REFERENCES
Abdel, C.G., Al-Rawi, I.M.T., 2011. “Anatomical alteration in response
to irrigation and water
stress in some legume crops.” Am. J. Exp. Agric. 1, 231–264.
Abdirad, S., Ghaffari, M. R., Majd, A., Irian, S., Soleymaniniya, A.,
Daryani, P., … & Salekdeh, G. H. (2022). Genome-wide expression
analysis of root tips in contrasting rice genotypes revealed novel
candidate genes for water stress adaptation. Frontiers in plant
science , 13 .
Anderegg, W. R. (2012). Complex aspen forest carbon and root dynamics
during drought. Climatic Change , 111 (3), 983-991.
Aslam, M., Maqbool, M. A., & Cengiz, R. (2015). Drought stress in maize
(zea maysl.) Effects, resistance mechanisms, global achievements
and. Cham: Springer .
Abd Allah, A. A., Badawy, S. A., Zayed, B. A., & El-Gohary, A. A.
(2010). THE ROLE OF ROOT SYSTEM TRAITS IN THE DROUGHT TOLERANCE OF RICE
( Oryza sativa L.). Journal of Plant Production , 1 (4),
621–631. https://doi.org/10.21608/jpp.2010.86384
Abdel, C.G., Al-Rawi, I.M.T., 2011. “Anatomical alteration in response
to irrigation and water
stress in some legume crops.” Am. J. Exp. Agric. 1, 231–264.
Ahmed, M., Khan, S., Irfan, M., Aslam, M. A., Shabbir, G., & Ahmad, S.
(2018). Effect of Phosphorus on Root Signaling of Wheat under Different
Water Regimes. In S. Fahad, A. Basir, & M. Adnan (Eds.), Global
Wheat Production . InTech. https://doi.org/10.5772/intechopen.75806
Alam, S. M. (1999). Nutrient uptake by plants under stress
conditions. Handbook of plant and crop stress , 2 ,
285-313.Al-Ghzawi, A. A.-M., Zaitoun, S., Gosheh, H., & Alqudah, A.
(2009). Impacts of drought on pollination of Trigonella moabitica(Fabaceae) via bee visitations. Archives of Agronomy and Soil
Science , 55 (6), 683–692.
https://doi.org/10.1080/03650340902821666
Alvarez, J., Rocha, J., & Machado, S. (2008). Bulliform cells in
Loudetiopsis chrysothrix (Nees) Conert and Tristachya leiostachya Nees
(Poaceae): Structure in relation to function. Brazilian Archives
of Biology and Technology - BRAZ ARCH BIOL TECHNOL , 51 .
https://doi.org/10.1590/S1516-89132008000100014
Andersen, M. N., Asch, F., Wu, Y., Jensen, C. R., Næsted, H., Mogensen,
V. O., & Koch, K. E. (2002). Soluble Invertase Expression Is an Early
Target of Drought Stress during the Critical, Abortion-Sensitive Phase
of Young Ovary Development in Maize. Plant Physiology ,130 (2), 591–604. https://doi.org/10.1104/pp.005637
Awasthi, R., Kaushal, N., Vadez, V., Turner, N. C., Berger, J.,
Siddique, K. H. M., & Nayyar, H. (2014). Individual and combined
effects of transient drought and heat stress on carbon assimilation and
seed filling in chickpea. Functional Plant Biology ,41 (11), 1148. https://doi.org/10.1071/FP13340
Ayalew, H., Liu, H., & Yan, G. (2017). Identification and validation of
root length QTLs for water stress resistance in hexaploid wheat (Titicum
aestivum L.). Euphytica , 213 (6), 126.
https://doi.org/10.1007/s10681-017-1914-4
Balsamo, R. A., Willigen, C. Vander, Bauer, A. M., & Farrant, J.
(2006). Drought tolerance of selected Eragrostis species correlates with
leaf tensile properties. Annals of Botany , 97 (6),
985–991. https://doi.org/10.1093/aob/mcl068
Bareke, T. (2018). Biology of seed development and germination
physiology. Advances in Plants & Agriculture Research ,Volume 8 (Issue 4). https://doi.org/10.15406/apar.2018.08.00335
Bari, Rajendra, and Jonathan D G Jones. 2009. “Role of Plant Hormones
in Plant Defence Responses.” Plant Molecular Biology 69(4):
473–88. https://doi.org/10.1007/s11103-008-9435-0.
Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and
heat stress on reproductive processes in cereals. Plant, Cell &
Environment , 31 (1), 11–38.
https://doi.org/10.1111/j.1365-3040.2007.01727.x
Basso, B., Amato, M., Bitella, G., Rossi, R., Kravchenko, A., Sartori,
L., … & Gomes, J. (2010). Two‐dimensional spatial and temporal
variation of soil physical properties in tillage systems using
electrical resistivity tomography. Agronomy
Journal , 102 (2), 440-449.
Bates, T. R., & Lynch, J. P. (2000). The efficiency of Arabidopsis
thaliana (Brassicaceae) root hairs in phosphorus acquisition.American Journal of Botany , 87 (7), 964–970.
Bidinger, F., Musgrave, R. B., & Fischer, R. A. (1977). Contribution of
stored pre-anthesis assimilate to grain yield in wheat and barley.Nature , 270 (5636), Article 5636.
https://doi.org/10.1038/270431a0
Bista, D. R., Heckathorn, S. A., Jayawardena, D. M., Mishra, S., &
Boldt, J. K. (2018). Effects of drought on nutrient uptake and the
levels of nutrient-uptake proteins in roots of drought-sensitive
and-tolerant grasses. Plants , 7 (2), 28.
Borrell, A. K., Mullet, J. E., George-Jaeggli, B., van Oosterom, E. J.,
Hammer, G. L., Klein, P. E., & Jordan, D. R. (2014). Drought adaptation
of stay-green sorghum is associated with canopy development, leaf
anatomy, root growth, and water uptake. Journal of Experimental
Botany , 65 (21), 6251–6263. https://doi.org/10.1093/jxb/eru232
Borrell, A. K., van Oosterom, E. J., Mullet, J. E., George-Jaeggli, B.,
Jordan, D. R., Klein, P. E., & Hammer, G. L. (2014). Stay-green alleles
individually enhance grain yield in sorghum under drought by modifying
canopy development and water uptake patterns. The New
Phytologist , 203 (3), 817–830.
https://doi.org/10.1111/nph.12869Boulard, T., Roy, J.-C., Pouillard,
J.-B., Fatnassi, H., & Grisey, A. (2017). Modelling of
micrometeorology, canopy transpiration and photosynthesis in a closed
greenhouse using computational fluid dynamics. Biosystems
Engineering , 158 , 110–133.
https://doi.org/10.1016/j.biosystemseng.2017.04.001
Channaoui, S., El Idrissi, I. S., Mazouz, H., & Nabloussi, A. (2019).
Reaction of some rapeseed (Brassica napus L.) genotypes to different
drought stress levels during germination and seedling growth
stages. OCL , 26 , 23.
Chapman, N., Miller, A. J., Lindsey, K., & Whalley, W. R. (2012).
Roots, water, and nutrient acquisition: Let’s get physical. Trends
in Plant Science , 17 (12), 701–710.
https://doi.org/10.1016/j.tplants.2012.08.001
Chen, S., Cui, X., Chen, Y., Gu, C., Miao, H., Gao, H., Chen, F., Liu,
Z., Guan, Z., & Fang, W. (2011). CgDREBa transgenic chrysanthemum
confers drought and salinity tolerance. Environmental and
Experimental Botany , 74 , 255–260.
https://doi.org/10.1016/j.envexpbot.2011.06.007
Chen, Y., Xie, Y., Song, C., Zheng, L., Rong, X., Jia, L., … & Xuan,
W. (2018). A comparison of lateral root patterning among dicot and
monocot plants. Plant Science , 274 , 201-211.
Chimungu, J. G., Brown, K. M., & Lynch, J. P. (2014). Reduced Root
Cortical Cell File Number Improves Drought Tolerance in Maize.Plant Physiology , 166 (4), 1943–1955.
https://doi.org/10.1104/pp.114.249037
Choi, H., Park, H.-J., Park, J. H., Kim, S., Im, M.-Y., Seo, H.-H., Kim,
Y.-W., Hwang, I., & Kim, S. Y. (2005). Arabidopsis calcium-dependent
protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator
of abscisic acid-responsive gene expression, and modulates its activity.Plant Physiology , 139 (4), 1750–1761.
https://doi.org/10.1104/pp.105.069757
Christmann, Alexander, Erwin Grill, and Jin Huang. 2013. “Hydraulic
Signals in Long-Distance Signaling.” Current opinion in plant
biology 16(3): 293–300.
Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., & Dierig, D.
A. (2013). Root traits contributing to plant productivity under drought.Frontiers in Plant Science , 4 (NOV), 1–16.
https://doi.org/10.3389/fpls.2013.00442
Cseresnyés, I., Kabos, S., Takács, T., Végh, K. R., Vozáry, E., &
Rajkai, K. (2017). An improved formula for evaluating electrical
capacitance using the dissipation factor. Plant and
Soil , 419 (1), 237-256.
Cseresnyés, I., Kelemen, B., Takács, T., Füzy, A., Kovács, R., Megyeri,
M., … & Mikó, P. (2021). Electrical Capacitance versus Minirhizotron
Technique: A Study of Root Dynamics in Wheat–Pea
Intercrops. Plants , 10 (10), 1991.
Cuneo, I. F., Barrios‐Masias, F., Knipfer, T., Uretsky, J., Reyes, C.,
Lenain, P., … & McElrone, A. J. (2021). Differences in grapevine
rootstock sensitivity and recovery from drought are linked to fine root
cortical lacunae and root tip function. New
Phytologist , 229 (1), 272-283.
Dalton, F. N. (1995). In-situ root extent measurements by electrical
capacitance methods. Plant and soil , 173 (1), 157-165.
Dash, M., Yordanov, Y. S., Georgieva, T., Tschaplinski, T. J.,
Yordanova, E., & Busov, V. (2017). Poplar Ptab ZIP 1‐like enhances
lateral root formation and biomass growth under drought
stress. The Plant Journal , 89 (4), 692-705.
De Bauw, P., Vandamme, E., Lupembe, A., Mwakasege, L., Senthilkumar, K.,
& Merckx, R. (2019). Architectural Root Responses of Rice to Reduced
Water Availability Can Overcome Phosphorus Stress. Agronomy ,9 (1), Article 1. https://doi.org/10.3390/agronomy9010011
De Smet, I., Vassileva, V., De Rybel, B., Levesque, M. P., Grunewald,
W., Van Damme, D., … & Beeckman, T. (2008). Receptor-like kinase ACR4
restricts formative cell divisions in the Arabidopsis
root. science , 322 (5901), 594-597.
Delgado, A., Hays, D. B., Bruton, R. K., Ceballos, H., Novo, A., Boi,
E., & Selvaraj, M. G. (2017). Ground penetrating radar: a case study
for estimating root bulking rate in cassava (Manihot esculenta
Crantz). Plant methods , 13 (1), 1-11.
Dhanda, S. S., & Sethi, G. S. (2002). Tolerance to drought stress among
selected Indian wheat cultivars. The Journal of Agricultural
Science , 139 (3), 319–326.
https://doi.org/10.1017/S0021859602002526
Dietrich, D., Pang, L., Kobayashi, A., Fozard, J. A., Boudolf, V.,
Bhosale, R., … & Bennett, M. J. (2017). Root hydrotropism is
controlled via a cortex-specific growth mechanism. Nature
plants , 3 (6), 1-8.
Edmeades, G. O. (2013). Progress in achieving and delivering drought
tolerance in maize-an update. ISAAA: Ithaca, NY , 130 .
Esau, K. Plant Anatomy, 2nd ed.; JohnWiley and Sons: New York, NY, USA,
1965.
FAO (2020). The state of food and agriculture 2020. (Rome:
Overcoming water challenges in agriculture). doi: 10.4060/cb1447en
FAO (2021). The Impact of Disasters and Crises on Agriculture and
Food Security. Rome: Food and agriculture organization of the United
Nations
Fang, Q., Ma, L., Yu, Q., Ahuja, L. R., Malone, R. W., & Hoogenboom, G.
(2010). Irrigation strategies to improve the water use efficiency of
wheat–maize double cropping systems in North China Plain.Agricultural Water Management , 97 (8), 1165–1174.
https://doi.org/10.1016/j.agwat.2009.02.012
Fang, Y., Du, Y., Wang, J., Wu, A., Qiao, S., Xu, B., Zhang, S.,
Siddique, K. H. M., & Chen, Y. (2017). Moderate Drought Stress Affected
Root Growth and Grain Yield in Old, Modern and Newly Released Cultivars
of Winter Wheat. Frontiers in Plant Science , 8 .
https://www.frontiersin.org/articles/10.3389/fpls.2017.00672
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A.
(2009). Plant drought stress: Effects, mechanisms and management.Agronomy for Sustainable Development , 29 (1), 185–212.
https://doi.org/10.1051/agro:2008021
Farooq, M., Hussain, M., & Siddique, K. H. (2014). Drought stress in
wheat during flowering and grain-filling periods. Critical reviews
in plant sciences , 33 (4), 331-349.
Fiorani, F., & Schurr, U. (2013). Future scenarios for plant
phenotyping. Annu. Rev. Plant Biol , 64 (1), 267-291.
Fitter, A. (2002). Characteristics and functions of root systems.
In Plant roots (pp. 49-78). CRC Press.
Fonta, J. E., Giri, J., Vejchasarn, P., Lynch, J. P., & Brown, K. M.
(2022). Spatiotemporal responses of rice root architecture and anatomy
to drought. Plant and Soil , 479 (1–2), 443–464.
https://doi.org/10.1007/s11104-022-05527-w
Franco, J. A., Bañón, S., Vicente, M. J., Miralles, J., &
Martínez-Sánchez, J. J. (2011). Root development in horticultural plants
grown under abiotic stress conditions–a review. The Journal of
Horticultural Science and Biotechnology , 86 (6), 543-556.
Fuentealba, M. P., Zhang, J., Kenworthy, K. E., Erickson, J. E., Kruse,
J., & Trenholm, L. E. (2015). Root development and profile
characteristics of bermudagrass and
zoysiagrass. HortScience , 50 (10), 1429-1434.
Furbank, R. T., & Tester, M. (2011). Phenomics–technologies to relieve
the phenotyping bottleneck. Trends in plant
science , 16 (12), 635-644.
Gaballah, M. M., Ghoneim, A. M., Rehman, H. U., Shehab, M. M., Ghazy, M.
I., El-Iraqi, A. S., Mohamed, A. E., Waqas, M., Shamsudin, N. A. A., &
Chen, Y. (2022). Evaluation of Morpho-Physiological Traits in Rice
Genotypes for Adaptation under Irrigated and Water-Limited Environments.Agronomy , 12 (8), 1–14.
https://doi.org/10.3390/agronomy12081868
Galindo-Castañeda, T., Brown, K. M., & Lynch, J. P. (2018). Reduced
root cortical burden improves growth and grain yield under low
phosphorus availability in maize. Plant, Cell & Environment ,41 (7), 1579–1592. https://doi.org/10.1111/pce.13197
Gao, R., Yang, X., Liu, G., Huang, Z., & Walck, J. L. (2015). Effects
of rainfall pattern on the growth and fecundity of a dominant dune
annual in a semi-arid ecosystem. Plant and Soil , 389 (1),
335–347. https://doi.org/10.1007/s11104-014-2366-4
Ge, L., & Chen, R. (2019). Negative gravitropic response of roots
directs auxin flow to control root gravitropism. Plant, Cell &
Environment , 42 (8), 2372-2383.
Gessler, A., Schaub, M., & McDowell, N. G. (2017). The role of
nutrients in drought‐induced tree mortality and recovery. New
Phytologist , 214 (2), 513-520.
Gebbing, T., & Schnyder, H. (1999). Pre-Anthesis Reserve Utilization
for Protein and Carbohydrate Synthesis in Grains of Wheat1. Plant
Physiology , 121 (3), 871–878.
https://doi.org/10.1104/pp.121.3.871
Ghoneim, A. M., E.e, G., & Osman, M. M. A. (2018). Effects of Nitrogen
Levels on Growth, Yield And Nitrogen use Efficiency Of Some Newly
Released Egyptian Rice Genotypes. Open Agriculture , 3 (1),
310–318. https://doi.org/10.1515/opag-2018-0034
Ghoneim, A. M. (2020). Soil Nutrients Availability, Rice Productivity
and Water Saving under Deficit Irrigation Conditions. Journal of
Plant Production , 11 (1), 7–16.
https://doi.org/10.21608/jpp.2020.77983
González, E., Gálvez, L., Royuela, M., Aparicio-Tejo, P., &
Arrese-Igor, C. (2001). Insights into the regulation of nitrogen
fixation in pea nodules: lessons from drought, abscisic acid and
increased photoassimilate
availability. Agronomie , 21 (6-7), 607-613.
Granier, C., Inzé, D., & Tardieu, F. (2000). Spatial distribution of
cell division rate can be deduced from that of p34(cdc2) kinase activity
in maize leaves grown at contrasting temperatures and soil water
conditions. Plant Physiology , 124 (3), 1393–1402.
https://doi.org/10.1104/pp.124.3.1393
Gu, H., Yang, Y., Xing, M., Yue, C., Wei, F., Zhang, Y., … & Huang,
J. (2019). Physiological and transcriptome analyses of Opisthopappus
taihangensis in response to drought stress. Cell &
bioscience , 9 (1), 1-12.
Gubiš, J., Vaňková, R., Červená, V., Dragúňová, M., Hudcovicová, M.,
Lichtnerová, H., … & Jureková, Z. (2007). Transformed tobacco plants
with increased tolerance to drought. South African Journal of
Botany , 73 (4), 505-511.
Guet, J., Fichot, R., Lédée, C., Laurans, F., Cochard, H., Delzon, S.,
Bastien, C., & Brignolas, F. (2015). Stem xylem resistance to
cavitation is related to xylem structure but not to growth and water-use
efficiency at the within-population level in Populus nigra L.Journal of Experimental Botany , 66 (15), 4643–4652.
https://doi.org/10.1093/jxb/erv232
Gunes, A., Cicek, N., Inal, A., Alpaslan, M., Eraslan, F., Guneri, E.,
& Guzelordu, T. (2011). Genotypic response of chickpea (Cicer arietinum
L.) cultivars to drought stress implemented at pre- and post-anthesis
stages and its relations with nutrient uptake and efficiency Plant, Soil and Environment , 52 (No. 8), 368–376.
https://doi.org/10.17221/3454-PSE
Guo, Q., & Zhu, Z. (2006). Phenotyping of plants. Encyclopedia of
Analytical Chemistry: Applications, Theory and Instrumentation , 1-15.
Guo, L., Wu, Y., Chen, J., Hirano, Y., Tanikawa, T., Li, W., & Cui, X.
(2015). Calibrating the impact of root orientation on root
quantification using ground-penetrating radar. Plant and
soil , 395 (1), 289-305.
Guseman, J. M., Webb, K., Srinivasan, C., & Dardick, C. (2017). DRO 1
influences root system architecture in Arabidopsis and Prunus
species. The Plant Journal , 89 (6), 1093-1105.
Gusmao, M., Siddique, K. H. M., Flower, K., Nesbitt, H., & Veneklaas,
E. J. (2012). Water Deficit during the Reproductive Period of Grass Pea
( Lathyrus sativus L.) Reduced Grain Yield but Maintained Seed
Size: Water Deficit during the Reproductive Period of Grass Pea.Journal of Agronomy and Crop Science , 198 (6), 430–441.
https://doi.org/10.1111/j.1439-037X.2012.00513.x
Hachez, C., Zelazny, E., & Chaumont, F. (2006). Modulating the
expression of aquaporin genes in planta: a key to understand their
physiological functions?. Biochimica et Biophysica Acta
(BBA)-Biomembranes , 1758 (8), 1142-1156.
Hameed, M., Basra, S., & Naz, N. (2009). Anatomical adaptations to
salinity in cogon grass [Imperata cylindrica (L.) Raeuschel] from
the Salt Range, Pakistan. Plant and Soil , 322 , 229–238.
https://doi.org/10.1007/s11104-009-9911-6
Harris, D., Rashid, A., Arif, M., & Yunas, M. (2005). Alleviating
micronutrient deficiencies in alkaline soils of the North-West Frontier
Province of Pakistan: on-farm seed priming with zinc in wheat and
chickpea. Micronutrients in South and South East
Asia , 143 , 151.
Hazman, M., & Brown, K. M. (2018). Progressive drought alters
architectural and anatomical traits of rice roots. Rice ,11 (1), 62. https://doi.org/10.1186/s12284-018-0252-z
He, M., & Dijkstra, F. A. (2014). Drought effect on plant nitrogen and
phosphorus: a meta‐analysis. New Phytologist , 204 (4),
924-931.
Henry, A., Gowda, V. R., Torres, R. O., McNally, K. L., & Serraj, R.
(2011). Variation in root system architecture and drought response in
rice (Oryza sativa): phenotyping of the OryzaSNP panel in rainfed
lowland fields. Field Crops Research , 120 (2), 205-214.
Herrbach, V., Remblière, C., Gough, C., & Bensmihen, S. (2014). Lateral
root formation and patterning in Medicago truncatula. Journal of
plant physiology , 171 (3-4), 301-310.
Hessini, K., Wasli, H., Al-Yasi, H. M., Ali, E. F., Issa, A. A., Hassan,
F. A., & Siddique, K. H. (2022). Graded moisture deficit effect on
secondary metabolites, antioxidant, and inhibitory enzyme activities in
leaf extracts of Rosa damascena Mill. var.
trigentipetala. Horticulturae , 8 (2), 177.
Hu, Y., & Schmidhalter, U. (2005). Drought and salinity: a comparison
of their effects on mineral nutrition of plants. Journal of Plant
Nutrition and Soil Science , 168 (4), 541-549.
Hu, Ling et al. 2018. “Comparative Analysis of Root Transcriptome
Profiles between Drought-Tolerant and Susceptible Wheat Genotypes in
Response to Water Stress.” Plant Science 272: 276–93.
https://www.sciencedirect.com/science/article/pii/S0168945217308543.
Hura, T., Hura, K., Dziurka, K., Ostrowska, A., Bączek-Kwinta, R., &
Grzesiak, M. (2012). An increase in the content of cell wall-bound
phenolics correlates with the productivity of triticale under soil
drought. Journal of Plant Physiology , 169 (17), 1728–1736.
https://doi.org/10.1016/j.jplph.2012.07.012
Hussain, M. Iftikhar et al. 2016. “Salt and Drought Stresses in
Safflower: A Review.” Agronomy for Sustainable Development36(1): 1–31. http://dx.doi.org/10.1007/s13593-015-0344-8.
Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men,
S., & Wang, L. (2018). Chilling and Drought Stresses in Crop Plants:
Implications, Cross Talk, and Potential Management Opportunities.Frontiers in Plant Science , 9 , 393.
https://doi.org/10.3389/fpls.2018.00393
Islam, M. M., Kayesh, E., Zaman, E., Urmi, T. A., & Haque, M. M.
(2018). Evaluation of rice (Oryza sativa L.) genotypes for drought
tolerance at germination and early seedling stage. The
Agriculturists , 16 (1), 44-54.
Imre C, Katalin S, Kálmán R, Anna F, Péter M, Ramóna K, Tünde T. (2018).
Application of
electrical capacitance method for prediction of plant root mass and
activity in field-grown crops.
Frontiers in Plant Science 9:93Ishimaru, T., Sasaki, K.,
Lumanglas, P. D., Leo U. Cabral, C., Ye, C., Yoshimoto, M., Kumar, A.,
& Henry, A. (2022). Effect of drought stress on flowering
characteristics in rice (Oryza sativa L.): A study using genotypes
contrasting in drought tolerance and flower opening time. Plant
Production Science , 25 (3), 359–370.
https://doi.org/10.1080/1343943X.2022.2085589
Iwata, S., Miyazawa, Y., Fujii, N., & Takahashi, H. (2013).
MIZ1-regulated hydrotropism functions in the growth and survival of
Arabidopsis thaliana under natural conditions. Annals of
botany , 112 (1), 103-114.
Janiak, A., Kwaśniewski, M., & Szarejko, I. (2016). Gene expression
regulation in roots under drought. Journal of Experimental
Botany , 67 (4), 1003–1014. https://doi.org/10.1093/jxb/erv512
Jeong, J. S., Kim, Y. S., Baek, K. H., Jung, H., Ha, S.-H., Do Choi, Y.,
Kim, M., Reuzeau, C., & Kim, J.-K. (2010). Root-Specific Expression of
OsNAC10 Improves Drought Tolerance and Grain Yield in Rice under Field
Drought Conditions. Plant Physiology , 153 (1), 185–197.
https://doi.org/10.1104/pp.110.154773
Jeong, J. S., Kim, Y. S., Redillas, M. C. F. R., Jang, G., Jung, H.,
Bang, S. W., Choi, Y. D., Ha, S.-H., Reuzeau, C., & Kim, J.-K. (2013).
OsNAC5 overexpression enlarges root diameter in rice plants leading to
enhanced drought tolerance and increased grain yield in the field.Plant Biotechnology Journal , 11 (1), 101–114.
https://doi.org/10.1111/pbi.12011
Jiang, C., Belfield, E. J., Cao, Y., Smith, J. A. C., & Harberd, N. P.
(2013). An Arabidopsis soil-salinity–tolerance mutation confers
ethylene-mediated enhancement of sodium/potassium homeostasis. The
Plant Cell , 25 (9), 3535-3552.
Ji, X., Dong, B., Shiran, B., Talbot, M. J., Edlington, J. E., Hughes,
T., White, R. G., Gubler, F., & Dolferus, R. (2011). Control of
Abscisic Acid Catabolism and Abscisic Acid Homeostasis Is Important for
Reproductive Stage Stress Tolerance in Cereals1. Plant
Physiology , 156 (2), 647–662.
https://doi.org/10.1104/pp.111.176164
Jordan, D. R., Hunt, C. H., Cruickshank, A. W., Borrell, A. K., &
Henzell, R. g. (2012). The Relationship Between the Stay-Green Trait and
Grain Yield in Elite Sorghum Hybrids Grown in a Range of Environments.Crop Science , 52 (3), 1153–1161.
https://doi.org/10.2135/cropsci2011.06.0326
Jovanovic, M., Lefebvre, V., Laporte, P., Gonzalez‐Rizzo, S.,
Lelandais‐Brière, C., Frugier, F., … & Crespi, M. (2007). How the
environment regulates root architecture in dicots. Advances in
Botanical Research , 46 , 35-74.
Kachout, S. S., BenYoussef, S., Ennajah, A., Abidi, S., & Zoghlami, A.
(2021). Physiological and morphological traits associated with
germinative and reproductive stage of garden orache (A. hortensis L.
var. Rubra) under water stress. Chemical and Biological
Technologies in Agriculture , 8 (1), 1–16.
https://doi.org/10.1186/s40538-021-00218-7
Kadam, N. N., Yin, X., Bindraban, P. S., Struik, P. C., & Jagadish, K.
S. V. (2015). Does Morphological and Anatomical Plasticity during the
Vegetative Stage Make Wheat More Tolerant of Water Deficit Stress Than
Rice? Plant Physiology , 167 (4), 1389–1401.
https://doi.org/10.1104/pp.114.253328
Karlova, R., Boer, D., Hayes, S., & Testerink, C. (2021). Root
plasticity under abiotic stress. Plant Physiology , 187 (3),
1057–1070. https://doi.org/10.1093/plphys/kiab392
Kawai, T., Shibata, K., Akahoshi, R., Nishiuchi, S., Takahashi, H.,
Nakazono, M., Kojima, T., Nosaka-Takahashi, M., Sato, Y., Toyoda, A.,
Lucob-Agustin, N., Kano-Nakata, M., Suralta, R. R., Niones, J. M., Chen,
Y., Siddique, K. H. M., Yamauchi, A., & Inukai, Y. (2022).
WUSCHEL-related homeobox family genes in rice control lateral root
primordium size. Proceedings of the National Academy of Sciences ,119 (1), e2101846119. https://doi.org/10.1073/pnas.2101846119
Ketring, D. L. (1991). Physiology of Oil Seeds: IX. Effects of Water
Deficit on Peanut Seed Quality. Crop Science , 31 (2),
cropsci1991.0011183X003100020047x.
https://doi.org/10.2135/cropsci1991.0011183X003100020047x
Khan, H. R., McDonald, G. K., & Rengel, Z. (2003). Zn fertilization
improves water use efficiency, grain yield and seed Zn content in
chickpea. Plant and Soil , 249 (2), 389–400.
https://doi.org/10.1023/A:1022808323744
Kim, J.-Y., Mahé, A., Brangeon, J., & Prioul, J.-L. (2000). A Maize
Vacuolar Invertase, IVR 2 , Is Induced by Water Stress.
Organ/Tissue Specificity and Diurnal Modulation of Expression.Plant Physiology , 124 (1), 71–84.
https://doi.org/10.1104/pp.124.1.71
Kim, Y., Chung, Y. S., Lee, E., Tripathi, P., Heo, S., & Kim, K.-H.
(2020). Root Response to Drought Stress in Rice (Oryza sativa L.).International Journal of Molecular Sciences , 21 (4),
Article 4. https://doi.org/10.3390/ijms21041513
Kitomi, Y., Kanno, N., Kawai, S., Mizubayashi, T., Fukuoka, S., & Uga,
Y. (2015). QTLs underlying natural variation of root growth angle among
rice cultivars with the same functional allele of DEEPER ROOTING
1. Rice , 8 (1), 1-12.
Kızılgeçi, F., Tazebay, N., Namlı, M., Albayrak, Ö., & Yıldırım, M.
(2017). The Drought Effect on Seed Germination and Seedling Growth in
Bread Wheat (Triticum aestivum L.). International Journal of
Agriculture, Environment and Food Sciences , 1 (1), 33–37.
https://doi.org/10.31015/jaefs.17005
Klein, S. P., Schneider, H. M., Perkins, A. C., Brown, K. M., & Lynch,
J. P. (2020). Multiple Integrated Root Phenotypes Are Associated with
Improved Drought Tolerance1 [OPEN]. Plant Physiology ,183 (3), 1011–1025. https://doi.org/10.1104/pp.20.00211
Kosma, Dylan K. et al. 2014. “AtMYB41 Activates Ectopic Suberin
Synthesis and Assembly in Multiple Plant Species and Cell Types.”Plant Journal 80(2): 216–29.
Kooyers, N. J. (2015). The evolution of drought escape and avoidance in
natural herbaceous populations. Plant Science: An International
Journal of Experimental Plant Biology , 234 , 155–162.
https://doi.org/10.1016/j.plantsci.2015.02.012
Kou, X., Han, W., & Kang, J. (2022). Responses of root system
architecture to water stress at multiple levels: A meta-analysis of
trials under controlled conditions . December , 1–16.
https://doi.org/10.3389/fpls.2022.1085409
Krasensky, Julia, and Claudia Jonak. 2012. “Drought, Salt, and
Temperature Stress-Induced Metabolic Rearrangements and Regulatory
Networks.” Journal of Experimental Botany 63(4): 1593–1608.
https://doi.org/10.1093/jxb/err460.
Kreszies, T., Eggels, S., Kreszies, V., Osthoff, A., Shellakkutti, N.,
Baldauf, J. A., … & Schreiber, L. (2020). Seminal roots of wild and
cultivated barley differentially respond to osmotic stress in gene
expression, suberization, and hydraulic conductivity. Plant, Cell
& Environment , 43 (2), 344-357.
Kumari, V. V., Banerjee, P., Verma, V. C., Sukumaran, S., Chandran, M.
A. S., Gopinath, K. A., Venkatesh, G., Yadav, S. K., Singh, V. K., &
Awasthi, N. K. (2022). Plant Nutrition: An Effective Way to Alleviate
Abiotic Stress in Agricultural Crops. International Journal of
Molecular Sciences , 23 (15). https://doi.org/10.3390/ijms23158519
Le Bot, J., Serra, V., Fabre, J., Draye, X., & Adamowicz, S. (2010).
DART: a software to analyse root system architecture and development
from captured images. Plant and Soil , 326 (1), 261-273.
Lee, Jae-Hoon, and Woo Taek Kim. 2011. “Regulation of Abiotic Stress
Signal Transduction by E3 Ubiquitin Ligases in Arabidopsis.”Molecules and Cells 31(3): 201–8.
https://doi.org/10.1007/s10059-011-0031-9.
Lee, S. B., & Suh, M. C. (2013). Recent advances in cuticular wax
biosynthesis and its regulation in Arabidopsis. Molecular Plant ,6 (2), 246–249. https://doi.org/10.1093/mp/sss159
Li, G., Santoni, V., & Maurel, C. (2014). Plant aquaporins: roles in
plant physiology. Biochimica et Biophysica Acta (BBA)-General
Subjects , 1840 (5), 1574-1582.
Li, T., Yang, H., Zhang, W., Xu, D., Dong, Q., Wang, F., Lei, Y., Liu,
G., Zhou, Y., Chen, H., & Li, C. (2017). Comparative transcriptome
analysis of root hairs proliferation induced by water deficiency in
maize. Journal of Plant Biology , 60 (1), 26–34.
https://doi.org/10.1007/s12374-016-0412-x
Li, H., Mo, Y., Cui, Q., Yang, X., Guo, Y., Wei, C., … & Zhang, X.
(2019). Transcriptomic and physiological analyses reveal drought
adaptation strategies in drought-tolerant and-susceptible watermelon
genotypes. Plant Science , 278 , 32-43.
Li, C., Li, L., Reynolds, M. P., Wang, J., Chang, X., Mao, X., & Jing,
R. (2021). Recognizing the hidden half in wheat: Root system attributes
associated with drought tolerance. Journal of Experimental
Botany , 72 (14), 5117–5133. https://doi.org/10.1093/jxb/erab124
Li, A., Zhu, L., Xu, W., Liu, L., & Teng, G. (2022). Recent advances in
methods for in situ root phenotyping. PeerJ , 10 , e13638.
Liang, C., Wang, W., Wang, J., Ma, J., Li, C., Zhou, F., … & Huang,
X. (2017). Identification of differentially expressed genes in sunflower
(Helianthus annuus) leaves and roots under drought stress by RNA
sequencing. Botanical studies , 58 (1), 1-11.
Liu, X., Li, R., Chang, X., & Jing, R. (2013). Mapping QTLs for
seedling root traits in a doubled haploid wheat population under
different water regimes. Euphytica , 189 (1), 51–66.
https://doi.org/10.1007/s10681-012-0690-4
Liu, Y., Li, P., Xu, G. C., Xiao, L., Ren, Z. P., & Li, Z. B. (2017).
Growth, Morphological, and Physiological Responses to Drought Stress in
Bothriochloa ischaemum. Frontiers in Plant Science , 8 ,
230. https://doi.org/10.3389/fpls.2017.00230
Liu, Q., Luo, L., & Zheng, L. (2018). Lignins: biosynthesis and
biological functions in plants. International journal of molecular
sciences , 19 (2), 335.
Liu, J., Hasanuzzaman, M., Wen, H., Zhang, J., Peng, T., Sun, H., &
Zhao, Q. (2019). High temperature and drought stress cause abscisic acid
and reactive oxygen species accumulation and suppress seed germination
growth in rice. Protoplasma , 256 (5), 1217-1227.
Lombardi, E., Ferrio, J. P., Rodríguez-Robles, U., Resco de Dios, V., &
Voltas, J. (2021). Ground-Penetrating Radar as phenotyping tool for
characterizing intraspecific variability in root traits of a widespread
conifer. Plant and Soil , 468 (1), 319-336.
Lorenzo Cimadevila, H., Pérez Gracia, M. D. L. V., Novo, A., & Armesto,
J. (2010). Forestry applications of ground-penetrating
radar. Forest Systems (formerly: Investigación agraria: sistemas y
recursos forestales) , 19 (1), 5-17.
Lu, Y., Hao, Z., Xie, C., Crossa, J., Araus, J.-L., Gao, S., Vivek, B.
S., Magorokosho, C., Mugo, S., Makumbi, D., Taba, S., Pan, G., Li, X.,
Rong, T., Zhang, S., & Xu, Y. (2011). Large-scale screening for maize
drought resistance using multiple selection criteria evaluated under
water-stressed and well-watered environments. Field Crops
Research , 124 (1), 37–45.
https://doi.org/10.1016/j.fcr.2011.06.003
Luo, W., Xu, C., Ma, W., Yue, X., Liang, X., Zuo, X., … & Han, X.
(2018). Effects of extreme drought on plant nutrient uptake and
resorption in rhizomatous vs bunchgrass-dominated
grasslands. Oecologia , 188 (2), 633-643.
Lynch, J. P. (2011). Root Phenes for Enhanced Soil Exploration and
Phosphorus Acquisition: Tools for Future Crops. Plant Physiology ,156 (3), 1041–1049. https://doi.org/10.1104/pp.111.175414
Lynch, J. (2013). Steep, cheap and deep: An ideotype to optimize water
and N acquisition by maize root systems. Annals of Botany ,112 . https://doi.org/10.1093/aob/mcs293
Lynch, J. P., Chimungu, J. G., & Brown, K. M. (2014). Root anatomical
phenes associated with water acquisition from drying soil: Targets for
crop improvement. Journal of Experimental Botany , 65 (21),
6155–6166. https://doi.org/10.1093/jxb/eru162
Ma, Z., Guo, D., Xu, X., Lu, M., Bardgett, R. D., Eissenstat, D. M.,
McCormack, M. L., & Hedin, L. O. (2018). Evolutionary history resolves
global organization of root functional traits. Nature ,555 (7694), 94–97. https://doi.org/10.1038/nature25783
Mace, E. S., Singh, V., Van Oosterom, E. J., Hammer, G. L., Hunt, C. H.,
& Jordan, D. R. (2012). QTL for nodal root angle in sorghum (Sorghum
bicolor L. Moench) co-locate with QTL for traits associated with drought
adaptation. Theoretical and Applied Genetics , 124 (1),
97–109. https://doi.org/10.1007/s00122-011-1690-9
Mahmood, T., Iqbal, M. S., Li, H., Nazir, M. F., Khalid, S., Sarfraz,
Z., Hu, D., Baojun, C., Geng, X., Tajo, S. M., Dev, W., Iqbal, Z., Zhao,
P., Hu, G., & Du, X. (2022). Differential seedling growth and tolerance
indices reflect drought tolerance in cotton. BMC Plant Biology ,22 (1), 1–11. https://doi.org/10.1186/s12870-022-03724-4
Mahouachi, J. (2009). Changes in nutrient concentrations and leaf gas
exchange parameters in banana plantlets under gradual soil moisture
depletion. Scientia Horticulturae , 120 (4), 460–466.
https://doi.org/10.1016/j.scienta.2008.12.002
Malamy, J. E., & Benfey, P. N. (1997). Organization and cell
differentiation in lateral roots of Arabidopsis
thaliana. Development , 124 (1), 33-44.
Manickavelu, A., Nadarajan, N., Ganesh, S. K., Gnanamalar, R. P., &
Chandra Babu, R. (2006). Drought tolerance in rice: morphological and
molecular genetic consideration. Plant Growth
Regulation , 50 (2), 121-138.
Manske, G. G., & Vlek, P. L. (2002). Root architecture—wheat as a
model plant. In Plant Roots (pp. 410-426). CRC Press.
Mansoor, U., Fatima, S., Hameed, M., Naseer, M., Ahmad, M. S. A.,
Ashraf, M., Ahmad, F., & Waseem, M. (2019). Structural modifications
for drought tolerance in stem and leaves of Cenchrus ciliaris L.
ecotypes from the Cholistan Desert. Flora: Morphology,
Distribution, Functional Ecology of Plants , 261 , 151485.
https://doi.org/10.1016/j.flora.2019.151485
Manzi, Matías, Marta Pitarch-Bielsa, Vicent Arbona, and Aurelio
Gómez-Cadenas. 2017. “Leaf Dehydration Is Needed to Induce Abscisic
Acid Accumulation in Roots of Citrus Plants.” Environmental and
Experimental Botany 139: 116–26.
https://www.sciencedirect.com/science/article/pii/S0098847217301089.
Maqbool, S., Hassan, M. A., Xia, X., York, L. M., Rasheed, A., & He, Z.
(2022). Root system architecture in cereals: Progress, challenges and
perspective. Plant Journal , 110 (1), 23–42.
https://doi.org/10.1111/tpj.15669
Marthandan, V., Geetha, R., Kumutha, K., Renganathan, V. G.,
Karthikeyan, A., & Ramalingam, J. (2020). Seed priming: A feasible
strategy to enhance drought tolerance in crop plants.International Journal of Molecular Sciences , 21 (21),
1–23. https://doi.org/10.3390/ijms21218258
Martinez, H. E., de Souza, B. P., Caixeta, E. T., de Carvalho, F. P., &
Clemente, J. M. (2020). Water deficit changes nitrate uptake and
expression of some nitrogen related genes in coffee-plants (Coffea
arabica L.). Scientia Horticulturae , 267 , 109254.
Metzner, R., van Dusschoten, D., Bühler, J., Schurr, U., & Jahnke, S.
(2014). Belowground plant development measured with magnetic resonance
imaging (MRI): exploiting the potential for non-invasive trait
quantification using sugar beet as a proxy. Frontiers in plant
science , 5 , 469.
Moulia, B., Coutand, C., & Lenne, C. (2006). Posture control and
skeletal mechanical acclimation in terrestrial plants: Implications for
mechanical modeling of plant architecture. American Journal of
Botany , 93 (10), 1477–1489.
https://doi.org/10.3732/ajb.93.10.1477
Nadeem, M., Li, J., Yahya, M., Sher, A., Ma, C., Wang, X., & Qiu, L.
(2019). Research Progress and Perspective on Drought Stress in Legumes:
A Review. International Journal of Molecular Sciences ,20 (10), 2541. https://doi.org/10.3390/ijms20102541
Nonami, Hiroshi. 1998. “Plant Water Relations and Control of Cell
Elongation at Low Water Potentials.” Journal of Plant Research111(3): 373–82. https://doi.org/10.1007/BF02507801.
Nosalewicz, A., Siecińska, J., Śmiech, M., Nosalewicz, M., Wiącek, D.,
Pecio, A., & Wach, D. (2016). Transgenerational effects of temporal
drought stress on spring barley morphology and
functioning. Environmental and Experimental Botany , 131 ,
120-127.
Ochatt, S. J. (2015). Agroecological impact of an in vitro biotechnology
approach of embryo development and seed filling in legumes.Agronomy for Sustainable Development , 35 (2), 535–552.
https://doi.org/10.1007/s13593-014-0276-8
Ogura, T., Goeschl, C., Filiault, D., Mirea, M., Slovak, R., Wolhrab,
B., Satbhai, S. B., & Busch, W. (2019). Root System Depth in
Arabidopsis Is Shaped by EXOCYST70A3 via the Dynamic Modulation of Auxin
Transport. Cell , 178 (2), 400-412.e16.
https://doi.org/10.1016/j.cell.2019.06.021
Okçu, G., Kaya, M. D., & Atak, M. (2005). Effects of salt and drought
stresses on germination and seedling growth of pea (Pisum sativum
L.). Turkish journal of agriculture and forestry , 29 (4),
237-242.
Onyemaobi, O., Sangma, H., Garg, G., Wallace, X., Kleven, S.,
Suwanchaikasem, P., Roessner, U., & Dolferus, R. (2021). Reproductive
stage drought tolerance in wheat: Importance of stomatal conductance and
plant growth regulators. Genes , 12 (11).
https://doi.org/10.3390/genes12111742
Opitz, N., Marcon, C., Paschold, A., Malik, W. A., Lithio, A., Brandt,
R., Piepho, H.-P., Nettleton, D., & Hochholdinger, F. (2016). Extensive
tissue-specific transcriptomic plasticity in maize primary roots upon
water deficit. Journal of Experimental Botany , 67 (4),
1095–1107. https://doi.org/10.1093/jxb/erv453
Osakabe, Y., Arinaga, N., Umezawa, T., Katsura, S., Nagamachi, K.,
Tanaka, H., … & Yamaguchi-Shinozaki, K. (2013). Osmotic stress
responses and plant growth controlled by potassium transporters in
Arabidopsis. The Plant Cell , 25 (2), 609-624.
Pace, P. F., Cralle, H. T., El-Halawany, S. H., Cothren, J. T., &
Senseman, S. A. (1999). Drought-induced changes in shoot and root growth
of young cotton plants. J. Cotton Sci , 3 (4), 183-187.
Peng, Y., Lin, W., & Cai, W. (2007). Overexpression of a Panax
ginseng tonoplast aquaporin alters salt tolerance , drought tolerance
and cold acclimation ability in transgenic Arabidopsis plants .
729–740. https://doi.org/10.1007/s00425-007-0520-4
Péret, B., Li, G., Zhao, J., Band, L. R., Voß, U., Postaire, O., … &
Bennett, M. J. (2012). Auxin regulates aquaporin function to facilitate
lateral root emergence. Nature cell biology , 14 (10),
991-998.
Pflugfelder, D., Kochs, J., Koller, R., Jahnke, S., Mohl, C., Pariyar,
S., … & van Dusschoten, D. (2022). The root system architecture of
wheat establishing in soil is associated with varying elongation rates
of seminal roots: quantification using 4D magnetic resonance
imaging. Journal of experimental botany , 73 (7), 2050-2060.
Pierik, R., & Testerink, C. (2014). The Art of Being Flexible:
How to Escape from Shade , Salt , and Drought 1 . 166 (September),
5–22. https://doi.org/10.1104/pp.114.239160
Pockman, W. T., & Sperry, J. S. (2000). Vulnerability to xylem
cavitation and the distribution of Sonoran Desert vegetation.American Journal of Botany , 87 (9), 1287–1299.
Prasad, P. V. V., Pisipati, S. R., Ristic, Z., Bukovnik, U., & Fritz,
A. K. (2008). Impact of Nighttime Temperature on Physiology and Growth
of Spring Wheat. Crop Science , 48 (6), 2372–2380.
https://doi.org/10.2135/cropsci2007.12.0717
Prerostova, S., Dobrev, P. I., Gaudinova, A., Knirsch, V., Körber, N.,
Pieruschka, R., … & Vankova, R. (2018). Cytokinins: Their impact on
molecular and growth responses to drought stress and recovery in
Arabidopsis. Frontiers in plant science , 9 , 655.
Priestley, D. A. (1986). Seed aging: implications for seed storage
and persistence in the soil . Comstock Associates.
Pushpavalli, R., Zaman-Allah, M., Turner, N. C., Baddam, R., Rao, M. V.,
& Vadez, V. (2014). Higher flower and seed number leads to higher yield
under water stress conditions imposed during reproduction in
chickpea. Functional Plant Biology , 42 (2), 162-174.
Qi, J., Sun, S., Yang, L., Li, M., Ma, F., & Zou, Y. (2019). Potassium
uptake and transport in apple roots under drought
stress. Horticultural plant journal , 5 (1), 10-16.
Qi, F., & Zhang, F. (2020). Cell Cycle Regulation in the Plant Response
to Stress. Frontiers in Plant Science , 10 .
https://www.frontiersin.org/articles/10.3389/fpls.2019.01765
Quan, R., Shang, M., Zhang, H., Zhao, Y., & Zhang, J. (2004).
Engineering of enhanced glycine betaine synthesis improves drought
tolerance in maize. Plant Biotechnology Journal , 2 (6),
477-486.
Raja, V., Qadir, S. U., Alyemeni, M. N., & Ahmad, P. (2020). Impact of
drought and heat stress individually and in combination on
physio-biochemical parameters, antioxidant responses, and gene
expression in Solanum lycopersicum. 3 Biotech , 10 (5), 208.
https://doi.org/10.1007/s13205-020-02206-4
Ramachandran, P., Wang, G., Augstein, F., de Vries, J., & Carlsbecker,
A. (2018). Continuous root xylem formation and vascular acclimation to
water deficit involves endodermal ABA signalling via
miR165. Development , 145 (3), dev159202.
Ranjan, A., Sinha, R., Singla-Pareek, S. L., Pareek, A., & Singh, A. K.
(2022). Shaping the root system architecture in plants for adaptation to
drought stress. Physiologia Plantarum , 174 (2), e13651.
https://doi.org/10.1111/ppl.13651
Rehman, T., Tabassum, B., Yousaf, S., Sarwar, G., & Qaisar, U. (2022).
Consequences of drought stress encountered during seedling stage on
physiology and yield of cultivated cotton. Frontiers in Plant
Science , 13 .
Rewald, B., Ephrath, J. E., & Rachmilevitch, S. (2011). A root is a
root is a root? Water uptake rates of Citrus root orders. Plant,
Cell & Environment , 34 (1), 33–42.
https://doi.org/10.1111/j.1365-3040.2010.02223.x
Richards, R. A., & Passioura, J. B. (1989). A breeding program to
reduce the diameter of the major xylem vessel in the seminal roots of
wheat and its effect on grain yield in rain-fed
environments. Australian Journal of Agricultural
Research , 40 (5), 943-950.
Rogers, H. H., & Bottomley, P. A. (1962). In situ nuclear magnetic
resonance imaging of roots: influence of soil type, ferromagnetic
particle content, and soil water 1. Agronomy
Journal , 79 (6), 957-965.
Robbins, N. E., & Dinneny, J. R. (2018). Growth is required for
perception of water availability to pattern root branches in plants.Proceedings of the National Academy of Sciences of the United
States of America , 115 (4), E822–E831.
https://doi.org/10.1073/pnas.1710709115
Roche, J., Hewezi, T., Bouniols, A., & Gentzbittel, L. (2007).
Transcriptional profiles of primary metabolism and signal
transduction-related genes in response to water stress in field-grown
sunflower genotypes using a thematic cDNA
microarray. Planta , 226 (3), 601-617.
Ronde, J. A., Cress, W. A., Krüger, G. H. J., Strasser, R. J., & Van
Staden, J. (2004). Photosynthetic response of transgenic soybean plants,
containing an Arabidopsis P5CR gene, during heat and drought
stress. Journal of plant physiology , 161 (11), 1211-1224.
Roohi, E., Tahmasebi Sarvestani, Z., Modarres-Sanavy, S. a. M., &
Siosemardeh, A. (2013). Comparative Study on the Effect of Soil Water
Stress on Photosynthetic Function of Triticale, Bread Wheat, and Barley.Journal of Agricultural Science and Technology , 15 (2),
215–225.
Rowse, H. R., & Goodman, D. (1981). Axial Resistance to Water Movement
in Broad Bean ( Vicia faba ) Roots. Journal of Experimental
Botany , 32 (3), 591–598. https://doi.org/10.1093/jxb/32.3.591
Sah, R. P., Chakraborty, M., Prasad, K., Pandit, M., Tudu, V. K.,
Chakravarty, M. K., Narayan, S. C., Rana, M., & Moharana, D. (2020).
Impact of water deficit stress in maize: Phenology and yield components.Scientific Reports , 10 (1), Article 1.
https://doi.org/10.1038/s41598-020-59689-7
Samarah, N., Mullen, R., & Cianzio, S. (2004). Size Distribution and
Mineral Nutrients of Soybean Seeds in Response to Drought Stress.Journal of Plant Nutrition , 27 (5), 815–835.
https://doi.org/10.1081/PLN-120030673
Sandhu, N., Raman, K. A., Torres, R. O., Audebert, A., Dardou, A.,
Kumar, A., & Henry, A. (2016). Rice Root Architectural Plasticity
Traits and Genetic Regions for Adaptability to Variable Cultivation and
Stress Conditions. Plant Physiology , 171 (4), 2562–2576.
https://doi.org/10.1104/pp.16.00705
Schneider, H. M., Wojciechowski, T., Postma, J. A., Brown, K. M., Lücke,
A., Zeisler, V., Schreiber, L., & Lynch, J. P. (2017). Root cortical
senescence decreases root respiration, nutrient content and radial water
and nutrient transport in barley. Plant, Cell & Environment ,40 (8), 1392–1408. https://doi.org/10.1111/pce.12933
Segal, E., Kushnir, T., Mualem, Y., & Shani, U. (2008). Water uptake
and hydraulics of the root hair rhizosphere. Vadose Zone
Journal , 7 (3), 1027-1034.
Segura, F., Vicente, M. J., Franco, J. A., & Martínez-Sánchez, J. J.
(2015). Effects of maternal environmental factors on physical dormancy
of Astragalus nitidiflorus seeds (Fabaceae), a critically endangered
species of SE Spain. Flora - Morphology, Distribution, Functional
Ecology of Plants , 216 , 71–76.
https://doi.org/10.1016/j.flora.2015.09.001
Seghatoleslami, M. J., Kafi, M., & Majidi, E. (2008). Effect of drought
stress at different growth stages on yield and water use efficiency of
five proso millet (Panicum miliaceum L.) genotypes. Pak. J.
Bot , 40 (4), 1427-1432.
Sehgal, A., Sita, K., Kumar, J., Kumar, S., Singh, S., Siddique, K. H.
M., & Nayyar, H. (2017). Effects of Drought, Heat and Their Interaction
on the Growth, Yield and Photosynthetic Function of Lentil (Lens
culinaris Medikus) Genotypes Varying in Heat and Drought Sensitivity.Frontiers in Plant Science , 8 , 1776.
https://doi.org/10.3389/fpls.2017.01776
Sehgal, A., Sita, K., Siddique, K. H. M., Kumar, R., Bhogireddy, S.,
Varshney, R. K., HanumanthaRao, B., Nair, R. M., Prasad, P. V. V., &
Nayyar, H. (2018). Drought or/and heat-stress effects on seed filling in
food crops: Impacts on functional biochemistry, seed yields, and
nutritional quality. Frontiers in Plant Science ,871 (November), 1–19. https://doi.org/10.3389/fpls.2018.01705
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M.,
Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L.
(2021). Drought stress impacts on plants and different approaches to
alleviate its adverse effects. Plants , 10 (2), 1–25.
https://doi.org/10.3390/plants10020259
Sengupta, D., Kannan, M., & Reddy, A. R. (2011). A root
proteomics-based insight reveals dynamic regulation of root proteins
under progressive drought stress and recovery in Vigna radiata (L.)
Wilczek. Planta , 233 (6), 1111–1127.
https://doi.org/10.1007/s00425-011-1365-4
Serraj, R. (2003). Effects of drought stress on legume symbiotic
nitrogen fixation: physiological mechanisms.
Sevanto, S. (2014). Phloem transport and drought. Journal of
Experimental Botany , 65 (7), 1751–1759.
https://doi.org/10.1093/jxb/ert467
Shan, H., Chen, S., Jiang, J., Chen, F., Chen, Y., Gu, C., … & Yang,
X. (2012). Heterologous expression of the chrysanthemum R2R3-MYB
transcription factor CmMYB2 enhances drought and salinity tolerance,
increases hypersensitivity to ABA and delays flowering in Arabidopsis
thaliana. Molecular biotechnology , 51 (2), 160-173.
Sharma, S.; Carena, M.J. BRACE: A Method for High Throughput Maize
Phenotyping of Root Traits for Short-Season Drought Tolerance. Crop Sci.2016 , 56, 2996–3004. [CrossRef]
Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali,
A. S., Handa, N., Kapoor, D., Bhardwaj, R., & Zheng, B. (2019).
Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress.Biomolecules , 9 (7), Article 7.
https://doi.org/10.3390/biom9070285
Sharma, N. K., Gupta, S. K., Dwivedi, V., & Chattopadhyay, D. (2020).
Lignin deposition in chickpea root xylem under drought. Plant
Signaling & Behavior , 15 (6), 1754621.
Sheoran, S., Kaur, Y., Kumar, S., Shukla, S., Rakshit, S., & Kumar, R.
(2022). Recent Advances for Drought Stress Tolerance in Maize (Zea mays
L.): Present Status and Future Prospects. Frontiers in Plant
Science , 13 , 872566. https://doi.org/10.3389/fpls.2022.872566
Shinozaki, Kazuo, and Kazuko Yamaguchi-Shinozaki. 2007. “Gene Networks
Involved in Drought Stress Response and Tolerance.” Journal of
Experimental Botany 58(2): 221–27. https://doi.org/10.1093/jxb/erl164.
Singh, V., van Oosterom, E. J., Jordan, D. R., Messina, C. D., Cooper,
M., & Hammer, G. L. (2010). Morphological and architectural development
of root systems in sorghum and maize. Plant and Soil ,333 (1–2), 287–299. https://doi.org/10.1007/s11104-010-0343-0
Singh, B., Norvell, E., Wijewardana, C., Wallace, T., Chastain, D., &
Reddy, K. R. (2018). Assessing morphological characteristics of elite
cotton lines from different breeding programmes for low temperature and
drought tolerance. Journal of Agronomy and Crop Science ,204 (5), 467–476. https://doi.org/10.1111/jac.12276
Sita, K., Sehgal, A., Kumar, J., Kumar, S., Singh, S., Siddique, K. H.
M., & Nayyar, H. (2017). Identification of High-Temperature Tolerant
Lentil (Lens culinaris Medik.) Genotypes through Leaf and Pollen Traits.Frontiers in Plant Science , 8 , 744.
https://doi.org/10.3389/fpls.2017.00744
Smiciklas, K. d., Mullen, R. e., Carlson, R. e., & Knapp, A. d. (1992).
Soybean Seed Quality Response to Drought Stress and Pod Position.Agronomy Journal , 84 (2), 166–170.
https://doi.org/10.2134/agronj1992.00021962008400020008x
Smit, A. L., George, E., & Groenwold, J. (2000). Root observations and
measurements at (transparent) interfaces with soil. In Root
methods (pp. 235-271). Springer, Berlin, Heidelberg.
Smith, S., & De Smet, I. (2012). Root system architecture: Insights
from Arabidopsis and cereal crops. Philosophical
Transactions of the Royal Society B: Biological Sciences ,367 (1595), 1441–1452. https://doi.org/10.1098/rstb.2011.0234
Sperry, J. S., & Saliendra, N. Z. (1994). Intra- and inter-plant
variation in xylem cavitation in Betula occidentalis. Plant, Cell
& Environment , 17 (11), 1233–1241.
https://doi.org/10.1111/j.1365-3040.1994.tb02021.x
Sperry, J., Stiller, V., & Hacke, U. (2003). Xylem Hydraulics and the
Soil–Plant–Atmosphere Continuum. Agronomy Journal - AGRON J ,95 . https://doi.org/10.2134/agronj2003.1362
Sperry, J. (2011). Hydraulics of Vascular Water Transport (Vol.
9, pp. 303–327). https://doi.org/10.1007/978-3-642-19091-9_12
Srayeddin, I., & Doussan, C. (2009). Estimation of the spatial
variability of root water uptake of maize and sorghum at the field scale
by electrical resistivity tomography. Plant and
soil , 319 (1), 185-207.
Sun, L., Song, L., Zhang, Y., Zheng, Z., & Liu, D. (2016). Arabidopsis
PHL2 and PHR1 Act Redundantly as the Key Components of the Central
Regulatory System Controlling Transcriptional Responses to Phosphate
Starvation. Plant Physiology , 170 (1), 499–514.
https://doi.org/10.1104/pp.15.01336
Suseela, V., Tharayil, N., Orr, G., & Hu, D. (2020). Chemical
plasticity in the fine root construct of Quercus spp. Varies with root
order and drought. New Phytologist , 228 (6), 1835–1851.
https://doi.org/10.1111/nph.16841
Suzuki, N., Taketa, S., & Ichii, M. (2003). Morphological and
physiological characteristics of a root-hairless mutant in rice (Oryza
sativa L.). Plant and Soil , 255 (1), 9–17.
Swarup, R., Kramer, E. M., Perry, P., Knox, K., Leyser, H. M. O.,
Haseloff, J., Beemster, G. T. S., Bhalerao, R., & Bennett, M. J.
(2005). Root gravitropism requires lateral root cap and epidermal cells
for transport and response to a mobile auxin signal. Nature Cell
Biology , 7 (11), 1057–1065. https://doi.org/10.1038/ncb1316
Takahashi, F., Suzuki, T., Osakabe, Y., Betsuyaku, S., Kondo, Y.,
Dohmae, N., Fukuda, H., Yamaguchi-Shinozaki, K., & Shinozaki, K.
(2018). A small peptide modulates stomatal control via abscisic acid in
long-distance signalling. Nature , 556 (7700), 235–238.
https://doi.org/10.1038/s41586-018-0009-2
Takahashi, F., & Shinozaki, K. (2019). Long-distance signaling in plant
stress response. Current opinion in plant biology , 47 ,
106-111.
Takahashi, F., Kuromori, T., Urano, K., Yamaguchi-Shinozaki, K., &
Shinozaki, K. (2020). Drought stress responses and resistance in plants:
From cellular responses to long-distance intercellular
communication. Frontiers in plant science , 11 , 556972.
Tanaka-Takada, N., Kobayashi, A., Takahashi, H., Kamiya, T., Kinoshita,
T., & Maeshima, M. (2019). Plasma membrane-associated Ca2+-binding
protein PCaP1 is involved in root hydrotropism of Arabidopsis
thaliana. Plant and Cell Physiology , 60 (6), 1331-1341.
Tardieu, F., Simonneau, T., & Muller, B. (2018). The Physiological
Basis of Drought Tolerance in Crop Plants: A Scenario-Dependent
Probabilistic Approach. Annual Review of Plant Biology ,69 , 733–759.
https://doi.org/10.1146/annurev-arplant-042817-040218
Tariq, A., Pan, K., Olatunji, O. A., Graciano, C., Li, Z., Sun, F., Sun,
X., Song, D., Chen, W., Zhang, A., Wu, X., Zhang, L., Mingrui, D.,
Xiong, Q., & Liu, C. (2017). Phosphorous Application Improves Drought
Tolerance of Phoebe zhennan. Frontiers in Plant Science ,8 . https://www.frontiersin.org/articles/10.3389/fpls.2017.01561
Thakur, P., Kumar, S., Malik, J. A., Berger, J. D., & Nayyar, H.
(2010). Cold stress effects on reproductive development in grain crops:
An overview. Environmental and Experimental Botany , 67 (3),
429–443. https://doi.org/10.1016/j.envexpbot.2009.09.004
Tiwari, P., Srivastava, D., Chauhan, A. S., Indoliya, Y., Singh, P. K.,
Tiwari, S., Fatima, T., Mishra, S. K., Dwivedi, S., Agarwal, L., Singh,
P. C., Asif, M. H., Tripathi, R. D., Shirke, P. A., Chakrabarty, D.,
Chauhan, P. S., & Nautiyal, C. S. (2021). Root system architecture,
physiological analysis and dynamic transcriptomics unravel the
drought-responsive traits in rice genotypes. Ecotoxicology and
Environmental Safety , 207 , 111252.
https://doi.org/10.1016/j.ecoenv.2020.111252
Tran, T. T., Kano-Nakata, M., Takeda, M., Menge, D., Mitsuya, S.,
Inukai, Y., & Yamauchi, A. (2014). Nitrogen application enhanced the
expression of developmental plasticity of root systems triggered by mild
drought stress in rice. Plant and Soil , 378 (1), 139–152.
https://doi.org/10.1007/s11104-013-2013-5
Turner, I. M. (1994). Sclerophylly: Primarily protective?Functional Ecology , 8 , 669–675.
Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N.,
Kitomi, Y., Inukai, Y., Ono, K., Kanno, N., Inoue, H., Takehisa, H.,
Motoyama, R., Nagamura, Y., Wu, J., Matsumoto, T., Takai, T., Okuno, K.,
& Yano, M. (2013). Control of root system architecture by DEEPER
ROOTING 1 increases rice yield under drought conditions. Nature
Genetics , 45 (9), Article 9. https://doi.org/10.1038/ng.2725
Ullah, A., Tian, Z., Xu, L., Abid, M., Lei, K., Khanzada, A., Zeeshan,
M., Sun, C., Yu, J., & Dai, T. (2022). Improving the effects of drought
priming against post-anthesis drought stress in wheat (Triticum aestivum
L.) using nitrogen. Frontiers in Plant Science ,13 (August), 1–17. https://doi.org/10.3389/fpls.2022.965996
Varshney, R. K., Barmukh, R., Roorkiwal, M., Qi, Y., Kholova, J.,
Tuberosa, R., Reynolds, M. P., Tardieu, F., & Siddique, K. H. M.
(2021). Breeding custom‐designed crops for improved drought adaptation.Advanced Genetics , 2 (3), 1–15.
https://doi.org/10.1002/ggn2.202100017
Vejchasarn, P., Lynch, J. P., & Brown, K. M. (2016). Genetic
Variability in Phosphorus Responses of Rice Root Phenotypes.Rice , 9 (1), 29. https://doi.org/10.1186/s12284-016-0102-9
Vendramini, F., Díaz, S., Gurvich, D. E., Wilson, P. J., Thompson, K.,
& Hodgson, J. G. (2002). Leaf traits as indicators of resource-use
strategy in floras with succulent species. New Phytologist ,154 (1), 147–157.
https://doi.org/10.1046/j.1469-8137.2002.00357.x
Venugopalan, V. K., Nath, R., Sengupta, K., Nalia, A., Banerjee, S.,
Chandran, M. A. S., Ibrahimova, U., Dessoky, E. S., Attia, A. O.,
Hassan, M. M., & Hossain, A. (2021). The Response of Lentil (Lens
culinaris Medik.) to Soil Moisture and Heat Stress Under Different Dates
of Sowing and Foliar Application of Micronutrients. Frontiers in
Plant Science , 12 , 679469.
https://doi.org/10.3389/fpls.2021.679469
Vierstra, Richard D. 2009. “The Ubiquitin–26S Proteasome System at the
Nexus of Plant Biology.” Nature Reviews Molecular Cell Biology10(6): 385–97. https://doi.org/10.1038/nrm2688.
Vivek, B. S., Krishna, G. K., Vengadessan, V., Babu, R., Zaidi, P. H.,
Kha, L. Q., Mandal, S. S., Grudloyma, P., Takalkar, S., Krothapalli, K.,
Singh, I. S., Ocampo, E. T. M., Xingming, F., Burgueño, J., Azrai, M.,
Singh, R. P., & Crossa, J. (2017). Use of Genomic Estimated Breeding
Values Results in Rapid Genetic Gains for Drought Tolerance in Maize.The Plant Genome , 10 (1).
https://doi.org/10.3835/plantgenome2016.07.0070
Wang, X., Vignjevic, M., Jiang, D., Jacobsen, S., & Wollenweber, B.
(2014). Improved tolerance to drought stress after anthesis due to
priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett.Journal of Experimental Botany , 65 (22), 6441–6456.
https://doi.org/10.1093/jxb/eru362
Wang, X., Vignjevic, M., Liu, F., Jacobsen, S., Jiang, D., &
Wollenweber, B. (2015). Drought priming at vegetative growth stages
improves tolerance to drought and heat stresses occurring during grain
filling in spring wheat. Plant Growth Regulation , 75 (3),
677–687. https://doi.org/10.1007/s10725-014-9969-x
Wang, L. Q., Li, Z., Wen, S. S., Wang, J. N., Zhao, S. T., & Lu, M. Z.
(2020). WUSCHEL-related homeobox gene PagWOX11/12a responds to drought
stress by enhancing root elongation and biomass growth in
poplar. Journal of Experimental Botany , 71 (4), 1503-1513.
Wasaya, A., Zhang, X., Fang, Q., & Yan, Z. (2018). Root
Phenotyping for Drought Tolerance: A Review . 1–19.
https://doi.org/10.3390/agronomy8110241
Wasson, A. P., Richards, R. A., Chatrath, R., Misra, S. C., Prasad, S.
V. S., Rebetzke, G. J., Kirkegaard, J. A., Christopher, J., & Watt, M.
(2012). Traits and selection strategies to improve root systems and
water uptake in water-limited wheat crops. Journal of Experimental
Botany , 63 (9), 3485–3498. https://doi.org/10.1093/jxb/ers111
Weinhold, L. Histogenetische Studien zum Grenzwurzelproblem. Beitr.
Biol. Pfl. 1967 , 43, 367–454.
Wery, J et al. 1993. “Screening Techniques and Sources of Tolerance to
Extremes of Moisture and Air Temperature in Cool Season Food Legumes.”Euphytica 73(1): 73–83. https://doi.org/10.1007/BF00027184.
Wu, Y., Guo, L., Cui, X., Chen, J., Cao, X., & Lin, H. (2014).
Ground-penetrating radar-based automatic reconstruction of
three-dimensional coarse root system architecture. Plant and
soil , 383 (1), 155-172.
Xu, C., Fu, X., Liu, R., Guo, L., Ran, L., Li, C., … & Luo, K.
(2017). PtoMYB170 positively regulates lignin deposition during wood
formation in poplar and confers drought tolerance in transgenic
Arabidopsis. Tree physiology , 37 (12), 1713-1726.
Xu, Q., Chen, S., Yunjuan, R., Chen, S., & Liesche, J. (2018).
Regulation of Sucrose Transporters and Phloem Loading in Response to
Environmental Cues. Plant Physiology , 176 (1), 930–945.
https://doi.org/10.1104/pp.17.01088
Xu, W., Tang, W., Wang, C., Ge, L., Sun, J., Qi, X., … & Chen, M.
(2020). SiMYB56 confers drought stress tolerance in transgenic rice by
regulating lignin biosynthesis and ABA signaling
pathway. Frontiers in plant science , 11 , 785.
Xue, L.-J., Frost, C. J., Tsai, C.-J., & Harding, S. A. (2016). Drought
response transcriptomes are altered in poplar with reduced tonoplast
sucrose transporter expression. Scientific Reports , 6 (1),
Article 1. https://doi.org/10.1038/srep33655
Yadav, G. S., Devi, A. G., Das, A., Kandpal, B., Babu, S., Das, R. C.,
& Nath, M. (2019). Foliar application of urea and potassium chloride
minimizes terminal moisture stress in lentil (Lens culinaris L.) crop.LEGUME RESEARCH-AN INTERNATIONAL JOURNAL , of .
https://doi.org/10.18805/LR-4148
Yang, J. C., Zhang, J. H., Wang, Z. Q., Zhu, Q. S., & Liu, L. J.
(2003). Involvement of abscisic acid and cytokinins in the senescence
and remobilization of carbon reserves in wheat subjected to water stress
during grain filling. Plant, Cell & Environment , 26 (10),
1621–1631. https://doi.org/10.1046/j.1365-3040.2003.01081.x
Yang, J., & Zhang, J. (2006). Grain filling of cereals under soil
drying. New Phytologist , 169 (2), 223–236.
https://doi.org/10.1111/j.1469-8137.2005.01597.x
Yang, X., Li, Y., Ren, B., Ding, L., Gao, C., Shen, Q., & Guo, S.
(2012). Drought-induced root aerenchyma formation restricts water uptake
in rice seedlings supplied with nitrate. Plant & Cell
Physiology , 53 (3), 495–504. https://doi.org/10.1093/pcp/pcs003
Yang, Y., Guo, Y., Zhong, J., Zhang, T., Li, D., Ba, T., Xu, T., Chang,
L., Zhang, Q., & Sun, M. (2020). Root Physiological Traits and
Transcriptome Analyses Reveal that Root Zone Water Retention Confers
Drought Tolerance to Opisthopappus taihangensis. Scientific
Reports , 10 (1), 2627. https://doi.org/10.1038/s41598-020-59399-0
Yavas, I., & Unay, A. (2016). Effects of zinc and salicylic acid on
wheat under drought stress. Journal of Animal and Plant Sciences ,26 (4), 1012–1018.
Ye, H., Roorkiwal, M., Valliyodan, B., Zhou, L., Chen, P., Varshney, R.
K., & Nguyen, H. T. (2018). Genetic diversity of root system
architecture in response to drought stress in grain legumes.Journal of Experimental Botany , 69 (13), 3267–3277.
https://doi.org/10.1093/jxb/ery082
Yu, X.-C., Zhu, S.-Y., Gao, G.-F., Wang, X.-J., Zhao, R., Zou, K.-Q.,
Wang, X.-F., Zhang, X.-Y., Wu, F.-Q., Peng, C.-C., & Zhang, D.-P.
(2007). Expression of a grape calcium-dependent protein kinase ACPK1 in
Arabidopsis thaliana promotes plant growth and confers abscisic
acid-hypersensitivity in germination, postgermination growth, and
stomatal movement. Plant Molecular Biology , 64 (5),
531–538. https://doi.org/10.1007/s11103-007-9172-9
Yu, P., Gutjahr, C., Li, C., & Hochholdinger, F. (2016). Genetic
control of lateral root formation in cereals. Trends in plant
science , 21 (11), 951-961.
Zare, M., Nejad, M. G., & Bazrafshan, F. (2012). Influence of drought
stress on some traits in five mung bean (Vigna radiata (L.) R. Wilczek)
genotypes. International Journal of Agronomy and Plant
Production , 3 (7), 234-240.
Zeid, I. M., & Shedeed, Z. A. (2006). Response of alfalfa to putrescine
treatment under drought stress. Biologia plantarum , 50 (4),
635-640.
Zhang, G. H., Su, Q., An, L. J., & Wu, S. (2008). Characterization and
expression of a vacuolar Na+/H+ antiporter gene from the monocot
halophyte Aeluropus littoralis. Plant Physiology and
Biochemistry , 46 (2), 117-126.
Zhang, X., Derival, M., Albrecht, U., & Ampatzidis, Y. (2019).
Evaluation of a ground penetrating radar to map the root architecture of
HLB-infected citrus trees. Agronomy , 9 (7), 354.
Zhang, Q., Yuan, W., Wang, Q., Cao, Y., Xu, F., Dodd, I. C., & Xu, W.
(2022). ABA regulation of root growth during soil drying and recovery
can involve auxin response. Plant, Cell &
Environment , 45 (3), 871-883.
Zhao, P., Hou, S., Guo, X., Jia, J., Yang, W., Liu, Z., … & Cheng, L.
(2019). A MYB-related transcription factor from sheepgrass, LcMYB2,
promotes seed germination and root growth under drought
stress. BMC plant biology , 19 (1), 1-15.
Zhou, G., Zhou, X., Zhou, L., Shao, J., Fu, Y., Nie, Y., Hosseini, S.,
Cheng, W., Wang, J., & Hu, F. (2018). Drought ‐ induced changes
in root biomass largely result from altered root morphological traits:
Evidence from a synthesis of global field trials . October 2017 ,
2589–2599. https://doi.org/10.1111/pce.13356
Zhu, Jian-Kang. 2002. “SALT AND DROUGHT STRESS SIGNAL TRANSDUCTION IN
PLANTS.” Annual Review of Plant Biology 53(1): 247–73.
https://doi.org/10.1146/annurev.arplant.53.091401.143329.
Zhu, J., Kaeppler, S. M., & Lynch, J. P. (2005). Mapping of QTLs for
lateral root branching and length in maize (Zea mays L.) under
differential phosphorus supply. Theoretical and Applied
Genetics , 111 (4), 688-695.
Zhu, J., Brown, K. M., & Lynch, J. P. (2010). Root cortical aerenchyma
improves the drought tolerance of maize (Zea mays L.). Plant, Cell
& Environment , 33 (5), 740–749.
https://doi.org/10.1111/j.1365-3040.2009.02099.x