References
1. Ghazi ZM, Rizvi SWF, Shahid WM, Abdulhameed AM, Saleem H, Zaidi SJ. An overview of water desalination systems integrated with renewable energy sources. Desalination 2022; 542: 116063.
2. He F, Wu XC, Gao J, Wang ZX. Solar-driven interfacial evaporation toward clean water production: burgeoning materials, concepts and technologies. J Mater Chem A 2021; 9: 27121-27139.
3. Ahmed FE, Hashaikeh R, Hilal N. Solar powered desalination–Technology, energy and future outlook. Desalination 2019; 453: 54-76.
4. Wang YC, Sun XY, Tao SY. Rational 3D Coiled Morphology for Efficient Solar-Driven Desalination. Environ Sci Technol 2020; 54 (24): 16240-16248.
5. Gao MM, Peh CK, Meng FL, Ho GW. Photothermal Membrane Distillation toward Solar Water Production. Small Methods 2021; 5 (5): 2001200.
6. Wang YD, Hu JQ, Yu L, Wu X, Zhang YY, Xu HL. Recent strategies for constructing efficient interfacial solar evaporation systems. Nano Res Energy 2023; 1: 1-19.
7. Tao P, Ni G, Song CY, et al. Solar-driven interfacial evaporation. Nat Energy 2018; 3: 1031-1041.
8. Chen GY, Sun JM, Peng Q, Sun Q, et al. Tang B. Z. Biradical-Featured Stable Organic-Small-Molecule Photothermal Materials for Highly Efficient Solar-Driven Water Evaporation. Adv Mater 2020; 32 (29): 1908537.
9. Mascaretti L, Schirato A, Zbořil R, et al. Solar steam generation on scalable ultrathin thermoplasmonic TiN nanocavity arrays. Nano Energy 2021; 83: 105828.
10. Bu YM, Zhou YH, Lei WW, et al. A bioinspired 3D solar evaporator with balanced water supply and evaporation for highly efficient photothermal steam generation. J Mater Chem A 2022; 10: 2856-2866.
11. Chen ZC, Li Q, Chen XM. Porous Graphene/Polyimide Membrane with a Three-Dimensional Architecture for Rapid and Efficient Solar Desalination via Interfacial Evaporation. ACS Sustainable Chen Eng 2020; 8 (36): 13850-13858.
12. He MT, Dai HY, Liu HJ, et al. High-Performance Solar Steam Generator Based on Polypyrrole-Coated Fabric via 3D Macro-and Microstructure Design. ACS Appl Mater Interfaces 2021; 13 (34): 40664-40672.
13. Zhang XY, Ren LP, Xu J, Shang B, Liu X, Xu WL. Magnetically Driven Tunable 3D Structured Fe3O4 Vertical Array for High-Performance Solar Steam Generation. Small 2022; 18 (5): 2105198.
14. Wang YC, Wang CZ, Song XJ, Megarajan SK, Jiang HQ. A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation. J Mater Chem A 2018; 6: 963-971.
15. Yin, Z, Wang HM, Jian MQ, et al. Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation. ACS Appl Mater Interfaces 2017; 9 (34): 28596-28603.
16. Zhou, L, Tan, YL, Ji, DX, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci Adv 2016; 2 (4): 1501227.
17. Qiu PX, Liu FL, Xu CM, et al. Porous three-dimensional carbon foams with interconnected microchannels for high-efficiency solar-to-vapor conversion and desalination. J Mater Chem A 2019; 7: 13036-13042.
18. Yao HZ, Zhang PP, Yang C, et al. Cheng H. Janus-interface engineering boosting solar steam towards high-efficiency water collection. Energy Environ Sci 2021; 14: 5330-5338.
19. Ai S, Ma M, Chen YZ, Gao XH, Liu G. Metal-ceramic carbide integrated solar-driven evaporation device based on ZrC nanoparticles for water evaporation and desalination. Chem Eng J 2022; 429: 132014.
20. Liu, WD, Kappl M, Steffen W, Butt HJ. Controlling supraparticle shape and structure by tuning colloidal interactions. J Colloid Interface Sci 2022; 607: 1661-1670.
21. Liu, WD, Kappl M, Butt HJ. Tuning the Porosity of Supraparticles. ACS Nano 2019; 13 (12): 13949-13956.
22. Chen, R, Wu ZJ, Zhang TQ, Yu TC, Ye MM. Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating. RSC Adv 2017; 7: 19849-19855.
23. Li DS, Chen Q, Chun J, Fichthorn K, Yoreo JD, Zheng HM. Nanoparticle Assembly and Oriented Attachment: Correlating Controlling Factors to the Resulting Structures. Chem Rev 2023; 123 (6): 3127-3159.
24. Yang Y, Xu GY, Huang SF, Yin YG. Experimental study of the solar-driven interfacial evaporation based on a novel magnetic nano solar absorber. Appl Therm Eng 2022; 217: 119170.
25. Ni K, Wang ZZ. Recent Progress on the Development of Magnetically-Responsive Micropillars: Actuation, Fabrication, and Applications. Adv Funct Mater 2023; 33 (14): 2213350.
26. Dai ZY, Chen G, Ding S, et al. Facile Formation of Hierarchical Textures for Flexible, Translucent, and Durable Superhydrophobic Film. Adv Funct Mater 2020; 31 (7): 2008574.
27. Yang F, Chen JX, Ye ZY, Ding DW, Myung NV, Yin YD. Ni-based Plasmonic/Magnetic Nanostructures as Efficient Light Absorbers for Steam Generation. Adv Funct Mater 2020; 31 (7): 2006294.
28. Hu YJ, Ma HY, Wu MM, et al. A reconfigurable and magnetically responsive assembly for dynamic solar steam generation. Nat Commun 2022; 13: 4335.
29. Zhou Q, Ji B, Hu B, et al. Tilted magnetic micropillars enabled dual-mode sensor for tactile/touchless perceptions. Nano Energy 2020; 78: 105382.
30. Li DK, Huang JX, Han GC, Guo ZG. A facile approach to achieve bioinspired PDMS@Fe3O4 fabric with switchable wettability for liquid transport and water collection. J Mater Chem A 2018; 6: 22741-22748.
31. Kang M, Seong M, Lee D, Kang SM, Kwak MK, Jeong HE. Self-Assembled Artificial Nanocilia Actuators. Adv Mater 2022; 34 (24): 2200185.
32. Yi SZ, Wang J, Chen ZP, et al. Cactus-Inspired Conical Spines with Oriented Microbarbs for Efficient Fog Harvesting. Adv Mater Technol 2019; 4 (12): 1900727.
33. Song YY, Yu ZP, Dong LM, et al. Cactus-Inspired Janus Membrane with a Conical Array of Wettability Gradient for Efficient Fog Collection. Langmuir 2021; 37 (46): 13703-13711.
34. Wang YC, Tang B, Han P, et al. Adjustable photothermal device induced by magnetic field for efficient solar-driven desalination. EcoMat 2021; 3 (5): 12139.
35. Cornell RM, Schwertmann U. Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. New York: John Wiley & Sons; 2003.
36. Hima HI, Xiang X, Zhang L, Li F. Novel carbon nanostructures of caterpillar-like fibers and interwoven spheres with excellent surface super-hydrophobicity produced by chemical vapor deposition. J Mater Chem 2008; 18: 1245-1252.
37. Nofuentes G, García-Domingo B, Muñoz JV, Chenlo F. Analysis of the dependence of the spectral factor of some PV technologies on the solar spectrum distribution. Appl Energy 2014; 113: 302-309.
38. Shi Y, Li RY, Shi L, Ahmed E, Jin Y, Wang P. A Robust CuCr2O4/SiO2 Composite Photothermal Material with Underwater Black Property and Extremely High Thermal Stability for Solar-Driven Water Evaporation. Adv Sustain Syst 2018; 2 (3): 1700145.
39. WHO. Safe Drinking Water from Desalination. https://www.who.int/publications/i/item/WHO-HSE-WSH-11.03. 2020.