REFERENCES
Abdel, C.G., Al-Rawi, I.M.T., 2011. “Anatomical alteration in response to irrigation and water
stress in some legume crops.” Am. J. Exp. Agric. 1, 231–264.
Abdirad, S., Ghaffari, M. R., Majd, A., Irian, S., Soleymaniniya, A., Daryani, P., … & Salekdeh, G. H. (2022). Genome-wide expression analysis of root tips in contrasting rice genotypes revealed novel candidate genes for water stress adaptation. Frontiers in plant science13 .
Anderegg, W. R. (2012). Complex aspen forest carbon and root dynamics during drought. Climatic Change111 (3), 983-991.
Aslam, M., Maqbool, M. A., & Cengiz, R. (2015). Drought stress in maize (zea maysl.) Effects, resistance mechanisms, global achievements and. Cham: Springer .
Abd Allah, A. A., Badawy, S. A., Zayed, B. A., & El-Gohary, A. A. (2010). THE ROLE OF ROOT SYSTEM TRAITS IN THE DROUGHT TOLERANCE OF RICE ( Oryza sativa L.). Journal of Plant Production , 1 (4), 621–631. https://doi.org/10.21608/jpp.2010.86384
Abdel, C.G., Al-Rawi, I.M.T., 2011. “Anatomical alteration in response to irrigation and water
stress in some legume crops.” Am. J. Exp. Agric. 1, 231–264.
Ahmed, M., Khan, S., Irfan, M., Aslam, M. A., Shabbir, G., & Ahmad, S. (2018). Effect of Phosphorus on Root Signaling of Wheat under Different Water Regimes. In S. Fahad, A. Basir, & M. Adnan (Eds.), Global Wheat Production . InTech. https://doi.org/10.5772/intechopen.75806
Alam, S. M. (1999). Nutrient uptake by plants under stress conditions. Handbook of plant and crop stress2 , 285-313.Al-Ghzawi, A. A.-M., Zaitoun, S., Gosheh, H., & Alqudah, A. (2009). Impacts of drought on pollination of Trigonella moabitica(Fabaceae) via bee visitations. Archives of Agronomy and Soil Science , 55 (6), 683–692. https://doi.org/10.1080/03650340902821666
Alvarez, J., Rocha, J., & Machado, S. (2008). Bulliform cells in Loudetiopsis chrysothrix (Nees) Conert and Tristachya leiostachya Nees (Poaceae): Structure in relation to function. Brazilian Archives of Biology and Technology - BRAZ ARCH BIOL TECHNOL , 51 . https://doi.org/10.1590/S1516-89132008000100014
Andersen, M. N., Asch, F., Wu, Y., Jensen, C. R., Næsted, H., Mogensen, V. O., & Koch, K. E. (2002). Soluble Invertase Expression Is an Early Target of Drought Stress during the Critical, Abortion-Sensitive Phase of Young Ovary Development in Maize. Plant Physiology ,130 (2), 591–604. https://doi.org/10.1104/pp.005637
Awasthi, R., Kaushal, N., Vadez, V., Turner, N. C., Berger, J., Siddique, K. H. M., & Nayyar, H. (2014). Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Functional Plant Biology ,41 (11), 1148. https://doi.org/10.1071/FP13340
Ayalew, H., Liu, H., & Yan, G. (2017). Identification and validation of root length QTLs for water stress resistance in hexaploid wheat (Titicum aestivum L.). Euphytica , 213 (6), 126. https://doi.org/10.1007/s10681-017-1914-4
Balsamo, R. A., Willigen, C. Vander, Bauer, A. M., & Farrant, J. (2006). Drought tolerance of selected Eragrostis species correlates with leaf tensile properties. Annals of Botany , 97 (6), 985–991. https://doi.org/10.1093/aob/mcl068
Bareke, T. (2018). Biology of seed development and germination physiology. Advances in Plants & Agriculture Research ,Volume 8 (Issue 4). https://doi.org/10.15406/apar.2018.08.00335
Bari, Rajendra, and Jonathan D G Jones. 2009. “Role of Plant Hormones in Plant Defence Responses.” Plant Molecular Biology 69(4): 473–88. https://doi.org/10.1007/s11103-008-9435-0.
Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment , 31 (1), 11–38. https://doi.org/10.1111/j.1365-3040.2007.01727.x
Basso, B., Amato, M., Bitella, G., Rossi, R., Kravchenko, A., Sartori, L., … & Gomes, J. (2010). Two‐dimensional spatial and temporal variation of soil physical properties in tillage systems using electrical resistivity tomography. Agronomy Journal102 (2), 440-449.
Bates, T. R., & Lynch, J. P. (2000). The efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acquisition.American Journal of Botany , 87 (7), 964–970.
Bidinger, F., Musgrave, R. B., & Fischer, R. A. (1977). Contribution of stored pre-anthesis assimilate to grain yield in wheat and barley.Nature , 270 (5636), Article 5636. https://doi.org/10.1038/270431a0
Bista, D. R., Heckathorn, S. A., Jayawardena, D. M., Mishra, S., & Boldt, J. K. (2018). Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and-tolerant grasses. Plants7 (2), 28.
Borrell, A. K., Mullet, J. E., George-Jaeggli, B., van Oosterom, E. J., Hammer, G. L., Klein, P. E., & Jordan, D. R. (2014). Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. Journal of Experimental Botany , 65 (21), 6251–6263. https://doi.org/10.1093/jxb/eru232
Borrell, A. K., van Oosterom, E. J., Mullet, J. E., George-Jaeggli, B., Jordan, D. R., Klein, P. E., & Hammer, G. L. (2014). Stay-green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns. The New Phytologist , 203 (3), 817–830. https://doi.org/10.1111/nph.12869Boulard, T., Roy, J.-C., Pouillard, J.-B., Fatnassi, H., & Grisey, A. (2017). Modelling of micrometeorology, canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics. Biosystems Engineering , 158 , 110–133. https://doi.org/10.1016/j.biosystemseng.2017.04.001
Channaoui, S., El Idrissi, I. S., Mazouz, H., & Nabloussi, A. (2019). Reaction of some rapeseed (Brassica napus L.) genotypes to different drought stress levels during germination and seedling growth stages. OCL26 , 23.
Chapman, N., Miller, A. J., Lindsey, K., & Whalley, W. R. (2012). Roots, water, and nutrient acquisition: Let’s get physical. Trends in Plant Science , 17 (12), 701–710. https://doi.org/10.1016/j.tplants.2012.08.001
Chen, S., Cui, X., Chen, Y., Gu, C., Miao, H., Gao, H., Chen, F., Liu, Z., Guan, Z., & Fang, W. (2011). CgDREBa transgenic chrysanthemum confers drought and salinity tolerance. Environmental and Experimental Botany , 74 , 255–260. https://doi.org/10.1016/j.envexpbot.2011.06.007
Chen, Y., Xie, Y., Song, C., Zheng, L., Rong, X., Jia, L., … & Xuan, W. (2018). A comparison of lateral root patterning among dicot and monocot plants. Plant Science274 , 201-211.
Chimungu, J. G., Brown, K. M., & Lynch, J. P. (2014). Reduced Root Cortical Cell File Number Improves Drought Tolerance in Maize.Plant Physiology , 166 (4), 1943–1955. https://doi.org/10.1104/pp.114.249037
Choi, H., Park, H.-J., Park, J. H., Kim, S., Im, M.-Y., Seo, H.-H., Kim, Y.-W., Hwang, I., & Kim, S. Y. (2005). Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity.Plant Physiology , 139 (4), 1750–1761. https://doi.org/10.1104/pp.105.069757
Christmann, Alexander, Erwin Grill, and Jin Huang. 2013. “Hydraulic Signals in Long-Distance Signaling.” Current opinion in plant biology 16(3): 293–300.
Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought.Frontiers in Plant Science , 4 (NOV), 1–16. https://doi.org/10.3389/fpls.2013.00442
Cseresnyés, I., Kabos, S., Takács, T., Végh, K. R., Vozáry, E., & Rajkai, K. (2017). An improved formula for evaluating electrical capacitance using the dissipation factor. Plant and Soil419 (1), 237-256.
Cseresnyés, I., Kelemen, B., Takács, T., Füzy, A., Kovács, R., Megyeri, M., … & Mikó, P. (2021). Electrical Capacitance versus Minirhizotron Technique: A Study of Root Dynamics in Wheat–Pea Intercrops. Plants10 (10), 1991.
Cuneo, I. F., Barrios‐Masias, F., Knipfer, T., Uretsky, J., Reyes, C., Lenain, P., … & McElrone, A. J. (2021). Differences in grapevine rootstock sensitivity and recovery from drought are linked to fine root cortical lacunae and root tip function. New Phytologist229 (1), 272-283.
Dalton, F. N. (1995). In-situ root extent measurements by electrical capacitance methods. Plant and soil173 (1), 157-165.
Dash, M., Yordanov, Y. S., Georgieva, T., Tschaplinski, T. J., Yordanova, E., & Busov, V. (2017). Poplar Ptab ZIP 1‐like enhances lateral root formation and biomass growth under drought stress. The Plant Journal89 (4), 692-705.
De Bauw, P., Vandamme, E., Lupembe, A., Mwakasege, L., Senthilkumar, K., & Merckx, R. (2019). Architectural Root Responses of Rice to Reduced Water Availability Can Overcome Phosphorus Stress. Agronomy ,9 (1), Article 1. https://doi.org/10.3390/agronomy9010011
De Smet, I., Vassileva, V., De Rybel, B., Levesque, M. P., Grunewald, W., Van Damme, D., … & Beeckman, T. (2008). Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root. science322 (5901), 594-597.
Delgado, A., Hays, D. B., Bruton, R. K., Ceballos, H., Novo, A., Boi, E., & Selvaraj, M. G. (2017). Ground penetrating radar: a case study for estimating root bulking rate in cassava (Manihot esculenta Crantz). Plant methods13 (1), 1-11.
Dhanda, S. S., & Sethi, G. S. (2002). Tolerance to drought stress among selected Indian wheat cultivars. The Journal of Agricultural Science , 139 (3), 319–326. https://doi.org/10.1017/S0021859602002526
Dietrich, D., Pang, L., Kobayashi, A., Fozard, J. A., Boudolf, V., Bhosale, R., … & Bennett, M. J. (2017). Root hydrotropism is controlled via a cortex-specific growth mechanism. Nature plants3 (6), 1-8.
Edmeades, G. O. (2013). Progress in achieving and delivering drought tolerance in maize-an update. ISAAA: Ithaca, NY130 .
Esau, K. Plant Anatomy, 2nd ed.; JohnWiley and Sons: New York, NY, USA, 1965.
FAO (2020). The state of food and agriculture 2020. (Rome: Overcoming water challenges in agriculture). doi: 10.4060/cb1447en
FAO (2021). The Impact of Disasters and Crises on Agriculture and Food Security. Rome: Food and agriculture organization of the United Nations
Fang, Q., Ma, L., Yu, Q., Ahuja, L. R., Malone, R. W., & Hoogenboom, G. (2010). Irrigation strategies to improve the water use efficiency of wheat–maize double cropping systems in North China Plain.Agricultural Water Management , 97 (8), 1165–1174. https://doi.org/10.1016/j.agwat.2009.02.012
Fang, Y., Du, Y., Wang, J., Wu, A., Qiao, S., Xu, B., Zhang, S., Siddique, K. H. M., & Chen, Y. (2017). Moderate Drought Stress Affected Root Growth and Grain Yield in Old, Modern and Newly Released Cultivars of Winter Wheat. Frontiers in Plant Science , 8 . https://www.frontiersin.org/articles/10.3389/fpls.2017.00672
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management.Agronomy for Sustainable Development , 29 (1), 185–212. https://doi.org/10.1051/agro:2008021
Farooq, M., Hussain, M., & Siddique, K. H. (2014). Drought stress in wheat during flowering and grain-filling periods. Critical reviews in plant sciences33 (4), 331-349.
Fiorani, F., & Schurr, U. (2013). Future scenarios for plant phenotyping. Annu. Rev. Plant Biol64 (1), 267-291.
Fitter, A. (2002). Characteristics and functions of root systems. In Plant roots  (pp. 49-78). CRC Press.
Fonta, J. E., Giri, J., Vejchasarn, P., Lynch, J. P., & Brown, K. M. (2022). Spatiotemporal responses of rice root architecture and anatomy to drought. Plant and Soil , 479 (1–2), 443–464. https://doi.org/10.1007/s11104-022-05527-w
Franco, J. A., Bañón, S., Vicente, M. J., Miralles, J., & Martínez-Sánchez, J. J. (2011). Root development in horticultural plants grown under abiotic stress conditions–a review. The Journal of Horticultural Science and Biotechnology86 (6), 543-556.
Fuentealba, M. P., Zhang, J., Kenworthy, K. E., Erickson, J. E., Kruse, J., & Trenholm, L. E. (2015). Root development and profile characteristics of bermudagrass and zoysiagrass. HortScience50 (10), 1429-1434.
Furbank, R. T., & Tester, M. (2011). Phenomics–technologies to relieve the phenotyping bottleneck. Trends in plant science16 (12), 635-644.
Gaballah, M. M., Ghoneim, A. M., Rehman, H. U., Shehab, M. M., Ghazy, M. I., El-Iraqi, A. S., Mohamed, A. E., Waqas, M., Shamsudin, N. A. A., & Chen, Y. (2022). Evaluation of Morpho-Physiological Traits in Rice Genotypes for Adaptation under Irrigated and Water-Limited Environments.Agronomy , 12 (8), 1–14. https://doi.org/10.3390/agronomy12081868
Galindo-Castañeda, T., Brown, K. M., & Lynch, J. P. (2018). Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize. Plant, Cell & Environment ,41 (7), 1579–1592. https://doi.org/10.1111/pce.13197
Gao, R., Yang, X., Liu, G., Huang, Z., & Walck, J. L. (2015). Effects of rainfall pattern on the growth and fecundity of a dominant dune annual in a semi-arid ecosystem. Plant and Soil , 389 (1), 335–347. https://doi.org/10.1007/s11104-014-2366-4
Ge, L., & Chen, R. (2019). Negative gravitropic response of roots directs auxin flow to control root gravitropism. Plant, Cell & Environment42 (8), 2372-2383.
Gessler, A., Schaub, M., & McDowell, N. G. (2017). The role of nutrients in drought‐induced tree mortality and recovery. New Phytologist214 (2), 513-520.
Gebbing, T., & Schnyder, H. (1999). Pre-Anthesis Reserve Utilization for Protein and Carbohydrate Synthesis in Grains of Wheat1. Plant Physiology , 121 (3), 871–878. https://doi.org/10.1104/pp.121.3.871
Ghoneim, A. M., E.e, G., & Osman, M. M. A. (2018). Effects of Nitrogen Levels on Growth, Yield And Nitrogen use Efficiency Of Some Newly Released Egyptian Rice Genotypes. Open Agriculture , 3 (1), 310–318. https://doi.org/10.1515/opag-2018-0034
Ghoneim, A. M. (2020). Soil Nutrients Availability, Rice Productivity and Water Saving under Deficit Irrigation Conditions. Journal of Plant Production , 11 (1), 7–16. https://doi.org/10.21608/jpp.2020.77983
González, E., Gálvez, L., Royuela, M., Aparicio-Tejo, P., & Arrese-Igor, C. (2001). Insights into the regulation of nitrogen fixation in pea nodules: lessons from drought, abscisic acid and increased photoassimilate availability. Agronomie21 (6-7), 607-613.
Granier, C., Inzé, D., & Tardieu, F. (2000). Spatial distribution of cell division rate can be deduced from that of p34(cdc2) kinase activity in maize leaves grown at contrasting temperatures and soil water conditions. Plant Physiology , 124 (3), 1393–1402. https://doi.org/10.1104/pp.124.3.1393
Gu, H., Yang, Y., Xing, M., Yue, C., Wei, F., Zhang, Y., … & Huang, J. (2019). Physiological and transcriptome analyses of Opisthopappus taihangensis in response to drought stress. Cell & bioscience9 (1), 1-12.
Gubiš, J., Vaňková, R., Červená, V., Dragúňová, M., Hudcovicová, M., Lichtnerová, H., … & Jureková, Z. (2007). Transformed tobacco plants with increased tolerance to drought. South African Journal of Botany73 (4), 505-511.
Guet, J., Fichot, R., Lédée, C., Laurans, F., Cochard, H., Delzon, S., Bastien, C., & Brignolas, F. (2015). Stem xylem resistance to cavitation is related to xylem structure but not to growth and water-use efficiency at the within-population level in Populus nigra L.Journal of Experimental Botany , 66 (15), 4643–4652. https://doi.org/10.1093/jxb/erv232
Gunes, A., Cicek, N., Inal, A., Alpaslan, M., Eraslan, F., Guneri, E., & Guzelordu, T. (2011). Genotypic response of chickpea (Cicer arietinum L.) cultivars to drought stress implemented at pre- and post-anthesis stages and its relations with nutrient uptake and efficiency Plant, Soil and Environment , 52 (No. 8), 368–376. https://doi.org/10.17221/3454-PSE
Guo, Q., & Zhu, Z. (2006). Phenotyping of plants. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation , 1-15.
Guo, L., Wu, Y., Chen, J., Hirano, Y., Tanikawa, T., Li, W., & Cui, X. (2015). Calibrating the impact of root orientation on root quantification using ground-penetrating radar. Plant and soil395 (1), 289-305.
Guseman, J. M., Webb, K., Srinivasan, C., & Dardick, C. (2017). DRO 1 influences root system architecture in Arabidopsis and Prunus species. The Plant Journal89 (6), 1093-1105.
Gusmao, M., Siddique, K. H. M., Flower, K., Nesbitt, H., & Veneklaas, E. J. (2012). Water Deficit during the Reproductive Period of Grass Pea ( Lathyrus sativus L.) Reduced Grain Yield but Maintained Seed Size: Water Deficit during the Reproductive Period of Grass Pea.Journal of Agronomy and Crop Science , 198 (6), 430–441. https://doi.org/10.1111/j.1439-037X.2012.00513.x
Hachez, C., Zelazny, E., & Chaumont, F. (2006). Modulating the expression of aquaporin genes in planta: a key to understand their physiological functions?. Biochimica et Biophysica Acta (BBA)-Biomembranes1758 (8), 1142-1156.
Hameed, M., Basra, S., & Naz, N. (2009). Anatomical adaptations to salinity in cogon grass [Imperata cylindrica (L.) Raeuschel] from the Salt Range, Pakistan. Plant and Soil , 322 , 229–238. https://doi.org/10.1007/s11104-009-9911-6
Harris, D., Rashid, A., Arif, M., & Yunas, M. (2005). Alleviating micronutrient deficiencies in alkaline soils of the North-West Frontier Province of Pakistan: on-farm seed priming with zinc in wheat and chickpea. Micronutrients in South and South East Asia143 , 151.
Hazman, M., & Brown, K. M. (2018). Progressive drought alters architectural and anatomical traits of rice roots. Rice ,11 (1), 62. https://doi.org/10.1186/s12284-018-0252-z
He, M., & Dijkstra, F. A. (2014). Drought effect on plant nitrogen and phosphorus: a meta‐analysis. New Phytologist204 (4), 924-931.
Henry, A., Gowda, V. R., Torres, R. O., McNally, K. L., & Serraj, R. (2011). Variation in root system architecture and drought response in rice (Oryza sativa): phenotyping of the OryzaSNP panel in rainfed lowland fields. Field Crops Research120 (2), 205-214.
Herrbach, V., Remblière, C., Gough, C., & Bensmihen, S. (2014). Lateral root formation and patterning in Medicago truncatula. Journal of plant physiology171 (3-4), 301-310.
Hessini, K., Wasli, H., Al-Yasi, H. M., Ali, E. F., Issa, A. A., Hassan, F. A., & Siddique, K. H. (2022). Graded moisture deficit effect on secondary metabolites, antioxidant, and inhibitory enzyme activities in leaf extracts of Rosa damascena Mill. var. trigentipetala. Horticulturae8 (2), 177.
Hu, Y., & Schmidhalter, U. (2005). Drought and salinity: a comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science168 (4), 541-549.
Hu, Ling et al. 2018. “Comparative Analysis of Root Transcriptome Profiles between Drought-Tolerant and Susceptible Wheat Genotypes in Response to Water Stress.” Plant Science 272: 276–93. https://www.sciencedirect.com/science/article/pii/S0168945217308543.
Hura, T., Hura, K., Dziurka, K., Ostrowska, A., Bączek-Kwinta, R., & Grzesiak, M. (2012). An increase in the content of cell wall-bound phenolics correlates with the productivity of triticale under soil drought. Journal of Plant Physiology , 169 (17), 1728–1736. https://doi.org/10.1016/j.jplph.2012.07.012
Hussain, M. Iftikhar et al. 2016. “Salt and Drought Stresses in Safflower: A Review.” Agronomy for Sustainable Development36(1): 1–31. http://dx.doi.org/10.1007/s13593-015-0344-8.
Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., & Wang, L. (2018). Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities.Frontiers in Plant Science , 9 , 393. https://doi.org/10.3389/fpls.2018.00393
Islam, M. M., Kayesh, E., Zaman, E., Urmi, T. A., & Haque, M. M. (2018). Evaluation of rice (Oryza sativa L.) genotypes for drought tolerance at germination and early seedling stage. The Agriculturists16 (1), 44-54.
Imre C, Katalin S, Kálmán R, Anna F, Péter M, Ramóna K, Tünde T. (2018). Application of
electrical capacitance method for prediction of plant root mass and activity in field-grown crops.
Frontiers in Plant Science 9:93Ishimaru, T., Sasaki, K., Lumanglas, P. D., Leo U. Cabral​, C., Ye, C., Yoshimoto, M., Kumar, A., & Henry, A. (2022). Effect of drought stress on flowering characteristics in rice (Oryza sativa L.): A study using genotypes contrasting in drought tolerance and flower opening time. Plant Production Science , 25 (3), 359–370. https://doi.org/10.1080/1343943X.2022.2085589
Iwata, S., Miyazawa, Y., Fujii, N., & Takahashi, H. (2013). MIZ1-regulated hydrotropism functions in the growth and survival of Arabidopsis thaliana under natural conditions. Annals of botany112 (1), 103-114.
Janiak, A., Kwaśniewski, M., & Szarejko, I. (2016). Gene expression regulation in roots under drought. Journal of Experimental Botany , 67 (4), 1003–1014. https://doi.org/10.1093/jxb/erv512
Jeong, J. S., Kim, Y. S., Baek, K. H., Jung, H., Ha, S.-H., Do Choi, Y., Kim, M., Reuzeau, C., & Kim, J.-K. (2010). Root-Specific Expression of OsNAC10 Improves Drought Tolerance and Grain Yield in Rice under Field Drought Conditions. Plant Physiology , 153 (1), 185–197. https://doi.org/10.1104/pp.110.154773
Jeong, J. S., Kim, Y. S., Redillas, M. C. F. R., Jang, G., Jung, H., Bang, S. W., Choi, Y. D., Ha, S.-H., Reuzeau, C., & Kim, J.-K. (2013). OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field.Plant Biotechnology Journal , 11 (1), 101–114. https://doi.org/10.1111/pbi.12011
Jiang, C., Belfield, E. J., Cao, Y., Smith, J. A. C., & Harberd, N. P. (2013). An Arabidopsis soil-salinity–tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. The Plant Cell25 (9), 3535-3552.
Ji, X., Dong, B., Shiran, B., Talbot, M. J., Edlington, J. E., Hughes, T., White, R. G., Gubler, F., & Dolferus, R. (2011). Control of Abscisic Acid Catabolism and Abscisic Acid Homeostasis Is Important for Reproductive Stage Stress Tolerance in Cereals1. Plant Physiology , 156 (2), 647–662. https://doi.org/10.1104/pp.111.176164
Jordan, D. R., Hunt, C. H., Cruickshank, A. W., Borrell, A. K., & Henzell, R. g. (2012). The Relationship Between the Stay-Green Trait and Grain Yield in Elite Sorghum Hybrids Grown in a Range of Environments.Crop Science , 52 (3), 1153–1161. https://doi.org/10.2135/cropsci2011.06.0326
Jovanovic, M., Lefebvre, V., Laporte, P., Gonzalez‐Rizzo, S., Lelandais‐Brière, C., Frugier, F., … & Crespi, M. (2007). How the environment regulates root architecture in dicots. Advances in Botanical Research46 , 35-74.
Kachout, S. S., BenYoussef, S., Ennajah, A., Abidi, S., & Zoghlami, A. (2021). Physiological and morphological traits associated with germinative and reproductive stage of garden orache (A. hortensis L. var. Rubra) under water stress. Chemical and Biological Technologies in Agriculture , 8 (1), 1–16. https://doi.org/10.1186/s40538-021-00218-7
Kadam, N. N., Yin, X., Bindraban, P. S., Struik, P. C., & Jagadish, K. S. V. (2015). Does Morphological and Anatomical Plasticity during the Vegetative Stage Make Wheat More Tolerant of Water Deficit Stress Than Rice? Plant Physiology , 167 (4), 1389–1401. https://doi.org/10.1104/pp.114.253328
Karlova, R., Boer, D., Hayes, S., & Testerink, C. (2021). Root plasticity under abiotic stress. Plant Physiology , 187 (3), 1057–1070. https://doi.org/10.1093/plphys/kiab392
Kawai, T., Shibata, K., Akahoshi, R., Nishiuchi, S., Takahashi, H., Nakazono, M., Kojima, T., Nosaka-Takahashi, M., Sato, Y., Toyoda, A., Lucob-Agustin, N., Kano-Nakata, M., Suralta, R. R., Niones, J. M., Chen, Y., Siddique, K. H. M., Yamauchi, A., & Inukai, Y. (2022). WUSCHEL-related homeobox family genes in rice control lateral root primordium size. Proceedings of the National Academy of Sciences ,119 (1), e2101846119. https://doi.org/10.1073/pnas.2101846119
Ketring, D. L. (1991). Physiology of Oil Seeds: IX. Effects of Water Deficit on Peanut Seed Quality. Crop Science , 31 (2), cropsci1991.0011183X003100020047x. https://doi.org/10.2135/cropsci1991.0011183X003100020047x
Khan, H. R., McDonald, G. K., & Rengel, Z. (2003). Zn fertilization improves water use efficiency, grain yield and seed Zn content in chickpea. Plant and Soil , 249 (2), 389–400. https://doi.org/10.1023/A:1022808323744
Kim, J.-Y., Mahé, A., Brangeon, J., & Prioul, J.-L. (2000). A Maize Vacuolar Invertase, IVR 2 , Is Induced by Water Stress. Organ/Tissue Specificity and Diurnal Modulation of Expression.Plant Physiology , 124 (1), 71–84. https://doi.org/10.1104/pp.124.1.71
Kim, Y., Chung, Y. S., Lee, E., Tripathi, P., Heo, S., & Kim, K.-H. (2020). Root Response to Drought Stress in Rice (Oryza sativa L.).International Journal of Molecular Sciences , 21 (4), Article 4. https://doi.org/10.3390/ijms21041513
Kitomi, Y., Kanno, N., Kawai, S., Mizubayashi, T., Fukuoka, S., & Uga, Y. (2015). QTLs underlying natural variation of root growth angle among rice cultivars with the same functional allele of DEEPER ROOTING 1. Rice8 (1), 1-12.
Kızılgeçi, F., Tazebay, N., Namlı, M., Albayrak, Ö., & Yıldırım, M. (2017). The Drought Effect on Seed Germination and Seedling Growth in Bread Wheat (Triticum aestivum L.). International Journal of Agriculture, Environment and Food Sciences , 1 (1), 33–37. https://doi.org/10.31015/jaefs.17005
Klein, S. P., Schneider, H. M., Perkins, A. C., Brown, K. M., & Lynch, J. P. (2020). Multiple Integrated Root Phenotypes Are Associated with Improved Drought Tolerance1  [OPEN]. Plant Physiology ,183 (3), 1011–1025. https://doi.org/10.1104/pp.20.00211
Kosma, Dylan K. et al. 2014. “AtMYB41 Activates Ectopic Suberin Synthesis and Assembly in Multiple Plant Species and Cell Types.”Plant Journal 80(2): 216–29.
Kooyers, N. J. (2015). The evolution of drought escape and avoidance in natural herbaceous populations. Plant Science: An International Journal of Experimental Plant Biology , 234 , 155–162. https://doi.org/10.1016/j.plantsci.2015.02.012
Kou, X., Han, W., & Kang, J. (2022). Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions . December , 1–16. https://doi.org/10.3389/fpls.2022.1085409
Krasensky, Julia, and Claudia Jonak. 2012. “Drought, Salt, and Temperature Stress-Induced Metabolic Rearrangements and Regulatory Networks.” Journal of Experimental Botany 63(4): 1593–1608. https://doi.org/10.1093/jxb/err460.
Kreszies, T., Eggels, S., Kreszies, V., Osthoff, A., Shellakkutti, N., Baldauf, J. A., … & Schreiber, L. (2020). Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity. Plant, Cell & Environment43 (2), 344-357.
Kumari, V. V., Banerjee, P., Verma, V. C., Sukumaran, S., Chandran, M. A. S., Gopinath, K. A., Venkatesh, G., Yadav, S. K., Singh, V. K., & Awasthi, N. K. (2022). Plant Nutrition: An Effective Way to Alleviate Abiotic Stress in Agricultural Crops. International Journal of Molecular Sciences , 23 (15). https://doi.org/10.3390/ijms23158519
Le Bot, J., Serra, V., Fabre, J., Draye, X., & Adamowicz, S. (2010). DART: a software to analyse root system architecture and development from captured images. Plant and Soil326 (1), 261-273.
Lee, Jae-Hoon, and Woo Taek Kim. 2011. “Regulation of Abiotic Stress Signal Transduction by E3 Ubiquitin Ligases in Arabidopsis.”Molecules and Cells 31(3): 201–8. https://doi.org/10.1007/s10059-011-0031-9.
Lee, S. B., & Suh, M. C. (2013). Recent advances in cuticular wax biosynthesis and its regulation in Arabidopsis. Molecular Plant ,6 (2), 246–249. https://doi.org/10.1093/mp/sss159
Li, G., Santoni, V., & Maurel, C. (2014). Plant aquaporins: roles in plant physiology. Biochimica et Biophysica Acta (BBA)-General Subjects1840 (5), 1574-1582.
Li, T., Yang, H., Zhang, W., Xu, D., Dong, Q., Wang, F., Lei, Y., Liu, G., Zhou, Y., Chen, H., & Li, C. (2017). Comparative transcriptome analysis of root hairs proliferation induced by water deficiency in maize. Journal of Plant Biology , 60 (1), 26–34. https://doi.org/10.1007/s12374-016-0412-x
Li, H., Mo, Y., Cui, Q., Yang, X., Guo, Y., Wei, C., … & Zhang, X. (2019). Transcriptomic and physiological analyses reveal drought adaptation strategies in drought-tolerant and-susceptible watermelon genotypes. Plant Science278 , 32-43.
Li, C., Li, L., Reynolds, M. P., Wang, J., Chang, X., Mao, X., & Jing, R. (2021). Recognizing the hidden half in wheat: Root system attributes associated with drought tolerance. Journal of Experimental Botany , 72 (14), 5117–5133. https://doi.org/10.1093/jxb/erab124
Li, A., Zhu, L., Xu, W., Liu, L., & Teng, G. (2022). Recent advances in methods for in situ root phenotyping. PeerJ10 , e13638.
Liang, C., Wang, W., Wang, J., Ma, J., Li, C., Zhou, F., … & Huang, X. (2017). Identification of differentially expressed genes in sunflower (Helianthus annuus) leaves and roots under drought stress by RNA sequencing. Botanical studies58 (1), 1-11.
Liu, X., Li, R., Chang, X., & Jing, R. (2013). Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. Euphytica , 189 (1), 51–66. https://doi.org/10.1007/s10681-012-0690-4
Liu, Y., Li, P., Xu, G. C., Xiao, L., Ren, Z. P., & Li, Z. B. (2017). Growth, Morphological, and Physiological Responses to Drought Stress in Bothriochloa ischaemum. Frontiers in Plant Science , 8 , 230. https://doi.org/10.3389/fpls.2017.00230
Liu, Q., Luo, L., & Zheng, L. (2018). Lignins: biosynthesis and biological functions in plants. International journal of molecular sciences19 (2), 335.
Liu, J., Hasanuzzaman, M., Wen, H., Zhang, J., Peng, T., Sun, H., & Zhao, Q. (2019). High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma256 (5), 1217-1227.
Lombardi, E., Ferrio, J. P., Rodríguez-Robles, U., Resco de Dios, V., & Voltas, J. (2021). Ground-Penetrating Radar as phenotyping tool for characterizing intraspecific variability in root traits of a widespread conifer. Plant and Soil468 (1), 319-336.
Lorenzo Cimadevila, H., Pérez Gracia, M. D. L. V., Novo, A., & Armesto, J. (2010). Forestry applications of ground-penetrating radar. Forest Systems (formerly: Investigación agraria: sistemas y recursos forestales)19 (1), 5-17.
Lu, Y., Hao, Z., Xie, C., Crossa, J., Araus, J.-L., Gao, S., Vivek, B. S., Magorokosho, C., Mugo, S., Makumbi, D., Taba, S., Pan, G., Li, X., Rong, T., Zhang, S., & Xu, Y. (2011). Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crops Research , 124 (1), 37–45. https://doi.org/10.1016/j.fcr.2011.06.003
Luo, W., Xu, C., Ma, W., Yue, X., Liang, X., Zuo, X., … & Han, X. (2018). Effects of extreme drought on plant nutrient uptake and resorption in rhizomatous vs bunchgrass-dominated grasslands. Oecologia188 (2), 633-643.
Lynch, J. P. (2011). Root Phenes for Enhanced Soil Exploration and Phosphorus Acquisition: Tools for Future Crops. Plant Physiology ,156 (3), 1041–1049. https://doi.org/10.1104/pp.111.175414
Lynch, J. (2013). Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Annals of Botany ,112 . https://doi.org/10.1093/aob/mcs293
Lynch, J. P., Chimungu, J. G., & Brown, K. M. (2014). Root anatomical phenes associated with water acquisition from drying soil: Targets for crop improvement. Journal of Experimental Botany , 65 (21), 6155–6166. https://doi.org/10.1093/jxb/eru162
Ma, Z., Guo, D., Xu, X., Lu, M., Bardgett, R. D., Eissenstat, D. M., McCormack, M. L., & Hedin, L. O. (2018). Evolutionary history resolves global organization of root functional traits. Nature ,555 (7694), 94–97. https://doi.org/10.1038/nature25783
Mace, E. S., Singh, V., Van Oosterom, E. J., Hammer, G. L., Hunt, C. H., & Jordan, D. R. (2012). QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theoretical and Applied Genetics , 124 (1), 97–109. https://doi.org/10.1007/s00122-011-1690-9
Mahmood, T., Iqbal, M. S., Li, H., Nazir, M. F., Khalid, S., Sarfraz, Z., Hu, D., Baojun, C., Geng, X., Tajo, S. M., Dev, W., Iqbal, Z., Zhao, P., Hu, G., & Du, X. (2022). Differential seedling growth and tolerance indices reflect drought tolerance in cotton. BMC Plant Biology ,22 (1), 1–11. https://doi.org/10.1186/s12870-022-03724-4
Mahouachi, J. (2009). Changes in nutrient concentrations and leaf gas exchange parameters in banana plantlets under gradual soil moisture depletion. Scientia Horticulturae , 120 (4), 460–466. https://doi.org/10.1016/j.scienta.2008.12.002
Malamy, J. E., & Benfey, P. N. (1997). Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development124 (1), 33-44.
Manickavelu, A., Nadarajan, N., Ganesh, S. K., Gnanamalar, R. P., & Chandra Babu, R. (2006). Drought tolerance in rice: morphological and molecular genetic consideration. Plant Growth Regulation50 (2), 121-138.
Manske, G. G., & Vlek, P. L. (2002). Root architecture—wheat as a model plant. In Plant Roots  (pp. 410-426). CRC Press.
Mansoor, U., Fatima, S., Hameed, M., Naseer, M., Ahmad, M. S. A., Ashraf, M., Ahmad, F., & Waseem, M. (2019). Structural modifications for drought tolerance in stem and leaves of Cenchrus ciliaris L. ecotypes from the Cholistan Desert. Flora: Morphology, Distribution, Functional Ecology of Plants , 261 , 151485. https://doi.org/10.1016/j.flora.2019.151485
Manzi, Matías, Marta Pitarch-Bielsa, Vicent Arbona, and Aurelio Gómez-Cadenas. 2017. “Leaf Dehydration Is Needed to Induce Abscisic Acid Accumulation in Roots of Citrus Plants.” Environmental and Experimental Botany 139: 116–26. https://www.sciencedirect.com/science/article/pii/S0098847217301089.
Maqbool, S., Hassan, M. A., Xia, X., York, L. M., Rasheed, A., & He, Z. (2022). Root system architecture in cereals: Progress, challenges and perspective. Plant Journal , 110 (1), 23–42. https://doi.org/10.1111/tpj.15669
Marthandan, V., Geetha, R., Kumutha, K., Renganathan, V. G., Karthikeyan, A., & Ramalingam, J. (2020). Seed priming: A feasible strategy to enhance drought tolerance in crop plants.International Journal of Molecular Sciences , 21 (21), 1–23. https://doi.org/10.3390/ijms21218258
Martinez, H. E., de Souza, B. P., Caixeta, E. T., de Carvalho, F. P., & Clemente, J. M. (2020). Water deficit changes nitrate uptake and expression of some nitrogen related genes in coffee-plants (Coffea arabica L.). Scientia Horticulturae267 , 109254.
Metzner, R., van Dusschoten, D., Bühler, J., Schurr, U., & Jahnke, S. (2014). Belowground plant development measured with magnetic resonance imaging (MRI): exploiting the potential for non-invasive trait quantification using sugar beet as a proxy. Frontiers in plant science5 , 469.
Moulia, B., Coutand, C., & Lenne, C. (2006). Posture control and skeletal mechanical acclimation in terrestrial plants: Implications for mechanical modeling of plant architecture. American Journal of Botany , 93 (10), 1477–1489. https://doi.org/10.3732/ajb.93.10.1477
Nadeem, M., Li, J., Yahya, M., Sher, A., Ma, C., Wang, X., & Qiu, L. (2019). Research Progress and Perspective on Drought Stress in Legumes: A Review. International Journal of Molecular Sciences ,20 (10), 2541. https://doi.org/10.3390/ijms20102541
Nonami, Hiroshi. 1998. “Plant Water Relations and Control of Cell Elongation at Low Water Potentials.” Journal of Plant Research111(3): 373–82. https://doi.org/10.1007/BF02507801.
Nosalewicz, A., Siecińska, J., Śmiech, M., Nosalewicz, M., Wiącek, D., Pecio, A., & Wach, D. (2016). Transgenerational effects of temporal drought stress on spring barley morphology and functioning. Environmental and Experimental Botany131 , 120-127.
Ochatt, S. J. (2015). Agroecological impact of an in vitro biotechnology approach of embryo development and seed filling in legumes.Agronomy for Sustainable Development , 35 (2), 535–552. https://doi.org/10.1007/s13593-014-0276-8
Ogura, T., Goeschl, C., Filiault, D., Mirea, M., Slovak, R., Wolhrab, B., Satbhai, S. B., & Busch, W. (2019). Root System Depth in Arabidopsis Is Shaped by EXOCYST70A3 via the Dynamic Modulation of Auxin Transport. Cell , 178 (2), 400-412.e16. https://doi.org/10.1016/j.cell.2019.06.021
Okçu, G., Kaya, M. D., & Atak, M. (2005). Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turkish journal of agriculture and forestry29 (4), 237-242.
Onyemaobi, O., Sangma, H., Garg, G., Wallace, X., Kleven, S., Suwanchaikasem, P., Roessner, U., & Dolferus, R. (2021). Reproductive stage drought tolerance in wheat: Importance of stomatal conductance and plant growth regulators. Genes , 12 (11). https://doi.org/10.3390/genes12111742
Opitz, N., Marcon, C., Paschold, A., Malik, W. A., Lithio, A., Brandt, R., Piepho, H.-P., Nettleton, D., & Hochholdinger, F. (2016). Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit. Journal of Experimental Botany , 67 (4), 1095–1107. https://doi.org/10.1093/jxb/erv453
Osakabe, Y., Arinaga, N., Umezawa, T., Katsura, S., Nagamachi, K., Tanaka, H., … & Yamaguchi-Shinozaki, K. (2013). Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. The Plant Cell25 (2), 609-624.
Pace, P. F., Cralle, H. T., El-Halawany, S. H., Cothren, J. T., & Senseman, S. A. (1999). Drought-induced changes in shoot and root growth of young cotton plants. J. Cotton Sci3 (4), 183-187.
Peng, Y., Lin, W., & Cai, W. (2007). Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance , drought tolerance and cold acclimation ability in transgenic Arabidopsis plants . 729–740. https://doi.org/10.1007/s00425-007-0520-4
Péret, B., Li, G., Zhao, J., Band, L. R., Voß, U., Postaire, O., … & Bennett, M. J. (2012). Auxin regulates aquaporin function to facilitate lateral root emergence. Nature cell biology14 (10), 991-998.
Pflugfelder, D., Kochs, J., Koller, R., Jahnke, S., Mohl, C., Pariyar, S., … & van Dusschoten, D. (2022). The root system architecture of wheat establishing in soil is associated with varying elongation rates of seminal roots: quantification using 4D magnetic resonance imaging. Journal of experimental botany73 (7), 2050-2060.
Pierik, R., & Testerink, C. (2014). The Art of Being Flexible: How to Escape from Shade , Salt , and Drought 1 . 166 (September), 5–22. https://doi.org/10.1104/pp.114.239160
Pockman, W. T., & Sperry, J. S. (2000). Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation.American Journal of Botany , 87 (9), 1287–1299.
Prasad, P. V. V., Pisipati, S. R., Ristic, Z., Bukovnik, U., & Fritz, A. K. (2008). Impact of Nighttime Temperature on Physiology and Growth of Spring Wheat. Crop Science , 48 (6), 2372–2380. https://doi.org/10.2135/cropsci2007.12.0717
Prerostova, S., Dobrev, P. I., Gaudinova, A., Knirsch, V., Körber, N., Pieruschka, R., … & Vankova, R. (2018). Cytokinins: Their impact on molecular and growth responses to drought stress and recovery in Arabidopsis. Frontiers in plant science9 , 655.
Priestley, D. A. (1986). Seed aging: implications for seed storage and persistence in the soil . Comstock Associates.
Pushpavalli, R., Zaman-Allah, M., Turner, N. C., Baddam, R., Rao, M. V., & Vadez, V. (2014). Higher flower and seed number leads to higher yield under water stress conditions imposed during reproduction in chickpea. Functional Plant Biology42 (2), 162-174.
Qi, J., Sun, S., Yang, L., Li, M., Ma, F., & Zou, Y. (2019). Potassium uptake and transport in apple roots under drought stress. Horticultural plant journal5 (1), 10-16.
Qi, F., & Zhang, F. (2020). Cell Cycle Regulation in the Plant Response to Stress. Frontiers in Plant Science , 10 . https://www.frontiersin.org/articles/10.3389/fpls.2019.01765
Quan, R., Shang, M., Zhang, H., Zhao, Y., & Zhang, J. (2004). Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnology Journal2 (6), 477-486.
Raja, V., Qadir, S. U., Alyemeni, M. N., & Ahmad, P. (2020). Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. 3 Biotech , 10 (5), 208. https://doi.org/10.1007/s13205-020-02206-4
Ramachandran, P., Wang, G., Augstein, F., de Vries, J., & Carlsbecker, A. (2018). Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165. Development145 (3), dev159202.
Ranjan, A., Sinha, R., Singla-Pareek, S. L., Pareek, A., & Singh, A. K. (2022). Shaping the root system architecture in plants for adaptation to drought stress. Physiologia Plantarum , 174 (2), e13651. https://doi.org/10.1111/ppl.13651
Rehman, T., Tabassum, B., Yousaf, S., Sarwar, G., & Qaisar, U. (2022). Consequences of drought stress encountered during seedling stage on physiology and yield of cultivated cotton. Frontiers in Plant Science13 .
Rewald, B., Ephrath, J. E., & Rachmilevitch, S. (2011). A root is a root is a root? Water uptake rates of Citrus root orders. Plant, Cell & Environment , 34 (1), 33–42. https://doi.org/10.1111/j.1365-3040.2010.02223.x
Richards, R. A., & Passioura, J. B. (1989). A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments. Australian Journal of Agricultural Research40 (5), 943-950.
Rogers, H. H., & Bottomley, P. A. (1962). In situ nuclear magnetic resonance imaging of roots: influence of soil type, ferromagnetic particle content, and soil water 1. Agronomy Journal79 (6), 957-965.
Robbins, N. E., & Dinneny, J. R. (2018). Growth is required for perception of water availability to pattern root branches in plants.Proceedings of the National Academy of Sciences of the United States of America , 115 (4), E822–E831. https://doi.org/10.1073/pnas.1710709115
Roche, J., Hewezi, T., Bouniols, A., & Gentzbittel, L. (2007). Transcriptional profiles of primary metabolism and signal transduction-related genes in response to water stress in field-grown sunflower genotypes using a thematic cDNA microarray. Planta226 (3), 601-617.
Ronde, J. A., Cress, W. A., Krüger, G. H. J., Strasser, R. J., & Van Staden, J. (2004). Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. Journal of plant physiology161 (11), 1211-1224.
Roohi, E., Tahmasebi Sarvestani, Z., Modarres-Sanavy, S. a. M., & Siosemardeh, A. (2013). Comparative Study on the Effect of Soil Water Stress on Photosynthetic Function of Triticale, Bread Wheat, and Barley.Journal of Agricultural Science and Technology , 15 (2), 215–225.
Rowse, H. R., & Goodman, D. (1981). Axial Resistance to Water Movement in Broad Bean ( Vicia faba ) Roots. Journal of Experimental Botany , 32 (3), 591–598. https://doi.org/10.1093/jxb/32.3.591
Sah, R. P., Chakraborty, M., Prasad, K., Pandit, M., Tudu, V. K., Chakravarty, M. K., Narayan, S. C., Rana, M., & Moharana, D. (2020). Impact of water deficit stress in maize: Phenology and yield components.Scientific Reports , 10 (1), Article 1. https://doi.org/10.1038/s41598-020-59689-7
Samarah, N., Mullen, R., & Cianzio, S. (2004). Size Distribution and Mineral Nutrients of Soybean Seeds in Response to Drought Stress.Journal of Plant Nutrition , 27 (5), 815–835. https://doi.org/10.1081/PLN-120030673
Sandhu, N., Raman, K. A., Torres, R. O., Audebert, A., Dardou, A., Kumar, A., & Henry, A. (2016). Rice Root Architectural Plasticity Traits and Genetic Regions for Adaptability to Variable Cultivation and Stress Conditions. Plant Physiology , 171 (4), 2562–2576. https://doi.org/10.1104/pp.16.00705
Schneider, H. M., Wojciechowski, T., Postma, J. A., Brown, K. M., Lücke, A., Zeisler, V., Schreiber, L., & Lynch, J. P. (2017). Root cortical senescence decreases root respiration, nutrient content and radial water and nutrient transport in barley. Plant, Cell & Environment ,40 (8), 1392–1408. https://doi.org/10.1111/pce.12933
Segal, E., Kushnir, T., Mualem, Y., & Shani, U. (2008). Water uptake and hydraulics of the root hair rhizosphere. Vadose Zone Journal7 (3), 1027-1034.
Segura, F., Vicente, M. J., Franco, J. A., & Martínez-Sánchez, J. J. (2015). Effects of maternal environmental factors on physical dormancy of Astragalus nitidiflorus seeds (Fabaceae), a critically endangered species of SE Spain. Flora - Morphology, Distribution, Functional Ecology of Plants , 216 , 71–76. https://doi.org/10.1016/j.flora.2015.09.001
Seghatoleslami, M. J., Kafi, M., & Majidi, E. (2008). Effect of drought stress at different growth stages on yield and water use efficiency of five proso millet (Panicum miliaceum L.) genotypes. Pak. J. Bot40 (4), 1427-1432.
Sehgal, A., Sita, K., Kumar, J., Kumar, S., Singh, S., Siddique, K. H. M., & Nayyar, H. (2017). Effects of Drought, Heat and Their Interaction on the Growth, Yield and Photosynthetic Function of Lentil (Lens culinaris Medikus) Genotypes Varying in Heat and Drought Sensitivity.Frontiers in Plant Science , 8 , 1776. https://doi.org/10.3389/fpls.2017.01776
Sehgal, A., Sita, K., Siddique, K. H. M., Kumar, R., Bhogireddy, S., Varshney, R. K., HanumanthaRao, B., Nair, R. M., Prasad, P. V. V., & Nayyar, H. (2018). Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in Plant Science ,871 (November), 1–19. https://doi.org/10.3389/fpls.2018.01705
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants , 10 (2), 1–25. https://doi.org/10.3390/plants10020259
Sengupta, D., Kannan, M., & Reddy, A. R. (2011). A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Wilczek. Planta , 233 (6), 1111–1127. https://doi.org/10.1007/s00425-011-1365-4
Serraj, R. (2003). Effects of drought stress on legume symbiotic nitrogen fixation: physiological mechanisms.
Sevanto, S. (2014). Phloem transport and drought. Journal of Experimental Botany , 65 (7), 1751–1759. https://doi.org/10.1093/jxb/ert467
Shan, H., Chen, S., Jiang, J., Chen, F., Chen, Y., Gu, C., … & Yang, X. (2012). Heterologous expression of the chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana. Molecular biotechnology51 (2), 160-173.
Sharma, S.; Carena, M.J. BRACE: A Method for High Throughput Maize Phenotyping of Root Traits for Short-Season Drought Tolerance. Crop Sci.2016 , 56, 2996–3004. [CrossRef]
Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., Handa, N., Kapoor, D., Bhardwaj, R., & Zheng, B. (2019). Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress.Biomolecules , 9 (7), Article 7. https://doi.org/10.3390/biom9070285
Sharma, N. K., Gupta, S. K., Dwivedi, V., & Chattopadhyay, D. (2020). Lignin deposition in chickpea root xylem under drought. Plant Signaling & Behavior15 (6), 1754621.
Sheoran, S., Kaur, Y., Kumar, S., Shukla, S., Rakshit, S., & Kumar, R. (2022). Recent Advances for Drought Stress Tolerance in Maize (Zea mays L.): Present Status and Future Prospects. Frontiers in Plant Science , 13 , 872566. https://doi.org/10.3389/fpls.2022.872566
Shinozaki, Kazuo, and Kazuko Yamaguchi-Shinozaki. 2007. “Gene Networks Involved in Drought Stress Response and Tolerance.” Journal of Experimental Botany 58(2): 221–27. https://doi.org/10.1093/jxb/erl164.
Singh, V., van Oosterom, E. J., Jordan, D. R., Messina, C. D., Cooper, M., & Hammer, G. L. (2010). Morphological and architectural development of root systems in sorghum and maize. Plant and Soil ,333 (1–2), 287–299. https://doi.org/10.1007/s11104-010-0343-0
Singh, B., Norvell, E., Wijewardana, C., Wallace, T., Chastain, D., & Reddy, K. R. (2018). Assessing morphological characteristics of elite cotton lines from different breeding programmes for low temperature and drought tolerance. Journal of Agronomy and Crop Science ,204 (5), 467–476. https://doi.org/10.1111/jac.12276
Sita, K., Sehgal, A., Kumar, J., Kumar, S., Singh, S., Siddique, K. H. M., & Nayyar, H. (2017). Identification of High-Temperature Tolerant Lentil (Lens culinaris Medik.) Genotypes through Leaf and Pollen Traits.Frontiers in Plant Science , 8 , 744. https://doi.org/10.3389/fpls.2017.00744
Smiciklas, K. d., Mullen, R. e., Carlson, R. e., & Knapp, A. d. (1992). Soybean Seed Quality Response to Drought Stress and Pod Position.Agronomy Journal , 84 (2), 166–170. https://doi.org/10.2134/agronj1992.00021962008400020008x
Smit, A. L., George, E., & Groenwold, J. (2000). Root observations and measurements at (transparent) interfaces with soil. In Root methods  (pp. 235-271). Springer, Berlin, Heidelberg.
Smith, S., & De Smet, I. (2012). Root system architecture: Insights from Arabidopsis and cereal crops. Philosophical Transactions of the Royal Society B: Biological Sciences ,367 (1595), 1441–1452. https://doi.org/10.1098/rstb.2011.0234
Sperry, J. S., & Saliendra, N. Z. (1994). Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant, Cell & Environment , 17 (11), 1233–1241. https://doi.org/10.1111/j.1365-3040.1994.tb02021.x
Sperry, J., Stiller, V., & Hacke, U. (2003). Xylem Hydraulics and the Soil–Plant–Atmosphere Continuum. Agronomy Journal - AGRON J ,95 . https://doi.org/10.2134/agronj2003.1362
Sperry, J. (2011). Hydraulics of Vascular Water Transport (Vol. 9, pp. 303–327). https://doi.org/10.1007/978-3-642-19091-9_12
Srayeddin, I., & Doussan, C. (2009). Estimation of the spatial variability of root water uptake of maize and sorghum at the field scale by electrical resistivity tomography. Plant and soil319 (1), 185-207.
Sun, L., Song, L., Zhang, Y., Zheng, Z., & Liu, D. (2016). Arabidopsis PHL2 and PHR1 Act Redundantly as the Key Components of the Central Regulatory System Controlling Transcriptional Responses to Phosphate Starvation. Plant Physiology , 170 (1), 499–514. https://doi.org/10.1104/pp.15.01336
Suseela, V., Tharayil, N., Orr, G., & Hu, D. (2020). Chemical plasticity in the fine root construct of Quercus spp. Varies with root order and drought. New Phytologist , 228 (6), 1835–1851. https://doi.org/10.1111/nph.16841
Suzuki, N., Taketa, S., & Ichii, M. (2003). Morphological and physiological characteristics of a root-hairless mutant in rice (Oryza sativa L.). Plant and Soil , 255 (1), 9–17.
Swarup, R., Kramer, E. M., Perry, P., Knox, K., Leyser, H. M. O., Haseloff, J., Beemster, G. T. S., Bhalerao, R., & Bennett, M. J. (2005). Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nature Cell Biology , 7 (11), 1057–1065. https://doi.org/10.1038/ncb1316
Takahashi, F., Suzuki, T., Osakabe, Y., Betsuyaku, S., Kondo, Y., Dohmae, N., Fukuda, H., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2018). A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature , 556 (7700), 235–238. https://doi.org/10.1038/s41586-018-0009-2
Takahashi, F., & Shinozaki, K. (2019). Long-distance signaling in plant stress response. Current opinion in plant biology47 , 106-111.
Takahashi, F., Kuromori, T., Urano, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2020). Drought stress responses and resistance in plants: From cellular responses to long-distance intercellular communication. Frontiers in plant science11 , 556972.
Tanaka-Takada, N., Kobayashi, A., Takahashi, H., Kamiya, T., Kinoshita, T., & Maeshima, M. (2019). Plasma membrane-associated Ca2+-binding protein PCaP1 is involved in root hydrotropism of Arabidopsis thaliana. Plant and Cell Physiology60 (6), 1331-1341.
Tardieu, F., Simonneau, T., & Muller, B. (2018). The Physiological Basis of Drought Tolerance in Crop Plants: A Scenario-Dependent Probabilistic Approach. Annual Review of Plant Biology ,69 , 733–759. https://doi.org/10.1146/annurev-arplant-042817-040218
Tariq, A., Pan, K., Olatunji, O. A., Graciano, C., Li, Z., Sun, F., Sun, X., Song, D., Chen, W., Zhang, A., Wu, X., Zhang, L., Mingrui, D., Xiong, Q., & Liu, C. (2017). Phosphorous Application Improves Drought Tolerance of Phoebe zhennan. Frontiers in Plant Science ,8 . https://www.frontiersin.org/articles/10.3389/fpls.2017.01561
Thakur, P., Kumar, S., Malik, J. A., Berger, J. D., & Nayyar, H. (2010). Cold stress effects on reproductive development in grain crops: An overview. Environmental and Experimental Botany , 67 (3), 429–443. https://doi.org/10.1016/j.envexpbot.2009.09.004
Tiwari, P., Srivastava, D., Chauhan, A. S., Indoliya, Y., Singh, P. K., Tiwari, S., Fatima, T., Mishra, S. K., Dwivedi, S., Agarwal, L., Singh, P. C., Asif, M. H., Tripathi, R. D., Shirke, P. A., Chakrabarty, D., Chauhan, P. S., & Nautiyal, C. S. (2021). Root system architecture, physiological analysis and dynamic transcriptomics unravel the drought-responsive traits in rice genotypes. Ecotoxicology and Environmental Safety , 207 , 111252. https://doi.org/10.1016/j.ecoenv.2020.111252
Tran, T. T., Kano-Nakata, M., Takeda, M., Menge, D., Mitsuya, S., Inukai, Y., & Yamauchi, A. (2014). Nitrogen application enhanced the expression of developmental plasticity of root systems triggered by mild drought stress in rice. Plant and Soil , 378 (1), 139–152. https://doi.org/10.1007/s11104-013-2013-5
Turner, I. M. (1994). Sclerophylly: Primarily protective?Functional Ecology , 8 , 669–675.
Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., Inukai, Y., Ono, K., Kanno, N., Inoue, H., Takehisa, H., Motoyama, R., Nagamura, Y., Wu, J., Matsumoto, T., Takai, T., Okuno, K., & Yano, M. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics , 45 (9), Article 9. https://doi.org/10.1038/ng.2725
Ullah, A., Tian, Z., Xu, L., Abid, M., Lei, K., Khanzada, A., Zeeshan, M., Sun, C., Yu, J., & Dai, T. (2022). Improving the effects of drought priming against post-anthesis drought stress in wheat (Triticum aestivum L.) using nitrogen. Frontiers in Plant Science ,13 (August), 1–17. https://doi.org/10.3389/fpls.2022.965996
Varshney, R. K., Barmukh, R., Roorkiwal, M., Qi, Y., Kholova, J., Tuberosa, R., Reynolds, M. P., Tardieu, F., & Siddique, K. H. M. (2021). Breeding custom‐designed crops for improved drought adaptation.Advanced Genetics , 2 (3), 1–15. https://doi.org/10.1002/ggn2.202100017
Vejchasarn, P., Lynch, J. P., & Brown, K. M. (2016). Genetic Variability in Phosphorus Responses of Rice Root Phenotypes.Rice , 9 (1), 29. https://doi.org/10.1186/s12284-016-0102-9
Vendramini, F., Díaz, S., Gurvich, D. E., Wilson, P. J., Thompson, K., & Hodgson, J. G. (2002). Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytologist ,154 (1), 147–157. https://doi.org/10.1046/j.1469-8137.2002.00357.x
Venugopalan, V. K., Nath, R., Sengupta, K., Nalia, A., Banerjee, S., Chandran, M. A. S., Ibrahimova, U., Dessoky, E. S., Attia, A. O., Hassan, M. M., & Hossain, A. (2021). The Response of Lentil (Lens culinaris Medik.) to Soil Moisture and Heat Stress Under Different Dates of Sowing and Foliar Application of Micronutrients. Frontiers in Plant Science , 12 , 679469. https://doi.org/10.3389/fpls.2021.679469
Vierstra, Richard D. 2009. “The Ubiquitin–26S Proteasome System at the Nexus of Plant Biology.” Nature Reviews Molecular Cell Biology10(6): 385–97. https://doi.org/10.1038/nrm2688.
Vivek, B. S., Krishna, G. K., Vengadessan, V., Babu, R., Zaidi, P. H., Kha, L. Q., Mandal, S. S., Grudloyma, P., Takalkar, S., Krothapalli, K., Singh, I. S., Ocampo, E. T. M., Xingming, F., Burgueño, J., Azrai, M., Singh, R. P., & Crossa, J. (2017). Use of Genomic Estimated Breeding Values Results in Rapid Genetic Gains for Drought Tolerance in Maize.The Plant Genome , 10 (1). https://doi.org/10.3835/plantgenome2016.07.0070
Wang, X., Vignjevic, M., Jiang, D., Jacobsen, S., & Wollenweber, B. (2014). Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett.Journal of Experimental Botany , 65 (22), 6441–6456. https://doi.org/10.1093/jxb/eru362
Wang, X., Vignjevic, M., Liu, F., Jacobsen, S., Jiang, D., & Wollenweber, B. (2015). Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat. Plant Growth Regulation , 75 (3), 677–687. https://doi.org/10.1007/s10725-014-9969-x
Wang, L. Q., Li, Z., Wen, S. S., Wang, J. N., Zhao, S. T., & Lu, M. Z. (2020). WUSCHEL-related homeobox gene PagWOX11/12a responds to drought stress by enhancing root elongation and biomass growth in poplar. Journal of Experimental Botany71 (4), 1503-1513.
Wasaya, A., Zhang, X., Fang, Q., & Yan, Z. (2018). Root Phenotyping for Drought Tolerance: A Review . 1–19. https://doi.org/10.3390/agronomy8110241
Wasson, A. P., Richards, R. A., Chatrath, R., Misra, S. C., Prasad, S. V. S., Rebetzke, G. J., Kirkegaard, J. A., Christopher, J., & Watt, M. (2012). Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany , 63 (9), 3485–3498. https://doi.org/10.1093/jxb/ers111
Weinhold, L. Histogenetische Studien zum Grenzwurzelproblem. Beitr. Biol. Pfl. 1967 , 43, 367–454.
Wery, J et al. 1993. “Screening Techniques and Sources of Tolerance to Extremes of Moisture and Air Temperature in Cool Season Food Legumes.”Euphytica 73(1): 73–83. https://doi.org/10.1007/BF00027184.
Wu, Y., Guo, L., Cui, X., Chen, J., Cao, X., & Lin, H. (2014). Ground-penetrating radar-based automatic reconstruction of three-dimensional coarse root system architecture. Plant and soil383 (1), 155-172.
Xu, C., Fu, X., Liu, R., Guo, L., Ran, L., Li, C., … & Luo, K. (2017). PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. Tree physiology37 (12), 1713-1726.
Xu, Q., Chen, S., Yunjuan, R., Chen, S., & Liesche, J. (2018). Regulation of Sucrose Transporters and Phloem Loading in Response to Environmental Cues. Plant Physiology , 176 (1), 930–945. https://doi.org/10.1104/pp.17.01088
Xu, W., Tang, W., Wang, C., Ge, L., Sun, J., Qi, X., … & Chen, M. (2020). SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway. Frontiers in plant science11 , 785.
Xue, L.-J., Frost, C. J., Tsai, C.-J., & Harding, S. A. (2016). Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression. Scientific Reports , 6 (1), Article 1. https://doi.org/10.1038/srep33655
Yadav, G. S., Devi, A. G., Das, A., Kandpal, B., Babu, S., Das, R. C., & Nath, M. (2019). Foliar application of urea and potassium chloride minimizes terminal moisture stress in lentil (Lens culinaris L.) crop.LEGUME RESEARCH-AN INTERNATIONAL JOURNAL , of . https://doi.org/10.18805/LR-4148
Yang, J. C., Zhang, J. H., Wang, Z. Q., Zhu, Q. S., & Liu, L. J. (2003). Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant, Cell & Environment , 26 (10), 1621–1631. https://doi.org/10.1046/j.1365-3040.2003.01081.x
Yang, J., & Zhang, J. (2006). Grain filling of cereals under soil drying. New Phytologist , 169 (2), 223–236. https://doi.org/10.1111/j.1469-8137.2005.01597.x
Yang, X., Li, Y., Ren, B., Ding, L., Gao, C., Shen, Q., & Guo, S. (2012). Drought-induced root aerenchyma formation restricts water uptake in rice seedlings supplied with nitrate. Plant & Cell Physiology , 53 (3), 495–504. https://doi.org/10.1093/pcp/pcs003
Yang, Y., Guo, Y., Zhong, J., Zhang, T., Li, D., Ba, T., Xu, T., Chang, L., Zhang, Q., & Sun, M. (2020). Root Physiological Traits and Transcriptome Analyses Reveal that Root Zone Water Retention Confers Drought Tolerance to Opisthopappus taihangensis. Scientific Reports , 10 (1), 2627. https://doi.org/10.1038/s41598-020-59399-0
Yavas, I., & Unay, A. (2016). Effects of zinc and salicylic acid on wheat under drought stress. Journal of Animal and Plant Sciences ,26 (4), 1012–1018.
Ye, H., Roorkiwal, M., Valliyodan, B., Zhou, L., Chen, P., Varshney, R. K., & Nguyen, H. T. (2018). Genetic diversity of root system architecture in response to drought stress in grain legumes.Journal of Experimental Botany , 69 (13), 3267–3277. https://doi.org/10.1093/jxb/ery082
Yu, X.-C., Zhu, S.-Y., Gao, G.-F., Wang, X.-J., Zhao, R., Zou, K.-Q., Wang, X.-F., Zhang, X.-Y., Wu, F.-Q., Peng, C.-C., & Zhang, D.-P. (2007). Expression of a grape calcium-dependent protein kinase ACPK1 in Arabidopsis thaliana promotes plant growth and confers abscisic acid-hypersensitivity in germination, postgermination growth, and stomatal movement. Plant Molecular Biology , 64 (5), 531–538. https://doi.org/10.1007/s11103-007-9172-9
Yu, P., Gutjahr, C., Li, C., & Hochholdinger, F. (2016). Genetic control of lateral root formation in cereals. Trends in plant science21 (11), 951-961.
Zare, M., Nejad, M. G., & Bazrafshan, F. (2012). Influence of drought stress on some traits in five mung bean (Vigna radiata (L.) R. Wilczek) genotypes. International Journal of Agronomy and Plant Production3 (7), 234-240.
Zeid, I. M., & Shedeed, Z. A. (2006). Response of alfalfa to putrescine treatment under drought stress. Biologia plantarum50 (4), 635-640.
Zhang, G. H., Su, Q., An, L. J., & Wu, S. (2008). Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiology and Biochemistry46 (2), 117-126.
Zhang, X., Derival, M., Albrecht, U., & Ampatzidis, Y. (2019). Evaluation of a ground penetrating radar to map the root architecture of HLB-infected citrus trees. Agronomy9 (7), 354.
Zhang, Q., Yuan, W., Wang, Q., Cao, Y., Xu, F., Dodd, I. C., & Xu, W. (2022). ABA regulation of root growth during soil drying and recovery can involve auxin response. Plant, Cell & Environment45 (3), 871-883.
Zhao, P., Hou, S., Guo, X., Jia, J., Yang, W., Liu, Z., … & Cheng, L. (2019). A MYB-related transcription factor from sheepgrass, LcMYB2, promotes seed germination and root growth under drought stress. BMC plant biology19 (1), 1-15.
Zhou, G., Zhou, X., Zhou, L., Shao, J., Fu, Y., Nie, Y., Hosseini, S., Cheng, W., Wang, J., & Hu, F. (2018). Drought ‐ induced changes in root biomass largely result from altered root morphological traits: Evidence from a synthesis of global field trials . October 2017 , 2589–2599. https://doi.org/10.1111/pce.13356
Zhu, Jian-Kang. 2002. “SALT AND DROUGHT STRESS SIGNAL TRANSDUCTION IN PLANTS.” Annual Review of Plant Biology 53(1): 247–73. https://doi.org/10.1146/annurev.arplant.53.091401.143329.
Zhu, J., Kaeppler, S. M., & Lynch, J. P. (2005). Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theoretical and Applied Genetics111 (4), 688-695.
Zhu, J., Brown, K. M., & Lynch, J. P. (2010). Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant, Cell & Environment , 33 (5), 740–749. https://doi.org/10.1111/j.1365-3040.2009.02099.x