References
[1] K. L. Dias-Teixeira, R. M. Pereira, J. S. Silva, N. Fasel, B. H.
Aktas, and U. G. Lopes, “Unveiling the role of the integrated
endoplasmic reticulum stress response in Leishmania infection - future
perspectives,” Front. Immunol. , vol. 7, no. JUL, pp. 6–9, 2016,
doi: 10.3389/fimmu.2016.00283.
[2] L. Galluzzi, A. Diotallevi, and M. Magnani, “Endoplasmic
reticulum stress and unfolded protein response in infection by
intracellular parasites,” Futur. Sci. OA , vol. 3, no. 3, 2017,
doi: 10.4155/fsoa-2017-0020.
[3] C. Hetz, F. Martinon, D. Rodriguez, and L. H. Glimcher, “The
unfolded protein response: Integrating stress signals through the stress
sensor IRE1 α,” Physiol. Rev. , vol. 91, no. 4, pp. 1219–1243,
2011, doi: 10.1152/physrev.00001.2011.
[4] J. Jung, M. Michalak, and L. B. Agellon, “Endoplasmic reticulum
malfunction in the nervous system,” Front. Neurosci. , vol. 11,
no. APR, pp. 1–7, 2017, doi: 10.3389/fnins.2017.00220.
[5] B. M. Gardner, D. Pincus, K. Gotthardt, C. M. Gallagher, and P.
Walter, “Endoplasmic reticulum stress sensing in the unfolded protein
response,” Cold Spring Harb. Perspect. Biol. , vol. 5, no. 3,
2013, doi: 10.1101/cshperspect.a013169.
[6] J. Gong et al. , “Molecular signal networks and
regulating mechanisms of the unfolded protein response,” J.
Zhejiang Univ. Sci. B , vol. 18, no. 1, pp. 1–14, 2017, doi:
10.1631/jzus.B1600043.
[7] L. Galluzzi et al. , “Leishmania infantum induces mild
unfolded protein response in infected macrophages,” PLoS One ,
vol. 11, no. 12, pp. 1–19, 2016, doi: 10.1371/journal.pone.0168339.
[8] L. Galluzzi, A. Diotallevi, and M. Magnani, “Endoplasmic
reticulum stress and unfolded protein response in infection by
intracellular parasites,” Futur. Sci. OA , vol. 3, no. 3, p.
FSO198, Aug. 2017, doi: 10.4155/fsoa-2017-0020.
[9] M. J. Grey et al. , “IRE1β negatively regulates IRE1α
signaling in response to endoplasmic reticulum stress,” J. Cell
Biol. , vol. 219, no. 2, 2020, doi: 10.1083/jcb.201904048.
[10] M. Calfon et al. , “IRE1 couples endoplasmic reticulum
load to secretory capacity by processing the XBP-1 mRNA,”Nature , vol. 415, no. 6867, pp. 92–96, 2002, doi:
10.1038/415092a.
[11] G. E. Karagöz, D. Acosta-Alvear, H. T. Nguyen, C. P. Lee, F.
Chu, and P. Walter, “An unfolded protein-induced conformational switch
activates mammalian IRE1,” Elife , vol. 6, pp. 1–29, 2017, doi:
10.7554/eLife.30700.
[12] M. Schröder, Endoplasmic reticulum stress responses ,
vol. 65, no. 6. 2008.
[13] K. Abhishek et al. , “Leishmania donovani induced
Unfolded Protein Response delays host cell apoptosis in PERK dependent
manner,” PLoS Negl. Trop. Dis. , vol. 12, no. 7, pp. 1–22, 2018,
doi: 10.1371/journal.pntd.0006646.
[14] R. Bravo et al. , Endoplasmic Reticulum and the
Unfolded Protein Response. Dynamics and Metabolic Integration. , vol.
301. 2013.
[15] D. J. Thuerauf, M. Marcinko, P. J. Belmont, and C. C.
Glembotski, “Effects of the isoform-specific characteristics of ATF6α
and ATF6β on endoplasmic reticulum stress response gene expression and
cell viability,” J. Biol. Chem. , vol. 282, no. 31, pp.
22865–22878, 2007, doi: 10.1074/jbc.M701213200.
[16] K. Haze et al. , “Identification of the G13
(cAMP-response-element-binding protein-related protein) gene product
related to activating transcription factor 6 as a transcriptional
activator of the mammalian unfolded protein response,” 2001.
[17] J. Ye et al. , “ER stress induces cleavage of
membrane-bound ATF6 by the same proteases that process SREBPs,”Mol. Cell , vol. 6, no. 6, pp. 1355–1364, 2000, doi:
10.1016/S1097-2765(00)00133-7.
[18] Y. Wang, J. Shen, N. Arenzana, W. Tirasophon, R. J. Kaufman,
and R. Prywes, “Activation of ATF6 and an ATF6 DNA Binding Site by the
Endoplasmic Reticulum Stress Response,” J. Biol. Chem. , vol.
275, no. 35, pp. 27013–27020, 2000, doi: 10.1016/s0021-9258(19)61473-0.
[19] H. Yoshida et al. , “ ATF6 Activated by Proteolysis
Binds in the Presence of NF-Y (CBF) Directly to the cis -Acting Element
Responsible for the Mammalian Unfolded Protein Response ,” Mol.
Cell. Biol. , vol. 20, no. 18, pp. 6755–6767, 2000, doi:
10.1128/mcb.20.18.6755-6767.2000.
[20] H. Yoshida, T. Matsui, A. Yamamoto, T. Okada, and K. Mori,
“XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER
stress to produce a highly active transcription factor,” Cell ,
vol. 107, no. 7, pp. 881–891, 2001, doi: 10.1016/S0092-8674(01)00611-0.
[21] K. Yamamoto et al. , “Transcriptional Induction of
Mammalian ER Quality Control Proteins Is Mediated by Single or Combined
Action of ATF6α and XBP1,” Dev. Cell , vol. 13, no. 3, pp.
365–376, 2007, doi: 10.1016/j.devcel.2007.07.018.
[22] H. Yoshida, M. Oku, M. Suzuki, and K. Mori, “pXBP1(U) encoded
in XBP1 pre-mRNA negatively regulates unfolded protein response
activator pXBP1(S) in mammalian ER stress response,” J. Cell
Biol. , vol. 172, no. 4, pp. 565–575, 2006, doi: 10.1083/jcb.200508145.
[23] B. Tirosh, N. N. Iwakoshi, L. H. Glimcher, and H. L. Ploegh,
“Rapid turnover of unspliced Xbp-1 as a factor that modulates the
unfolded protein response,” J. Biol. Chem. , vol. 281, no. 9, pp.
5852–5860, 2006, doi: 10.1074/jbc.M509061200.
[24] H. Yoshida, A. Uemura, and K. Mori, “pXBP1(U), a negative
regulator of the unfolded protein response activator pXBP1(S), targets
ATF6 but not ATF4 in proteasome-mediated degradation,” Cell
Struct. Funct. , vol. 34, no. 1, pp. 1–10, 2009, doi:
10.1247/csf.06028.
[25] A. Tsuru, Y. Imai, M. Saito, and K. Kohno, “Novel mechanism of
enhancing IRE1α-XBP1 signalling via the PERK-ATF4 pathway,” Sci.
Rep. , vol. 6, pp. 1–8, 2016, doi: 10.1038/srep24217.
[26] J. H. Lee et al. , “The transcription factor cyclic
AMP-responsive element-binding protein H regulates triglyceride
metabolism,” Nat. Med. , vol. 17, no. 7, pp. 812–815, 2011, doi:
10.1038/nm.2347.
[27] S. Fu, S. M. Watkins, and G. S. Hotamisligil, “The role of
endoplasmic reticulum in hepatic lipid homeostasis and stress
signaling,” Cell Metab. , vol. 15, no. 5, pp. 623–634, 2012,
doi: 10.1016/j.cmet.2012.03.007.
[28] M. Prudêncio, A. Rodriguez, and M. M. Mota, “The silent path
to thousands of merozoites: The Plasmodium liver stage,” Nat.
Rev. Microbiol. , vol. 4, no. 11, pp. 849–856, 2006, doi:
10.1038/nrmicro1529.
[29] S. S. Albuquerque et al. , “Host cell transcriptional
profiling during malaria liver stage infection reveals a coordinated and
sequential set of biological events,” BMC Genomics , vol. 10,
2009, doi: 10.1186/1471-2164-10-270.
[30] P. Inácio et al. , “ Parasite‐induced ER stress response
in hepatocytes facilitates Plasmodium liver stage infection ,”EMBO Rep. , vol. 16, no. 8, pp. 955–964, 2015, doi:
10.15252/embr.201439979.
[31] S. S. Anand and P. P. Babu, “Endoplasmic reticulum stress and
neurodegeneration in experimental cerebral malaria,”NeuroSignals , vol. 21, no. 1–2, pp. 99–111, 2013, doi:
10.1159/000336970.
[32] J. Zhou et al. , “Toxoplasma gondii prevalent in China
induce weaker apoptosis of neural stem cells C17.2 via endoplasmic
reticulum stress (ERS) signaling pathways,” Parasites and
Vectors , vol. 8, no. 1, pp. 1–10, 2015, doi:
10.1186/s13071-015-0670-3.
[33] M. Yamamoto et al. , “ATF6β is a host cellular target of
the Toxoplasma gondii virulence factor ROP18,” J. Exp. Med. ,
vol. 208, no. 7, pp. 1533–1546, 2011, doi: 10.1084/jem.20101660.
[34] T. Wang et al. , “Toxoplasma gondii induce apoptosis of
neural stem cells via endoplasmic reticulum stress pathway,”Parasitology , vol. 141, no. 7, pp. 988–995, 2014, doi:
10.1017/S0031182014000183.
[35] L. Augusto et al. , “Toxoplasma gondii co-opts the
unfolded protein response to enhance migration and dissemination of
infected host cells,” MBio , vol. 11, no. 4, pp. 1–13, 2020,
doi: 10.1128/mBio.00915-20.
[36] T. Cook et al. , “Divergent polyamine metabolism in the
Apicomplexa,” Microbiology , vol. 153, no. 4, pp. 1123–1130,
2007, doi: 10.1099/mic.0.2006/001768-0.
[37] M. Morada, L. Pendyala, G. Wu, S. Merali, and N. Yarlett,
“Cryptosporidium parvum induces an endoplasmic stress response in the
intestinal adenocarcinoma HCT-8 cell line,” J. Biol. Chem. , vol.
288, no. 42, pp. 30356–30364, 2013, doi: 10.1074/jbc.M113.459735.
[38] P. J. Hotez, D. H. Molyneux, A. Fenwick, E. Ottesen, S. E.
Sachs, and J. D. Sachs, “Incorporating a rapid-impact package for
neglected tropical diseases with programs for HIV/AIDS, tuberculosis,
and malaria: A comprehensive pro-poor health policy and strategy for the
developing world,” PLoS Med. , vol. 3, no. 5, pp. 576–584, 2006,
doi: 10.1371/journal.pmed.0030102.
[39] J. Alvar et al. , “Leishmaniasis worldwide and global
estimates of its incidence,” PLoS One , vol. 7, no. 5, 2012, doi:
10.1371/journal.pone.0035671.
[40] D. Steverding, “The history of leishmaniasis,”Parasites and Vectors , vol. 10, no. 1, pp. 1–10, 2017, doi:
10.1186/s13071-017-2028-5.
[41] B. L. Herwaldt, “Leishmaniasis,” Lancet , vol. 354, pp.
1191–1199, 1999.
[42] S. Verma et al. , “Leishmania donovani inhibitor of
serine peptidases 2 mediated inhibition of lectin pathway and
upregulation of C5aR signaling promote parasite survival inside host,”Front. Immunol. , vol. 9, no. JAN, 2018, doi:
10.3389/fimmu.2018.00063.
[43] S. Giri and C. Shaha, “Leishmania donovani parasite requires
Atg8 protein for infectivity and survival under stress,” Cell
Death Dis. , vol. 10, no. 11, 2019, doi: 10.1038/s41419-019-2038-7.
[44] M. Olivier, D. J. Gregory, and G. Forget, “Subversion
mechanisms by which Leishmania parasites can escape the host immune
response: A signaling point of view,” Clin. Microbiol. Rev. ,
vol. 18, no. 2, pp. 293–305, 2005, doi: 10.1128/CMR.18.2.293-305.2005.
[45] M. Podinovskaia and A. Descoteaux, “Leishmania and the
macrophage: A multifaceted interaction,” Future Microbiol. , vol.
10, no. 1, pp. 111–129, 2015, doi: 10.2217/fmb.14.103.
[46] S. Nylén and L. Eidsmo, “Tissue damage and immunity in
cutaneous leishmaniasis,” Parasite Immunol. , vol. 34, no. 12,
pp. 551–561, 2012, doi: 10.1111/pim.12007.
[47] K. L. Dias-Teixeira et al. , “The integrated endoplasmic
reticulum stress response in Leishmania amazonensis macrophage
infection: The role of X-box binding protein 1 transcription factor,”FASEB J. , vol. 30, no. 4, pp. 1557–1565, 2016, doi:
10.1096/fj.15-281550.
[48] K. L. Dias-Teixeira et al. , “Emerging Role for the
PERK/eIF2α/ATF4 in Human Cutaneous Leishmaniasis,” Sci. Rep. ,
vol. 7, no. 1, pp. 1–11, 2017, doi: 10.1038/s41598-017-17252-x.
[49] Á. Carvalho Vivarini et al. , “ Human cutaneous
leishmaniasis: interferon‐dependent expression of double‐stranded
RNA‐dependent protein kinase (PKR) via TLR2 ,” FASEB J. , vol.
25, no. 12, pp. 4162–4173, 2011, doi: 10.1096/fj.11-185165.
[50] N. F. Luz et al. , “ Heme Oxygenase-1 Promotes the
Persistence of Leishmania chagasi Infection ,” J. Immunol. , vol.
188, no. 9, pp. 4460–4467, 2012, doi: 10.4049/jimmunol.1103072.
[51] B. Mollereau, S. Manié, and F. Napoletano, “Getting the better
of ER stress,” J. Cell Commun. Signal. , vol. 8, no. 4, pp.
311–321, 2014, doi: 10.1007/s12079-014-0251-9.
[52] G. Mercado, P. Valdés, and C. Hetz, “An ERcentric view of
Parkinson’s disease,” Trends Mol. Med. , vol. 19, no. 3, pp.
165–175, 2013, doi: 10.1016/j.molmed.2012.12.005.
[53] B. Mollereau, “Establishing Links between Endoplasmic
Reticulum-Mediated Hormesis and Cancer,” Mol. Cell. Biol. , vol.
33, no. 12, pp. 2372–2374, 2013, doi: 10.1128/mcb.00315-13.