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Introduction

This file contains text S1: Derivation of nondimensionalized energy conservation equa-

tion and Figures S1 to S3.
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Text S1: Derivation of nondimensionalized energy conservation equation

Here, we present the detailed derivation of the nondimensionalized energy equation (eq.

(28)), which reads in dimensional form as follows:

ρCp
dT

dt
= λ

∂2T

∂x2
+ τ ε̇vi. (S1)

To derive the nondimensional form of equation (S1), we have to define the characteristic

scales for time tc, temperature Tc, stress τc and length lc. This allows us to express the

dimensional values of these quantities as

T = Tc T
′, x = lc x

′, t = tc t
′, τ = τc τ

′. (S2)

Using these expressions, we can then rewrite eq. (S1) to yield

ρCp
Tc

tc

∂T ′

∂t′
= λ

Tc

l2c

∂2T ′

∂x′2 + τcτ
′ ε̇vi, (S3)

which can be rearranged to

∂T ′

∂t′
= tc

κ

l2c

∂2T ′

∂x′2 +
tc
Tc

1

ρCp

τcτ
′ ε̇vi. (S4)

Based on the observations in section 3.1, we make the following assumptions to define

the characteristic scales for time, temperature, stress and length:

(i) The occurrence of thermal runaway is governed by the conditions when stress relax-

ation starts (black crosses in Figure 2).

(ii) Stress relaxation starts after the transition from elastic loading to dislocation creep

or after the transition from low-temperature to dislocation creep.
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(iii) There is no significant amount of temperature change during elastic loading.

(iv) Temperature change before stress relaxation is homogeneous in the model domain.

We therefore define the characteristic stress as

τc = min (τdis,0, σb) , (S5)

where σb is the back stress of LTP which describes the transition from LTP to dislocation

creep. τdis,0 is the steady state stress in dislocation creep at the initial temperature which

is defined as

τdis,0 =

(
ε̇an

ω0Adis

e
Qdis
T0

) 1
n

. (S6)

ε̇an is the steady state viscous strain rate in the center of the anomaly. To determine this

value, we consider deformation to be fully accommodated by dislocation creep:

ε̇bg L =

∫ L/2

−L/2

ε̇dis dx, (S7)

which extends to

ε̇bg L =

∫ L/2

−L/2

ω(x)Adis e
−Qdis

T τn dx. (S8)

Based on assumption (iv), this integral can be expressed as

ε̇bg L = Adis e
−Qdis

T τn
∫ L/2

−L/2

ω(x) dx. (S9)

ω(x) is given by equation (1) and computing the integral yields
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∫ L/2

−L/2

ω(x) dx =

∫ L/2

−L/2

1 dx+

∫ L/2

−L/2

(ω0 − 1) e−
1
2(

x
σ )

2

dx (S10)

= x

∣∣∣∣∣
L/2

−L/2

+ σ

√
2π

2
(ω0 − 1) erf

(
x√
2σ

)∣∣∣∣∣
L/2

−L/2

(S11)

= L+ σ
√
2π (ω0 − 1) erf

(
L

σ
√
8

)
. (S12)

Substituting equation (S12) into equation (S9) and dividing by L yields

ε̇bg = Adis e
−Qdis

T τn
[
1 +

σ

L

√
2π (ω0 − 1) erf

(
L

σ
√
8

)]
. (S13)

Here, we define:

ε̇an = ω0Adis e
−Qdis

T τn. (S14)

Substituting equation (S14) into equation (S13) yields

ε̇bg = ε̇an fan, (S15)

where fan is a factor describing shape, size and strength of the anomaly:

fan =
1

ω0

+
σ

L

√
2π

ω0 − 1

ω0

erf

(
L

σ
√
8

)
. (S16)

Equations (S14) and (S15) are only applicable when dislocation creep is the dominant

deformation mechanism. The steady state stress in dislocation creep given in equation

(S6) can hence be written as

τdis,0 =

(
ε̇bg

fan ω0Adis

e
Qdis
T0

) 1
n

. (S17)
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The characteristic temperature Tc describes the temperature at the start of stress re-

laxation. Models that have reached LTP undergo heating until deformation transitions

from LTP-dominated to dislocation creep-dominated. This transition temperature can be

obtained by equating the dislocation creep stress (eq. (S17)) to σb and rearranging for

temperature, which yields

Tt =
Qdis

ln

(
σn
b fan ω0Adis

ε̇bg

) . (S18)

Models that enter relaxation directly after elastic loading (Figure 2b,d) have undergone

no significant heating. Therefore, we define characteristic temperature as

Tc = max (T0, Tt) . (S19)

If T0 > Tt, the model enters stress relaxation, directly after elastic loading at τc = τdis,0,

and if Tt > T0, the model reaches the LTP limit and heats up until reaching Tt and τc = σb

from where it enters relaxation.

We define the characteristic time as the Maxwell relaxation time of the host rock at

characteristic temperature and stress

tc = tr =
τc

2 ε̇hostGfan
. (S20)

ε̇host is the strain rate in the host rock which can be defined analogously to equations

(S14) and (S15):

ε̇host = Adis e
−Qdis

Tc τnc =
ε̇an
ω0

=
ε̇bg

fan ω0

. (S21)
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This yields

tc = tr =
τc ω0

2 ε̇bg G
. (S22)

The characteristic length is defined as the full-width-half-maximum of the anomaly

lc = h. (S23)

We can now insert tc and lc into equation (S4), which results in

∂T ′

∂t′
=

τc ω0

2 ε̇bg G

κ

h2

∂2T ′

∂x′2 +
1

ρCp Tc

τ 2c ω0

2 ε̇bg G
τ ′ε̇vi. (S24)

Based on assumptions (i) and (ii), ε̇vi can be expressed as

ε̇vi = ω(x)Adis e
−Qdis

T τn, (S25)

which can be rewritten as

ε̇vi = ω(x)Adis e
−Qdis

T
+

Qdis
Tc

−Qdis
Tc τnc τ ′n, (S26)

ε̇vi = Adis e
−Qdis

Tc τnc ω(x) τ ′n e
Qdis
Tc

−Qdis
T , (S27)

ε̇vi = Adis e
−Qdis

Tc τnc ω(x) τ ′n e
Qdis
Tc

T ′−1
T ′ . (S28)

Using equations (S14) and (S15), this can be simplified to

ε̇vi =
ε̇bg

fan ω0

ω(x) τ ′n e
Qdis
Tc

T ′−1
T ′ . (S29)

Substituting equation (S29) into (S24) yields
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∂T ′

∂t′
=

τc ω0

2 ε̇bg G︸ ︷︷ ︸
tr

κ

h2︸︷︷︸
t−1
d

∂2T ′

∂x′2 +
1

ρCp Tc︸ ︷︷ ︸
u−1
th

τ 2c
2Gfan︸ ︷︷ ︸

uel

ω(x) τ ′n+1 e
Qdis
Tc

T ′−1
T ′ . (S30)
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Figure S1. Fraction of models with thermal runaway for each input parameter. All Parameters

are scaled with regards to the minimum and maximum value we used (Table 2). For some

parameters, we scaled the logarithm to the base 10 of the parameter for convenience. This

display is biased by the fact that not every single parameter combination exists but illustrates

the general influence and linear/nonlinear behavior of parameters regardless. Only values used

at least 150 times are displayed.
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Figure S2. Different metrics to map thermal runaway as functions of tr/td and Uel/Uth.

1st row: maximum temperature change. 2nd row: maximum temperature gradient. 3rd row:

maximum stress gradient. 4th row: maximum velocity divided by boundary velocity. Left

column: ω0 = 2− 10. Right column: all models.
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(b)(a)

Figure S3. Maximum excess temperature rise ∆Tex as a function of two non-dimensional

parameters for step-like anomaly. tr/td denotes the relation between the stress relaxation time

scale and the heat diffusion time scale. Uel/Uth denotes the ratio between elastic and thermal

energy at the start of stress relaxation. (a) Models with ω0 = 2− 10. (b) All models. Note that

the colorbar is truncated towards low values.
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