REFERENCES
1. Palomares V, Serras P, Villaluenga I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 2012; 5: 5884.
2. Pan H, Hu Y-S, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 2013; 6: 2338.
3. Delmas C, Fouassier C, Hagenmuller P. Structural classification and properties of the layered oxides. Phys BC 1980; 99: 81–85.
4. Yuan D, Hu X, Qian J, et al. P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery.Electrochimica Acta 2014; 116: 300–305.
5. Kang W, Yu DYW, Lee P-K, et al. P2-Type Na x Cu 0.15 Ni 0.20 Mn 0.65O 2 Cathodes with High Voltage for High-Power and Long-Life Sodium-Ion Batteries. ACS Appl Mater Interfaces 2016; 8: 31661–31668.
6. Lee DH, Xu J, Meng YS. An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys2013; 15: 3304.
7. Li Y, Yang Z, Xu S, et al. Air-Stable Copper-Based P2-Na7/9 Cu 2/9 Fe 1/9 Mn2/3 O 2 as a New Positive Electrode Material for Sodium-Ion Batteries. Adv Sci 2015; 2: 1500031.
8. Yabuuchi N, Kajiyama M, Iwatate J, et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 2012; 11: 512–517.
9. Sun X, Jin Y, Zhang C-Y, et al. Na[Ni 0.4 Fe0.2 Mn 0.4−x Ti x ]O2 : a cathode of high capacity and superior cyclability for Na-ion batteries. J Mater Chem A 2014; 2: 17268–17271.
10. Vassilaras P, Toumar AJ, Ceder G. Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries.Electrochem Commun 2014; 38: 79–81.
11. Mendiboure A, Delmas C, Hagenmuller P. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes. J Solid State Chem 1985; 57: 323–331.
12. Delmas C, Braconnier J, Fouassier C, et al. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ion 1981; 3–4: 165–169.
13. Carlier D, Cheng JH, Berthelot R, et al. The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Trans 2011; 40: 9306.
14. Manikandan P, Heo S, Kim HW, et al. Structural characterization of layered Na0.5Co0.5Mn0.5O2 material as a promising cathode for sodium-ion batteries. J Power Sources 2017; 363: 442–449.
15. Yang P, Zhang C, Li M, et al. P2-NaCo 0.5 Mn0.5 O 2 as a Positive Electrode Material for Sodium-Ion Batteries. ChemPhysChem 2015; 16: 3408–3412.
16. Bucher N, Hartung S, Franklin JB, et al. P2–Nax Co y Mn1– y O 2 ( y = 0, 0.1) as Cathode Materials in Sodium-Ion Batteries—Effects of Doping and Morphology To Enhance Cycling Stability. Chem Mater 2016; 28: 2041–2051.
17. Wang X, Tamaru M, Okubo M, et al. Electrode Properties of P2–Na2/3 Mn y Co 1–y O 2 as Cathode Materials for Sodium-Ion Batteries. J Phys Chem C 2013; 117: 15545–15551.
18. Chen X, Zhou X, Hu M, et al. Stable layered P3/P2 Na0.66 Co 0.5 Mn 0.5 O2 cathode materials for sodium-ion batteries. J Mater Chem A 2015; 3: 20708–20714.
19. Zhu Y-E, Qi X, Chen X, et al. A P2-Na 0.67 Co0.5 Mn 0.5 O 2 cathode material with excellent rate capability and cycling stability for sodium ion batteries. J Mater Chem A 2016; 4: 11103–11109.
20. Xu X, Ji S, Gao R, et al. Facile synthesis of P2-type Na0.4 Mn 0.54 Co 0.46 O2 as a high capacity cathode material for sodium-ion batteries. RSC Adv 2015; 5: 51454–51460.
21. Le Nguyen M, Van Nguyen H, Ghosh N, et al. High‐voltage performance of P2‐NaxMn0.5Co0.5O2 layered cathode material. Int J Energy Res2021; er.7504.
22. Konarov A, Kim HJ, Voronina N, et al. P2-Na 2/3 MnO2 by Co Incorporation: As a Cathode Material of High Capacity and Long Cycle Life for Sodium-Ion Batteries. ACS Appl Mater Interfaces 2019; 11: 28928–28933.
23. Hwang J-Y, Myung S-T, Sun Y-K. Sodium-ion batteries: present and future. Chem Soc Rev 2017; 46: 3529–3614.
24. Chen X, Song J, Li J, et al. A P2/P3 composite-layered cathode material with low-voltage decay for sodium-ion batteries. J Appl Electrochem 2021; 51: 619–627.
25. Shi Y, Zhang Z, Jiang P, et al. Unlocking the potential of P3 structure for practical Sodium-ion batteries by fabricating zero strain framework for Na+ intercalation. Energy Storage Mater 2021; 37: 354–362.
26. Zhang L, Wang J, Li J, et al. Preferential occupation of Na in P3-type layered cathode material for sodium ion batteries. Nano Energy 2020; 70: 104535.
27. Zhou Y-N, Wang P-F, Zhang X-D, et al. Air-Stable and High-Voltage Layered P3-Type Cathode for Sodium-Ion Full Battery. ACS Appl Mater Interfaces 2019; 11: 24184–24191.
28. Lei Y, Li X, Liu L, et al. Synthesis and Stoichiometry of Different Layered Sodium Cobalt Oxides. Chem Mater 2014; 26: 5288–5296.
29. Han MH, Acebedo B, Gonzalo E, et al. Synthesis and Electrochemistry Study of P2- and O3-phase Na2/3Fe1/2Mn1/2O2. Electrochimica Acta2015; 182: 1029–1036.
30. Sendova-Vassileva M, Stoyanova R, Carlier D, et al. Raman Spectroscopy Study on Na2/3Mn1-xFexO2Oxides. pp. 60–65.
31. Qu JF, Wang W, Chen Y, et al. Raman spectra study on nonstoichiometric compound Na x Co O 2. Phys Rev B 2006; 73: 092518.
32. Bredar ARC, Chown AL, Burton AR, et al. Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications.ACS Appl Energy Mater 2020; 3: 66–98.
33. Ma X, Chen H, Ceder G. Electrochemical Properties of Monoclinic NaMnO2. J Electrochem Soc 2011; 158: A1307.
34. Zhou D, Huang W, Lv X, et al. A novel P2/O3 biphase Na0.67Fe0.425Mn0.425Mg0.15O2 as cathode for high-performance sodium-ion batteries. J Power Sources 2019; 421: 147–155.
35. Yan Z, Tang L, Huang Y, et al. A Hydrostable Cathode Material Based on the Layered P2@P3 Composite that Shows Redox Behavior for Copper in High-Rate and Long-Cycling Sodium-Ion Batteries. Angew Chem 2019; 131: 1426–1430.
36. Hou P, Li F, Wang Y, et al. Mitigating the P2–O2 phase transition of high-voltage P2-Na 2/3 [Ni 1/3 Mn2/3 ]O 2 cathodes by cobalt gradient substitution for high-rate sodium-ion batteries. J Mater Chem A2019; 7: 4705–4713.
37. Rahman MM, Mao J, Kan WH, et al. An Ordered P2/P3 Composite Layered Oxide Cathode with Long Cycle Life in Sodium-Ion Batteries. ACS Mater Lett 2019; 1: 573–581.
38. Zhou Y-N, Wang P-F, Niu Y-B, et al. A P2/P3 composite layered cathode for high-performance Na-ion full batteries. Nano Energy2019; 55: 143–150.