UNIQUENESS OF SOLUTIONS, STABILITY AND SIMULATIONS FOR A DIFFERENTIAL
PROBLEM INVOLVING CONVERGENT SERIES AND TIME VARIABLE SINGULARITIES

YAZID GOUARI!, ZOUBIR DAHMANI?, MERIEM MANSOURIA BELHAMITI?, AND MEHMET ZEKI SARIKAYA*

AssTtrACT. We focus on a new type of nonlinear integro-differential equations with nonlocal integral con-
ditions. The considered problem has one nonlinearity with time variable singularity. It involves also some
convergent series combined to Riemann-Liouville integrals. We prove a uniqueness of solutions for the
proposed problem, then, we provide some examples to illustrate this result. Also, we discuss the Ulam-
Hyers stability for the problem. Some numerical simulations, using Rung Kutta method, are discussed
too. At the end, a conclusion follows.

1. INTRODUCTION

The fractional differential equations theory is one of the theories of modern mathematics that has
received a great deal of attention in the last two decades. It is used in modeling many phenomena
in mechanics, chemistry, biology, economics, etc. We refer the reader to [2, 3, 4, 7, 8, 14| for more
information and also for some important applications. Moreover, the differential equations, with time
or space singularities, are of great interest since several physical situations are modelled by problems
of this kind, (for example, problems in gas and fluid dynamics), see [5, 6, 17]. In this singular field
theory, many authors have paid a great attention to the questions of the existence and uniqueness of
solutions to this type of equations. For more details, we refer the reader to [10, 12, 13]. The reader
can also point out that stability of solutions of such equations is useful in solving many problems in
economics, mechanics, and also in control theory, see [13, 19, 20] and the reference therein.

Before introducing our problem, we need to cite some other results that have motivated our aim.
We begin by [1], where the authors have studied, for the first time, the existence and uniqueness of
solutions for the following non singular system involving series:

s _ a,—l
t>=f1<t,u(t>,v<t>>+ZjO ol ()il u(s)v(s)ds, € [0,1],

=1

DFv (1) = fr(t,u(t),v(t)) + iJ-Ot (=) ﬂl_l ¢bi(s)hi(s,u(s),v(s))ds,t € [0,1],

i=1

n-2

Y (@ R)+RF o) =0,

k=

u(’?’l)(O) = yIPu(y),n €[0,1],
v("=1(0) = 8IPv(C),C €[0,1].
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Then, based on the above paper, the authors in [18] have studied the following second non singular
fractional differential problem:

1

D% u(t Zf, (,u(t),v(t), DV u(t), D" v(t))
=1

+Z—f0 %b)])q)z( )81(5: (S),U(S),DVZM(S),DYZV(S))dS,tE [011]/

i=1
had 0;-1

+;;L:U;2ﬂ bi(s)hi(s, u(s),v(s), DP?u(s), D?v(s))ds, t € [0,1]

M(O = 4o, 'l/( ) bOr

)
N0)y=v1(0)=0,j=1,2,..,n-2,
(0) = JPu(t),p > 0,7 €]0,1],
(0)=J(p),qg>0,p €]0,1[.

For the singular case without series, we can also cite the papers [11, 12], where the authors have
studied the questions of existence of solutions as well as the stability for the problem:

k !
DF(D* + t—A)y(t)+A1f(t,y(t),D‘>y(t))+Azg(t,y(t),lpy(t))+h(t,y(t))
=1(t), t€]0,1],

»(0)=0,
Ui

y(l)= bJ- y(s)ds, 0<n <1,
0

ITy(u)=y(1), 0<u <1,
k>0,0<A<1,1<8<2,0<a,0<1,

where, A; >0, A, >0, ] :=[0,1], the two fractional derivative of the problem are in the sense of Ca-
puto, If is the Riemann-Liouville integral and f, g, h,! are some given functions.

Motivated by both the above two series-works and by the applications of singular differential equa-
tions in fluid dynamics, in this paper, we study the following problem:

B+ Af(u(t),u” (1)) = 5g(t, u(t), DY u(t +Zv,q>1 OI%h;(t,u(t)),t € (0,1],
i=1

n
u(0)+u(1):J- rku(s)ds, 0<n<1,
0
0
u/(0)+u’(1):f xou(s)ds, 0<6<1,
0

”

T
u (O)+u"(1):f rsu(s)ds, 0<t<l1,
0

2<a<3, 0<y<l, Lo,vieRR,

where we note that J := [0, 1], the functions f and h; will be specified later, g is singular at ¢ = 0, the
operators D% and D? are the derivatives in the sense of Caputo.

To the best of our knowledge, this is the first time in the literature where singular differential equa-
tions, involving fractional calculus and convergent series on Riemann-Liouville integrals and other
terms, are investigated. So, in general, our aim is to present a first contribution in this direction and
try to fill this gap. Especially, we study the question of existence and uniqueness of solutions by using
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both fixed point theory and integral inequalities, then we pass to the investigate the question of sta-
bility of solutions in the sense of Ulam-Hyers where the integral inequalities and estimates will allow
us to prove the results. Our results will be concretized by some illustrated examples. Then, thanks to
some numerical techniques that allow us to approximate the Caputo derivatives, ( see the two papers
[9, 15]), and by using Rung Kutta method, we present a numerical study with some simulations in
order to present to the reader more comprehension on the proposed examples.

2. Caputo APPROACH PRELIMINARIES

We need to introduce the Caputo derivatives. For more details, we refer to the reference [16].

Definition 1. Let o > 0 and f : ] +— R be a continuous function. The Riemann-Liouville integral is

defined by:
Iaf 1()()[ t— a lf

Definition 2. For any f € C*(],R) and n—1 < a < n, the Caputo derivative is defined by:

o _ n-a dn
Def() = I""o(f(E)

1 ' n—-a—1 ¢(n)
F(n—a)_[o(t_s) 1f

To study (1.1), we need the following two results [16]:

Lemma 1. Let n € IN*, and n—1 < a <n. Then, the general solution of D%y(t) = 0;t € ] is:

n—1

y(t) = Zcifir

i=0
wherec; €R,i=0,1,2,..,n—1.
Lemma 2. IfneIN*, and n—1 < a <n, then, we have

n-1
1°Dy() =y())+ )_cit!,
i=0
andc; €R,i=0,1,2,..,n—1.
Now, we present to the reader the proof of the integral solution of our problem.

Lemma 3. Let the functions G be in the space C(]0,1]) and (H;);=1,. ,,v € N*, ®; be in C(]), such that
Y 21 lvi®;Hjll is finite. Then, the differential problem

D +qu) ),te(0,1],

u(0)+u(1):J; Ku(s)ds, 0<n<1,

0

u (0)+u (1):J- Kou(s)ds, 0<6<1,
OT

u (0)+u (1):J K3u(s)ds, 0<t<1,
0

2<a <3, v;eRR,

admits as integral representation the equation:

u(t) +Zv I“( $)I*H;(t ))+[%][K3L”I“G(s)ds
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+2K3vi J:I“((IDZ-(S)I"‘HI-(S))ds—I,(a;_z)fl(l—s a3 G(s) i
xfu-s)“ 3( oo « 28, [T
ZKQVZJ 1% Hi(s ))ds_ﬁj] (1-s)*" 2G( s)ds — ir(avi_l)

xLlu —s)""z((l)i(s)I“H,-(s))ds] + [m][m L 1G(s)ds

¢
o 3
i=1

)—j

o a 1 1 a -
N (cDi<s)1 HAs))ds—mJo( 1Gle)ds =) (va

(2.1) x fu —s)“‘l(q)i(s)I“Hi(s))ds].
0

where, it is to note that:

@ =F(E;—2)(D3—1)+E (F3-2)(D;-2)+ (D —4)F»(E3 —1) - F{(E3 - 1)(D; - 2)
—(F3=2)(E; - 2)(Dy —4) - E{Fy(D3 - 1),

Ay =(F3-2)(E;-2)-Fy(E3-1),

Ay =F(E3-1)-E(F3-2),

A3 =EF)-F(E;-2),

1 =Fy(D3-1)—(F3-2)(D, -2),

¥y = (F3=2)(Dy —4) - F1(D3 —1),

3 = F1(Dy = 2) = Fo(Dy - 4),

Ay =(E3—1)(Dy~2)~(E;-2)(D5 - 1),
Ay =E (D3 —1) - (E3-1)(D; - 4),

A3z = (Ey-2)(Dy —4)-E(D; - 2),

2
K3 K3
D1 = 3’7 ,El = Tﬂ’Fl = K37’],
K293 K292
D2 = 3 ,Ez— 5 ,F2:K39,
3 2
Dy = %,IZE = %,Pa =K1¢,

and @ = 0.
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Proof: Thanks to Lemma 2, we observe that

u(t) = I9G(#) + viI“(CD,-(t)I"‘Hi(t))+c2t2+c1t+co,

i=1
(2.2) W ()= 171Gt + ) vl (cp, H(t))+2c2t+cl,
i=1
W' (1) =1972G(1) + ) vI* 2(@1 Hi(t))+2c2,
i=1

By considering the conditions

1
u(0)+u(l) = L ku(s)ds, 0<n<1

’ ’

0
u (0)+u (1) :L Kou(s)ds, 0<6<1,

”

T
u (0)+u (1)= J Kk3u(s)ds, 0<tT<1
0
and thanks to Cramer rule, we achieve the proof.

In what follows, we use fixed point theory to study the above problem. First, it is important to
introduce the space:

X:={xeC(J,R),x €C(J,R),D’xeC(J,R)},
and the norm:
I¥llx = ¥lleo + 1% lloo + D7 Xllco.
Then, we shall consider the nonlinear operator H : X — X defined by by:

Hu(t) = —— t a-l D? - )]d
)= gy | =9 gl 0060 DY () = A s ()
C 1 ! a-1 1 s a-1
+ igl vimj; (t—s) (@i(s)mﬁ) (s—1) hi(T,u(T))dT)dS
A t? A 1 s
+[%HK3L mﬁ)(s—r)a_l[ag(r,u( ), DY u(t)) = Af (u )]drds

© T 1 S o 1 T o
+;K3Vi-f0 mL (s—1) 1((1)1-('()T0()J; (T—x) lhi()(,u()())d)()d’rds
1

1 0o
a-3 v Vi
_Na——Z)L (1=5)""[og(s,u(s), D u(s)) = Af (u (5))]d5—;m

XLI(I A LCT fos(s— T)a_lHi(r,u(T))dT)ds] v [_A2f2 Haths )

@) -
6 s
[sz(; %a)_[o (S—T)"’—l[ag(T; (t),D’u(t ~Af(u 7))]dds
© o 1 s o 1 T .
+;K”"L WL (s=7) 1(®i“’m£ (t=x) 1hi<x,u(x)>dx)drds

1 ! a-2
—W—_l)fou—w (og(s, u(s), DV u(s)) ~ Af(u

Vi
d — I(a-1)

x Ll(l - 5)0‘_2(@1’(5)% J:(s - 1) T Hi(r, M(T))d’[)ds] + [—A3t2 +$3t hl A3]
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1o -l ,
[Kl Ta) Jo ¢~ [08(t,u(t), DVu(7)) = Af (u(t),u (1))]drds
0 0

o] & 1 s o 1 T .
+;K1ViJ:) mL(s—T) 1(®i(r)mL(T_X) 1hi()(:u()())d)()d”[d5

1 00
—ﬁjo (1=35)*"[og(s, u(s), DY u(s)) = Af (u(s),u” (s))}ds - Zlﬁ
1 S
(2.3) XJO (1- s)“_l((l)i(s)%a) L (s— 1) H,(t, u(r))dt)ds].

At the end of this section, it is important to note that in this paper, we will be concerned with
singular differential equations, fixed point theory nd integral inequalities to prove our main results.

3. UNIQUE SOLUTIONS

We consider the following sufficient hypotheses:

(Q1) : The functions f is defined on RR?, g is defined on (0,1] x R? and h; are defined on J x R; all
these functions are supposed continuous continuous.

(Q2) : There exist positive continuous functions @1 (t), @,(t),11(t), 12(t), ¢(t), such that forany te |,
u;,v; €R,

[y — vyl luy — v,
Ui, Ur)— f(vy,v < o(t)———————+ oy (t) ———,
f (1, 12) = f(v1,0,) e R F e ey
. [ty — vyl
t,u,ur)—e(t,vy,v < (t)sin(uqg —vq)+ 1H(t) ————.
lg(t, uy, up) —g(t,vy,v2)| 1(t)sin(uy —vy) 2()1+|u2v2|

and for any integer i and any t € J, u,v € R

|u —v|

|i(t,u) = hi(t,v)] < O Tl o)

We take the expressions:

N = Max(sup|@ (t)], sup|@y(1)]),
te] te]
M = Max(sup|y (t)], sup li2(8)]),
te] te]

O =sup|¢(t)].
te]

(o9

(Q3) : Suppose that ®; are defined on J, continuous and leviq)i(t)lloo < 4o0.
i=1
Also we consider:
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M|5|+N|)L| = [A1]+ 1] +]A] !
Tl_[ T@+l) T(a+l) Z”l il + el | Mol + NI
|K3|,1a+1 |K3|172a+1 1
| T@+2) T Z””l Ol | ;30 32) * Taa =)

Pt o

licy|02 ! 1 [A3]+ i3]+ A5 | 1|5Dt+1 1
8 r(2a+2)+r(za)]]+[ | H[M|5| NM']{ I(a +2)+T(a+1)]

52a+1 1

|1
OZ”sz “00][ 2a+2)+1"(20(+1)]]

+

R e e
[[MI@I+NIAI](IK(3I17+“;+r(a1_1)] OZIIv@ IIW](|K32|’72:1)

w |l | (o2 L)
OZHVZ 1 ”Oo](|7<22|92j;1)+r(;a)] I_qvl[ (2 |A3|)+r(|zlp_3|y)]

S 1
_[M|6| N|A|)( T +2)+r(a+1)]+ o;nvi@i(onm]

|K |52a+1 1
T2a+2) "TRa+1) ||

+

X

M|6|+N|/\|
Y = F(a 5 Zul iDlleo| +

2IA| licsln®*!
—
|K3|1720(+1 2|A2|
] ( ZIIWIJ “oo)( T(2a +2) F(Za—l)]]+ |l
|1<2|9 |K2|92a+1 1
(M|6|+N|/\|][ T(a+2) ] ( Z”Vz i ||oo][ T(2a +2) F(ZOZ)]]

2030 [( 1118 ey
o [[Mw |A|][ T2 ' T aﬂ] [ znvcb ||m]

y |K |€2a+1 . 1
F2a+2) TQRa+1)]|

X

Theorem 1. Assume that both the three hypotheses (Q1),(Q3),(Q3) and the condition Y < 1; Y =Y + Y, +
Y3 are satisfied. Then, the problem (1.1) has a unique solution.
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Proof: We begin this proof by showing that H satisfies the Banach contraction principle. For
(u,v) e X2, we can write

IHu - Holl
<A e Z“vlz Hm}llu oty +| Pl LA
x(M|é| N|A|]['(ﬂ”+2 ] [ ZIIVCD ||w]

(3.1) 8 |I;‘<(32|ZT+21)+r(2;—1)”””_””?‘+ w [M|5I+NI/\I]

licp|0 1 |ic,|0%a+] 1
T T ] [ Zuvcb ||m][ ToaT7) r(za)””M—UHx

|A3|+|1P3|+|A3| [1cq|Ea+! 1
{[Mlél NM'][ a+2) T(a+1)

( |K1|£2a+1
+OZ” @y ||m][ T0oT7) MH) lu = vlix.

On the other hand, we know that

+

DYHu(t) = I‘(al— ) J:(t—s)ayl[og(s,u( s),DYu(s))— Af(u s))]ds

+ ivi - al_ f(t gyl (@i(s)ﬁ Ls(s _ ) Uy, u(T))dT)dS

1[2A:8777 gyt Tl _ el %
+<P r@3-y) "T2- )H J- (a)_[)(s )% Hog(t, u(t), DY u(t)) - Af (u
” 0 1 s .
u (t))]drds + ZK3W . ﬁjo (S_T)al(q)i(T)ﬁJ; (T_X)ailhi()(;u()())d)()d’[ds

k
—ﬁfo (1-5)%3og(s, u(s), D? u(s)) - Af (u

v
F (@ —2)

! a (e a 2A2t2 Vot
XL (1—5) 3(®i(s)mj;(s_7) lHi(Tlu( ))dT)ds] (p[r(3 7/) +F(2—)/)]

0 s
[sz L (s—T)“_l[ag(T,u( ), DY u(t))— Af(u 7))]dtds

+Z1<mf6 = e “1(<D1(T)ﬁLT(T—x)“‘lhi(x,u(x))dx)drds

_r(al_l) L (-9 [ogls u(s),Dyu(s))_Af(u<s>,u”<s>>1ds—gﬁ

1 ) 1 (s . 1[2A5t277  psttY
a2 (- _\a-lgg — 3 3
jo (1-5) (@As)r(a)fo(s 7) Hz<r,u<T>)dr)ds]+ @[F(fi—y) +r(2_7)]

LI y
[Klj; F(a)J;(S ) og(t,u(t), D’ u(t))— Af(u 7))]dwds

+iﬂ<1v1‘ L‘SﬁJ;S(S—T)a_l(q)i(T)ﬁLT(T—X)“_lhi(x'”(X))dX)deS
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1

1 )
a— Vv
—mjo (1-s)*'og(s,u(s),DVu(s)) - Af (u ))]ds—;m

X J: (1- s)“‘l(q)i(s)%a) J(;s(s —7)* 1 Hy(r, u(T))dT)dS].

Then, based on this and using the same arguments as before, the following inequality

||DYHu — DY Hv|| o

M]|6|+ N|A| 0] =
[r(a_yﬂ) + T2a—y+1) gllvlcbl(t)lloo llu—vllx

1] 2A] lpy| | licsln o+ 1
+|_<P|_r(3—y)+r(2—y [[MMHNM']( I(a +2)+F(a—l))
2a+1

3 I3l 1
+(o ;nviqx(t)um](r(zd 5 T 1)””u il

(3.2) 1 [ 21A |2 0! 1
"ol TG—y) "T2-y) r(a+z>+r<a>)
2a+1 1

a6
+[o D vt >||m][ NPT IR }HM—VHX

IR .
Tel|TG=y) T2y (M|5|+NM|(r(a+z)+r(a+1)]

|K1|€2a+1 1
( Xnvcb ||w]( Ff2as3  Toass |17k
is valid.

Also, the second derivative of the operator is given by

~

[MI5|+NI/\| (

1

t
H'u(t) = mfo(t_s)a3[ag<s,u(s),mu<s>>_mu(s),u"(s))]ds

+ivi%Jt(t—s)a_3(®i(s)ﬁJ:(s—T)a_lh,-(r,u(r))dr)ds

[2’\1[ j f(s—r)“1[o~g<r,u<r>,mu<r>>—Af(u(r»u”(r))]drds
0

+Zx3v, [ s [0 (oo [ om0 e

r(a;—afo (1-5)"[ogl(s, u(sww(s))—Af(u(s»u”(s))]ds—iﬁ

x folu —s)“_3(CD,~(s)r(1a) Ls(s - T)a_lHi(T,u(T))dT)dS] + [2%2]

0 1 S a1 y ”
[KZJ; mjo(s—r) [og(t,u(t),DYu(t))— Af(u(t),u (r))]drds

00 0 q s ) . N
+;K2ViL mjo (s—1)* l(q)i(»[)ﬁ‘]; (T-x) lhi()(,u()())d)()drds
1 .

1 o
_I‘(a——l) J-o (1- s)“‘z[ag(s, u(s), DV u(s)) = Af (u(s), u”(s))]ds - ; T(av— I
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) Ll(l_S)a_z(q)i(s)%a)Ls(s_r)a—lHi(T, (t ))dr)ds] [223]

£ s . ”
[Kl_L mL(s_r) 1[(7g(r,u( ), DYu(t))— Af(u(t),u (r))]dds

00 & 1 S a1 1 T .
+;K1viL _F((X)L(S_T) (CDi(T)—r(a)L (t—x) hi(X,M()())d)()des

1 (! el ; o
“r@fo (1=s)""[og(s,u(s), DY u(s)) = Af (u <s>>1d5‘i;r'<a‘>

X J: (1- s)“‘l(qbi(s)%a) Ls(s —7)* 1 H(t, u(’())dr)ds].

Using the above quantity, we obtain

p p M3+ NI 2|A |
Hu-H < M|o
IH v —H vl < [ 1) " TEas 1Z||v, (Bl |l =vllx + =7 | Mo
2a+1

B e
+ﬁ]}uu—vnx+ 2:Af'[[M|5| +N '*'][|K<2fj 21) i ﬁ]
[ lew ; noo]["ié'izféﬁ+réa>]]““—”“x

5 o

% |K1|<E2a+1 + 1 llu = vl
T2a+2) T(2a+1) X

——

From (3.1), (3.2) and (3.3) we conclude that
I Holly < Y+ Y4 o ol

With Banach contraction principle and the condition on Y, we have H is contractive function, so, H
admits a unique fixed point x(. The proof is thus complete.

4. ExAMPLES

In this section, we present two examples to illustrate the validity of the above uniqueness result.
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Example 2. We consider the following problem:

, 3
D3u(t)+ L 11 +u (t)| =L(sm(u(t)) D2 u(t)| In(t )
u(t)+ 2 Tor(+u(ten (@) 20\ %6 200(1+D? u(t)) M
(o5 _ 42
+Z 3eit ( [u(t)| ) €(0,1]
125(im)> " \300[(£2 + 1) +[u(1)]]

N\Ln

i=1

0.5
u(0)+u(l) = J:) 2u(s)ds,

0.3

u (0)+u'(1) = J. 3u(s)ds,
00.1

u (0)+u" (1) = J 4u(s)ds,
0

where

a=3, A=

Nl

_ 1 —
1 0=195 Y =

s

[N1e
NI'—‘

Y, =0.0416, Y, =0.1550, Y;=0.0397,

Y = Tl +T2 +T3 =0.2363.

So, thanks to Theorem 1, we confirm that this example has a unique solution.

Example 3. As a second illustrative example, we consider the problem:

2.1 3 2u(t)+2u” (1) _ 3 e'+sin(u(t)) [D1-2u(t)|
D™ u(t)+ 15 7'(4(t+2 (1+3|u( +u” (1)) 7( 30(2+1) T 20e7 1 (1+1DT2u(D))

e’ Ju(#)l
+ZSOz 21(200[(t Ht)’te(o'”'

+

=

)

# 1)+ (e |
(0)+u(1)—f u(s)ds,
00.5
u’(0)+u’(1):j (s)ds,
00.3
u”(0)+u”(1):f u(s)ds,
0

where
a=21,A=3,8=3y=12
Y, =0.1498, Y, =0.4170, Y3=0.0911,

Y=Y +Y,+7Y;=0.6579.

Also, by Theorem 1, our example has a unique solution.

5. StaBILITY FOR UNIQUE SOLUTIONS

Definition 3. The equation (1.1) has the Ulam Hyers stability if there exists a real number © > 0, such
that for each € > 0,t €]0, 1] and for each u € X solution of the inequality

[o¢]

(5.1) D u(t)+ Af (u(t),u” (1) = og(t,u(t), DY u(t) = ) v @) hi(t,u()| < e,

i=1
there exists v € X a solution of (1.1), such that

|l —v||x < Oe.
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Definition 4. The equation (1.1) has the Ulam Hyers stability in the generalized sense if there exists () €
C(R*,R*); Q(0) = 0, such that for each € > 0, and for any u € X solution of (5.1), there exists a solution

veXof(1.1), such that

[l —vllx <Qf(e).

Now, we are able to prove the first main result.

Theorem 4. Under the conditions of (1), problem (1.1) is Ulam Hyers stable.

Proof: Let u € X be a solution of (5.1), and let, by Theorem 1, v € X be the unique solution of (1.1).

By integration of (5.1), we obtain

t
t)—ifou—s) Uog(s,u(s), D u(s) ~ Af (u(s),u” (s))]ds

T
_ ivl o j (t- s)“_l((Di(s)%a) Ls(s — 0y, u(r))dr)ds

A 2 A n s

[%HML %@L (s 7 [og(t, u(t), DY u(1)) - Af (u(t), u
- VI 1 : a— 1 ’ a—

+;K3vijo WL(H) 1(®i(r)mfo(f—x) lhi<x,u(x)>dx)drds

1

—r(al_z)jou—s)“ 3[g(s, u(s), DY u(s) - Af M S
1 a— 1 s a— Azt +l/)2t+A2

XJ;(;—S) 3(®i(s)mL(S—T) 1Hi(T,u(T))dT)d] [T]

["Zf ﬁf (s= 1) [og(t,u(c), DY u(x)) - Af (u(t),u” (x))|dvds

(5.2) o0 0 0 1 s el 1 T el
e f g e (@(r)mﬁ) (=) hioc,u(x))dx)drds

—;r(l—s)“[a (s,1(s), DVu(s)) = Af (u ’(s))]ds_i Vi
Ha=1)Jo s LT(a-1)

X Jol (1- s)“’z(q)i(s)%a) J:(s —1)% 1 Hy(r, u(r))dr)ds] - [W]

: : ,
[KIJ;) FLL(S_N og(t,u(t), DY u(t))~ Af (u(v),u” (v))|dvds
V;

(a)
+Z
1

" f f o) 1(@-(1)%fu—x)“-lhi(x,um)dx)drds

al C Vi
—m.[)(l—s [og(s,u(s), DY u(s)) - Af (u ]ds—Zm

x J:(l —s)“_l((D,-(s)ﬁ Ls(s - T)“_lHi(T,u(r))dr)ds] < I"l‘_el(t).

(t))]dTds
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Using (5.1) and (5.2), we get

+

+

Therefore, we have

On the other hand,

Consequently,

O (]
T(2a+1) ;”v"@"(t)”m]||“ ~vllx

[ M|s|+ N|A|
_ < a
l|lu —v|le < I%(t)+ T(a+1)
|A1|+|1P1|+|A1| lics|n* 1
M N
el i o+ NIA F(a+2) T(a-1)
|K3|172a+1 1
OZ””D ”°°] F2a+2) " Ta-1 ||I"
[1A2]+ (ol + 1A, [ li,loe 1
Mlsl Ny
e MY e
IK |92a+1
OvacD ||oo] Toais lu =vllx
[1As]+ 93]+ 1As] [ Jiey |+ 1
M N
el |[(MRHENRN S T
|K1|£2a+1 1
OZ”V(D ”"°] M2a+2) Tarn ||V
e -vlle < < <eE,
Tla+1)(1-1)
we have
&
Y(u - < 0
ID" =l < Framioyy < ¢ 2
" ="l < < <eB,
T(a+1)(1-13)

Thus,

lu-vly < e E1+E8+

Thus, (1.1) has the Ulam Hyers stability.

Remark 1. In the case Q(¢) = s( 21+E,+ 33), we obtain the generalised Ulam Hyers stability for (1.1).

13

Remark 2. The problems of the above two examples are Ulam Hyers stable since they fulfill the conditions

of Theorem 1.

In particular, in both cases, we have proved that there is a solution v, such that for each € > 0,t €]0,1] and

for each u € X solution of inequality (5.1), we can write, for the first example:

11 = v]les < 0.7849¢, D3 (11— )|l < 0.8902¢, [[u” =" |l < 0.7834e.

Thus,

lu-vlx < 2.4585¢.

However, for the second example, we can write

llu —vlleo <1.0675¢, [|IDY2(1 = )|l < 1.5568¢, |lu” —v"|le < 0.9986¢.

Thus,

lu-vllx < 3.6229.
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6. NUMERICAL SIMULATIONS

In this paragraph, we illustrate an effective numerical approach to Riemann-Liouville integral and
Caputo derivative. We need to recall the approximation theorems of the papers [9, 15]. Based on
Caputo derivative approximation, we investigate, for some given parameters, the behavior of the
considered problem by studding one of the two proposed examples . In order to do this, we should
initially obtain a reduced fractional differential system which can be equivalent to the considered
problem. The numerical simulations are then performed using a Runge-Kutta integrator of order 4.

Theorem 5. Let y € C1([0,1],R). The fractional integration approach is:

e ,
]a?(ti):mzy(fj)tfj(a), i=0,...,n+1,
i=0

where

o;

@) { (n+2-e )y (n—j)er) _2m—j+ 1)t j=1..i-1.
j\a)=

() @) —(n—a)(n+1)%, j=0,and 1, j=i.

Theorem 6. Lety € C'([0,1],R) and 0 < a < 1. Then, we get:

a ) _ .
D%y(t;) ~ 1—a+2 Zy jloi(1-a), i=0,...,n

where,
1) { ylhyo j=0, %,]:1...1'—1, %,]:i.
Remark 3. The problem (1.1) can be reduced to the formula below:
D'u(t)=v(t)
D'v(t) = w(t)
D'w(t) = D3“"( Af(u(t),u’” (t) +6g(t, u(t), DY u(t +ivl®, (t))).

i=1

Through numerical simulations achieved by a combination of Caputo approach and the fourth-
order Runge-Kutta method on the first example, we obtain:

Ficure 1. Solution for the first example, on the plan u-w, for four values of a.
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Ficure 2. Behavior of the dynamics of the first example, on the plan v-w, for four
values of a.

——e—— apha28

————— apha29

_______ pha=3

I
005 0.06 007

007~

05 0.505 051 0515 052 0525 053
u

FiGure 4. 3D representation for the solution of the first example, for different values
of a.

004

7. CONCLUSION

A new type of nonlinear integro-differential equations involving convergent series for Riemann
Liouville integrals and some other functions has been investigated. The considered problem has
a time variable singularity. By application of Banach fixed point theorem, we have established an
existence and uniqueness result, then, we have discussed the Ulam-Hyers stability for the problem.
Two illustrative examples have been discussed. Another interesting point that has been discussed in
this work is the application of a Caputo derivative approximation; by using the Rung Kutta method,
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the approximation has allowed us to present a numerical study with some time and space graphs for
one of our examples.
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