References
Albiach, R., Canet, R., Pomares, F., & Ingelmo, F. (2000). Microbial
biomass content and enzymatic activities after the application of
organic amendments to a horticultural soil. Bioresource
Technology , 75 , 43–48.
https://doi.org/10.1016/S0960-8524(00)00030-4
Arbelet-Bonnin, D., Ben Hamed-Laouti, I., Laurenti, P., Abdelly, C., Ben
Hamed, K., & Bouteau, F. (2018). Cellular mechanisms to survive salt in
the halophyte cakile maritima. Plant Science , 272 ,
173–178. https://doi.org/10.1016/j.plantsci.2018.04.018
Asakai, T. (2018). Chlorate ion standard solution established by
multipath titration techniques. Microchemical Journal, 142 ,
9–16. https://doi.org/10.1016/j.microc.2018.06.015
Barding, G.A., Béni, S., Fukao, T., Bailey-Serres, J., & Larive, C.K.
(2013). Comparison of GC-MS and NMR for metabolite profiling of rice
subjected to submergence stress. Journal of Proteome Research ,12 , 898–909. https://doi.org/10.1021/pr300953k
Batista‐Silva, W., Heinemann, B., Rugen, N., Nunes‐Nesi, A., Araújo, W.
L., Braun, H. P., & Hildebrandt, T. M. (2019). The role of amino acid
metabolism during abiotic stress release. Plant, cell &
environment , 42 (5), 1630-1644. https://doi.org/10.1111/pce.13518
Ben Hsouna, A., Michalak, M., Kukula-Koch, W., Ben Saad, R., ben
Romdhane, W., Zeljković, S. Ć., & Mnif, W. (2022). Evaluation of
Halophyte Biopotential as an Unused Natural Resource: The Case of
Lobularia Maritima. Biomolecules , 12 (11), 1583.
https://doi.org/10.3390/biom12111583
Bhattacharyya, S. S., Ros, G. H., Furtak, K., Iqbal, H. M., &
Parra-Saldívar, R. (2022). Soil carbon sequestration–An interplay
between soil microbial community and soil organic matter dynamics.Science of The Total Environment , 815 , 152928.
https://doi.org/10.1016/ j.scitotenv. 2022.152928
Bilias, F., & Barbayiannis, N. (2019). Potassium availability: An
approach using thermodynamic parameters derived from quantity-intensity
relationships. Geoderma , 338 , 355–364. https://
doi.org/10.1016/j.geoderma.2018.12.026
Chen, G., Li, Y., Liu, S., Junaid, M., & Wang, J. (2022). Effects of
micro(nano)plastics on higher plants and the rhizosphere environment.Science of The Total Environment , 807 , 150841.
https://doi.org/10.1016/j.scitotenv.2021.150841
de Freitas, P.A.F., de Carvalho, H.H., Costa, J.H., Miranda, R. de S.,
Saraiva, K.D. da C., de Oliveira, F.D.B., Coelho, D.G., Prisco, J.T., &
Gomes-Filho, E. (2019). Salt acclimation in sorghum plants by exogenous
proline: physiological and biochemical changes and regulation of proline
metabolism. Plant Cell Reports , 38 , 403–416.
https://doi.org/ 10.1007/s00299- 019-02382-5
Dias, M.C., Azevedo, C., Costa, M., Pinto, G., & Santos, C. (2014).
Melia azedarach plants show tolerance properties to water shortage
treatment: an ecophysiological study.Plant Physiology and
Biochemistry , 75 , 123–127.
https://doi.org/10.1016/j.plaphy.2013.12.014
Elkelish, A. A., Soliman, M. H., Alhaithloul, H. A., & El-Esawi, M. A.
(2019). Selenium protects wheat seedlings against salt stress-mediated
oxidative damage by up-regulating antioxidants and osmolytes
metabolism. Plant Physiology and Biochemistry , 137 ,
144-153. https://doi.org/10.1016/j.plaphy.2019.02.004
Fan, W., Xia, Z., Liu, C., Ma, S., Liu, S., Wu, Y., & Zhao, A. (2022).
Ionomics, transcriptomics and untargeted metabolomics analyses provide
new insights into the Cd response and accumulation mechanisms of
mulberry. Environmental and Experimental Botany , 196 ,
104821. https://doi.org/10.1016/j.envexpbot.2022.104821
Ghazali, G.E.B.E. (2020). Suaeda vermiculata Forssk. ex J.F. Gmel.:
Structural Characteristics and Adaptations to Salinity and Drought: A
Review. International Journal of Sciences , 9 , 28–33.
https://doi.org/10.18483/ijSci.2268
Haj-Amor, Z., Araya, T., Kim, D. G., Bouri, S., Lee, J., Ghiloufi, W.,
… & Lal, R. (2022). Soil salinity and its associated effects on soil
microorganisms, greenhouse gas emissions, crop yield, biodiversity and
desertification: A review. Science of the Total Environment ,
156946. https://doi.org/10.1016/j.scitotenv.2022.156946
Häusler, R.E., Ludewig, F., & Krueger, S. (2014). Amino acids–a life
between metabolism and signaling. Plant Science , 229 ,
225–237.
https://doi.org/10.1016/j.plantsci.2014.09.011
Hopmans, JW, Qureshi, AS, Kisekka, I., Munns, R., Grattan, SR,
Rengasamy, P., … & Taleisnik, E. (2021). Chapter One - Critical
knowledge gaps and research priorities in global soil salinity. Advances
in Agronomy, 169, 1-191. https://doi.org/10.1016/bs.agron.2021.03.001.
Hosseinifard, M., Stefaniak, S., Ghorbani Javid, M., Soltani, E.,
Wojtyla, Ł., & Garnczarska, M. (2022). Contribution of Exogenous
Proline to Abiotic Stresses Tolerance in Plants: A
Review. International Journal of Molecular
Sciences , 23 (9), 5186. https://doi.org/10.3390/ijms23095186
Huang, H., Tan, P., Li, M., Tan, Q., Gao, J., Bao, X., … & Lin, J.
(2022). Quality analysis combined with mass spectrometry imaging reveal
the difference between wild and cultivated Phyllanthus emblica Linn.:
From chemical composition to molecular mechanism. Arabian Journal
of Chemistry , 15(6) , 103790.
https://doi.org/10.1016/j.arabjc.2022.103790
Huang, Y. Z., Zhong, M., Wu, W., Sui, L. H., Zhang, C., & Hao, X. W.
(2014). Effects of Arbuscular mycorrhizal fungi isolated from white
clovers (Trifolium repens L) on soil bacteria and fungi. Chemistry
and Ecology , 30(2) , 118-132.
https://doi.org/10.1080/02757540.2013.841892
Husain, M.K., & Anis, M. (2009). Rapid in vitro multiplication of Melia
azedarach L. (a multipurpose woody tree). Acta Physiologiae
Plantarum , 31 , 765–772. https://doi.org/ 10. 1007/ s11738-
009-0290-7
Li, J., Xie, T., Zhu, H., Zhou, J., Li, C., Xiong,
W., Xu, L., Wu, Y., He, Z., &
Li, X. (2021a). Alkaline phosphatase activity mediates soil organic
phosphorus mineralization in a subalpine forest
ecosystem. Geoderma , 404 , 115376.
https://doi.org/10.1016/j.geoderma.2021.115376
Li, N., Shao, T., Zhou, Y., Cao, Y., Hu, H., Sun, Q., Long, X., Yue, Y.,
Gao, Xiu., & Rengel, Z. (2021b). Effects of planting Melia azedarach L.
on soil properties and microbial community in saline‐alkali soil.Land Degradation & Development , 32(10) , 2951-2961.
https://doi.org/10.1002/ldr.3936
Li, Z., An, M., Hong, D., Chang, D., Wang, K., & Fan, H. (2022).
Transcriptomic and metabolomic analyses reveal the differential
regulatory mechanisms of compound material on the responses of brassica
campestris to saline and alkaline stresses. Frontiers in plant
science , 13 , 820540-820540.
https://doi.org/10.3389/fpls.2022.820540
Liberti, S., Sacco, F., Calderone, A., Perfetto, L., Iannuccelli, M.,
Panni, S., Santonico, E., Palma, A., Nardozza, A.P., Castagnoli, L; &
Cesareni, G. (2013). HuPho: the human phosphatase portal. The FEBS
journal 280(2) , 379-387.
https://doi.org/10.1111/j.1742-4658.2012.08712.x
Liu, M., Zhou, Y. L., Guo, X. F.,
Wei, W. Y., Li, Z., Zhou, L., Wang, W.W., & Gui, J. F. (2022).
Comparative transcriptomes and metabolomes reveal different tolerance
mechanisms to cold stress in two different catfish species.Aquaculture , 560 , 738543.
https://doi.org/10.1016/j.aquaculture.2022.738543
McDowell, N. G., Ball, M., Bond‐Lamberty, B., Kirwan, M. L., Krauss, K.
W., Megonigal, J. P., … & Bailey, V. (2022). Processes and mechanisms
of coastal woody‐plant mortality. Global Change Biology, 28(20),5881-5900.
Nishizawa, A., Yabuta, Y., & Shigeoka, S. (2008). Galactinol and
raffinose constitute a novel function to protect plants from oxidative
damage. Plant Physiology , 147 , 1251–1263.
https://doi.org/ 10.1104/pp.108.122465
Osman, K., Jashimuddin, M., Haque, S.S., & Miah, S. (2013). Effect of
shifting cultivation on soil physical and chemical properties in
bandarban hill district, Bangladesh. Journal of Forestry
Research , 24 , 791–795.
https://doi.org/10.1007/s11676-013-0368-3
Pietryczuk, A., Biziewska, I., Imierska, M., & Czerpak, R. (2014).
Influence of traumatic acid on growth and metabolism of chlorella
vulgaris under conditions of salt stress. Plant Growth
Regulation , 73 , 103–110.
https://doi.org/10.1007/s10725-013-9872-x
Redwan, M., Spinelli, F., Marti, L., Bazihizina, N., Azzarello, E.,
Mancuso, S., & Masi, E. (2017). Investigation of root signaling under
heterogeneous salt stress: A case study for Cucumis sativus L.Environmental and Experimental Botany , 143 , 20–28.
https://doi.org/10.1016/ j.envexpbot.2017.08.001
Rozentsvet, O.A., Nesterov, V.N., & Bogdanova, E.S. (2017). Structural,
physiological, and biochemical aspects of salinity tolerance of
halophytes. Russian Journal of Plant Physiology , 64 ,
464–477. https://doi.org/10.1134/S1021443717040112
Saeed, N., Khan, M.R., & Shabbir, M. (2012). Antioxidant activity,
total phenolic and total flavonoid contents of whole plant extracts
Torilis leptophylla L. BMC Complementary and Alternative
Medicine , 12 , 221. https://doi.org/10.1186/1472-6882-12-221
Shahbaz, M., & Ashraf, M. (2013). Improving salinity tolerance in
cereals. Critical Reviews in Plant Sciences , 32 , 237–249.
https://doi.org/10.1080/07352689.2013.758544
Singh, A. (2021). Soil salinization management for sustainable
development: A review. Journal of environmental
management , 277 , 111383.
https://doi.org/10.1016/j.jenvman.2020.111383
Singh, K. (2016). Microbial and Enzyme Activities of Saline and Sodic
Soils. Land Degradation & Development , 27 , 706–718.
https://doi.org/10.1002/ldr.2385
Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A.
(2015). Diversity, distribution and roles of osmoprotective compounds
accumulated in halophytes under abiotic stress. Annals of Botany ,115 , 433–447. https://doi.org/10.1093/aob/mcu239
Sumner, L.W., Mendes, P., & Dixon, R.A. (2003). Plant metabolomics:
large-scale phytochemistry in the functional genomics era.Phytochemistry , 62 , 817–836. https://doi.org/10.1016/
0031-9422(02)00708-2
Sun, L., Liu, L., Wang, Y., Feng,
Y., Yang, W., Wang, D., & Sun, W. (2022). Integration of metabolomics
and transcriptomics for investigating the tolerance of foxtail millet
(setaria italica) to atrazine stress. Frontiers in Plant Science ,1863 . https://doi.org/10.3389/fpls.2022.890550
Wang, X., Han, Z., Bai, Z., Tang, J., Ma, A., He, J., & Zhuang, G.
(2011). Archaeal community structure along a gradient of petroleum
contamination in saline-alkali soil.Journal of Environmental
Sciences , 23 , 1858–1864.
https://doi.org/10.1016/S1001-0742(10)60640-7
Wang, X., Sun, R., Tian, Y., Guo,
K., Sun, H., Liu, X., Chu, H., & Liu, B. (2020). Long-term
phytoremediation of coastal saline soil reveals plant species-specific
patterns of microbial community recruitment. Msystems ,5(2) , e00741-19. https://doi.org/10.1128/ mSystems. 00741-19
Widodo, Patterson, J.H., Newbigin, E., Tester, M., Bacic, A., &
Roessner, U. (2009). Metabolic responses to salt stress of barley
(Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ
in salinity tolerance. Journal of Experimental Botany , 60 ,
4089–4103. https://doi.org/ 10.1093/jxb/erp243
Yang, H., Hu, J., Long, X., Liu, Z., & Rengel, Z. (2016). Salinity
altered root distribution and increased diversity of bacterial
communities in the rhizosphere soil of Jerusalem
artichoke. Scientific reports , 6 (1), 1-10.
https://doi.org/10.1038/srep20687
Yang, Y., & Guo, Y. (2018). Elucidating the molecular mechanisms
mediating plant salt-stress responses. New Phytol , 217 ,
523–539. https://doi.org/10.1111/nph.14920
Yue, Y., Shao, T., Long, X., He, T., Gao, X., Zhou, Z., Liu, Z., &
Rengel, Z. (2020). Microbiome structure and function in rhizosphere of
Jerusalem artichoke grown in saline land. Science of the Total
Environment , 724, 138259.
https://doi.org/10.1016/j.scitotenv.2020.138259
Zhang, P., Bing, X., Jiao, L., Xiao, H., Li, B., & Sun, H. (2022).
Amelioration effects of coastal saline-alkali soil by ball-milled red
phosphorus-loaded biochar. Chemical Engineering
Journal , 431 , 133904. https://doi.org/10.1016/j.cej.2021.133904
Zhang, T.C., & Pang, H. (1999). Applications of microelectrode
techniques to measure pH and oxidation−reduction potential in
rhizosphere soil. Environmental Science & Technology , 33 ,
1293–1299. https://doi.org/10.1021/es981070x
Zörb, C., Geilfus, C.M., & Dietz, K.J. (2019). Salinity and crop yield.Plant Biology , 31–38. https://doi.org/10.1111/plb.12884