

∫ κ

0

∂2v

∂x2
dx.

8



Using the approximate solution in the equation (4.4) and after some calculations, we obtain

the following relationships

JDα

∫ κ

0

(
1− x

κ

)n
dx =

1

Pr

[
∂v

∂x

]κ
0

,

JDα

[
− δ

n+ 1

(
1− x

κ

)n+1
]κ
0

=
1

Pr

[
−n
κ

(
1− x

κ

)n−1]κ
0

,

JDα

[
κ

n+ 1

]
=

1

Pr

n

κ
,

1

n+ 1

J

Dακ =
1

Pr

n

κ
.

Multiplying the above equation by (n+ 1)κ,

κJDακ =
n(n+ 1)

Pr
, (4.6)

JDακ2 =
2n(n+ 1)

Pr
,

Applying Laplace transform on both sides of the above expression,

L
[
JDακ2

]
=

2n(n+ 1)

Pr
L[1],

sαL[κ2] =
2n(n+ 1)

sPr
,

L[κ2] =
2n(n+ 1)

sα+1Pr
.

Now applying Inverse Laplace transform,

κ2(t) =
2n(n+ 1)tα

Pr
.

Hence, the penetration depth is obtained such that the approximate analytical solution is

given by

v(x, t) =

1− x√
2n(n+1)tα

Pr

n . (4.7)

To obtain the exponent value n, continue the resolution by proposing the approximate

solution using the Double integral method. Applying the double integration between 0 to

κ and between x to κ on the fractional diffusion equation,∫ κ

0

∫ κ

x

JDαvdxdx =

∫ κ

0

∫ κ

x

1

Pr

∂2v

∂x2
dxdx,

JDα

∫ κ

0

∫ κ

x
vdxdx =

1

Pr

∫ κ

0

∫ κ

x

∂2v

∂x2
dxdx.
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Using the approximation and calculation the integral between x to κ,

JDα

[
− κ2

(n+ 1)(n+ 2)

(
1− x

κ

)n+1
]κ
0

=
−1

Pr

∫ κ

0

∂v

∂x
dx,

JDα

[
κ2

(n+ 1)(n+ 2)

]
=

1

Pr
v(0, t),

1

(n+ 1)(n+ 2)

[
JDακ2

]
=

1

Pr
.

Applying Laplace transform of the Modified Riemann-Liouville fractional derivative,

1

(n+ 1)(n+ 2)
L
[
JDακ2

]
=

1

Pr
L[1],

sαL
[
κ2
]

=
(n+ 1)(n+ 2)

Pr

1

s
,

L
[
κ2
]

=
(n+ 1)(n+ 2)

sα+1Pr
.

Now applying Inverse Laplace transform,

κ2(t) =
(n+ 1)(n+ 2)

Pr
tα.

Hence, the penetration depth is obtained such that the approximate analytical solution is

given by

v(x, t) =

1− x√
(n+1)(n+2)tα

Pr

n . (4.8)

Hence from the above, it is observed that the exponent n appears again in the approximate

solution with the Double integral method.

It is obvious to stipulate these approximations are the same and it is called the matching

method. The value of the exponent is obtained as follows,1− x√
2(n+1)tα

Pr

n =

1− x√
(n+1)(n+2)tα

Pr

n ,
n = 2

Therefore, the approximate solution of the generalized fractional heat equation is obtained

by considering the exponent n = 2 , that is

v(x, t) =

1− x

2
√

3tα

Pr

2

The second part of the resolution consists of applying the integral balance method and

the double integral method in equation (4.3), that is, to solve the generalized fractional

differential equation described by

JDαu = (1 +
1

β
)
∂2u

∂x2
+Gr

(
1− x

κ

)n
.
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According to Goodman proposition, the approximate analytical solutions are described by

u(x, t) =
(

1− x

θ

)n
,

Repeating the same procedure by applying the heat balance integral method. Taking the

single integral between 0 to θ,∫ θ

0

JDαudx = (1 +
1

β
)

∫ θ

0

∂2u

∂x2
dx+Gr

∫ θ

0
[1− x

κ
]ndx,

JDα

∫ θ

0
udx = (1 +

1

β
)

∫ θ

0

∂2u

∂x2
dx+Gr

∫ θ

0
[1− x

κ
]ndx,

JDα

[
θ

n+ 1

]
= (1 +

1

β
)
n

θ
+

Grκ

n+ 1
− Grθ

n+ 1

(
1− θ

κ

)
.

Rearranging the last term and multiplying by the parameter (n+ 1)θ,

JDαθ2 = 2(1 +
1

β
)n(n+ 1) + 2Grθ2.

Applying the Laplace transform of the Modified Riemann-Liouville fractional derivative,

(1− 2Gr)sαL[θ2] =
2n(n+ 1)

s
(1 +

1

β
),

L[θ2] =
2n(n+ 1)

sα+1
(1 +

1

β
).

By applying Inverse Laplace transform,

θ2(t) =
2n(n+ 1)

1− 2Gr
(1 +

1

β
)tα.

Thus, the approximate analytical solution of the equation (4.3) is given by

u(x, t) =

1− x√
2(1+ 1

β
)n(n+1)tα

[1−2Gr]


n

. (4.9)

Next applying the double integral between 0 to θ and between x to θ on the fractional

diffusion equation (1),∫ θ

0

∫ θ

x

JDαudxdx = (1 +
1

β
)

∫ θ

0

∫ θ

x

∂2u

∂x2
dxdx+Gr

∫ θ

0

∫ θ

x
[1− x

κ
]ndxdx,

JDα

∫ θ

0

∫ θ

x
udxdx = (1 +

1

β
)

∫ θ

0

∫ θ

x

∂2u

∂x2
dxdx+Gr

∫ θ

0

∫ θ

x
[1− x

κ
]ndxdx,

JDα

[
− θ2

(n+ 1)(n+ 2)

(
1− x

θ

)n+1
]θ
0

= −(1 +
1

β
)

∫ θ

0

∂u

∂x
dx+

Grθ2

(n+ 1)(n+ 2)
,

JDα

[
θ2

(n+ 1)(n+ 2)

]
= (1 +

1

β
) +

Grθ2

(n+ 1)(n+ 2)
.

11



By using Laplace transform on both sides and arranging the like terms,

sαL[θ2(s)] = (1 +
1

β
)
(n+ 1)(n+ 2)

s
+

Gr.L[θ2(s)]

(n+ 1)(n+ 2)
,

L[θ2(s)] = (1 +
1

β
)
(n+ 1)(n+ 2)

[1− 2Gr]sα+1
.

Applying the Inverse Laplace transform,

θ2(t) = (1 +
1

β
)
(n+ 1)(n+ 2)

[1− 2Gr]
tα.

Thus, the approximate analytical solution is obtained by

u(x, t) =

1− x√
(1+ 1

β
)(n+1)(n+2)tα

[1−2Gr]


n

.

From the above, it is observed that the exponent n appears in the approximate of the

penetration depth with the double integral method also. So to find the value of the exponent,

2(1 + 1
β )n(n+ 1)tα

[1− 2Gr]
=

(1 + 1
β )(n+ 1)(n+ 2)tα

[1− 2Gr]
.

n = 2.

Hence, the approximate solution of the generalized fractional heat equation by taking the

exponent value n = 2 is

u(x, t) =

1− x

2

√
3(1+ 1

β
)tα

[1−2Gr]


2

5 Graphical Interpretations and Discussion

This is the main section of the study that analyzes the impact of the modified Riemann-

Liouville fractional derivative into the diffusion process, especially into the velocity and

temperature. The effects of the fractional order into the velocity of the Casson fluid in x-

direction. The Physical behavior of the embedded parameters such as Grashold number Gr,

Prandtl number Pr, fractional order α and the Casson diffusion coefficient µ are plotted in

graphs (Figure 2-6) and discussed in detail.

The temperature profiles for different values of an order of modified Riemann-Liouville

fractional derivative, α are shown in the Figure-2. Let us fix the Prandtl number Pr= 0.25

and the time t = 0.3. We know that the fractional derivative α varies from 0 to 1. In

Figure-2, it is observed that the temperature trajectories decrease according to the increase

of the direction x. Further, it is noticed that when the parameter α increases then all the

velocities decrease in the following direction as indicated by an arrow. Also, the fractional
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Figure 2: Temperature profiles with differing values of α, when Pr = 0.25, t = 0.3

order α does not have any impact as the Casson fluid moves apart from the boundary region

and we conclude that α has an acceleration effect.

The temperature profiles are shown in Figure-3 for different values of Prandtl number

Pr. Let us fix the fractional order α = 0.95 and the time t = 0.3 into the temperature

diffusion. From Figure-3, it is noted that the temperature decreases more quickly with

increasing of the Prandtl number.

From this, one can observed that the fluids with maximum Prandtl number have high

viscosity and small thermal conductivity, which makes the fluid thick and therefore causes

a decrease in temperature of the Casson fluid. Finally, it is concluded that the increase of

the Prandtl number Pr accelerates the decrease of the temperature to the value zero.

Next by continuing to analyze the velocity profiles for different values of the fractional

order α, the Grashold number Gr and the diffusion coefficient µ are shown below. In Figure-

4, as in the previous analysis, we fix the value of the time t = 0.3, the Grashold number

Gr = 0.25 and the diffusion coefficient µ = 5 and plotted the velocity curve for different

fractional order α varies from 0 to 1. Here, it is noted that when the order α increases, then

all the velocities are decreases in the direction indicated by an arrow shown in the Figure-4.

Also the fractional order α also has an acceleration effect into the diffusion process.

Now we assume the velocity of the Casson fluid. The diffusion coeffecient µ = 5 is fixed

and the order α = 0.95. From Figure-5 , we note that when the Grashold number Gr

13



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

v → 

x
 →

 

Temperature profiles with different values of  Pr

 

 

Pr = 5
Pr = 10
Pr = 15
Pr = 20
Pr = 25

Figure 3: Temperature profiles with differing values of Pr, when α = 0.95, t = 0.3
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Figure 4: Velocity profiles with differing values of α, when Gr = 0.25, µ = 5, t = 0.3
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Figure 5: Velocity profiles with differing values of Gr, when α = 0.95, µ = 5, t = 0.3

increases, the velocities increase to one another. Grashold number also has an acceleration

effect that is it accelerate the indensity of the velocity to a value which is different to zero,

indicated by an arrow as shown in the figure. Also observed that the velocity curves of the

fluid attains its maximum near the plate and reaches to zero as x→ 1+(∞). In addition to

this, it is found that the response of α and Pr on the velocity profiles are indistinguishable.

The Casson diffusion co-efficient µ also induces the same behavior, when we fix the

Grashold number Gr = 0.25, the fractional order α = 0.5. From Figure - 6, it is observed

that when the coefficient increases, then all the velocities decrease to one another and

the general behavior of the velocities are also decreases. The acceleration effects that the

intensity of the velocity approaches to zero is indicated by an arrow in the direction shown

in the figure.

6 Conclusion

In this study, an analytical solution for the unsteady boundary layer flow of a generalized

fractional casson fluid model passing through an infinite oscillating plate in vertical direc-

tion with Newtonian heating described by modified Riemann-Liouville fractional derivative

are obtained by using Integral balance method and Laplace transform technique with the

help of Goodman boundary conditions. In order to support the main result, graphical in-

terpretations are implemented. A remarkable findings of this study is that the separation of

the flow can be governed by increasing the value of the Prandtl number and also the value
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Figure 6: Velocity profiles with differing values of µ, when α = 0.5, Gr = 0.25, t = 0.3

of the Casson fluid parameter. The methods employed in this study will create a new path

towards approximating the solutions of the Casson fluid models.

The following points have been extracted from this study

• Velocity u(x, t) is inversely proportional to x, µ and directly proportional to Gr.

• Temperature v(x, t)is inversely proportional to α and Pr.

The numerical results for velocity and temperature are computed in Table-1.
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