References
Alexander S, Christopoulos A, Davenport A, Kelly E, Mathie A, Peters
J, et al. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G
protein-coupled receptors. British Journal of Pharmacology, S27-S156.
https://doi.org/10.1111/bph.15538
Ashwin N. Ananthakrishna (2015).
Epidemiology and risk factors for
IBD. Hepatology, 12: 205-217.
https://doi.org/10.1038/nrgastro.2015.34
Bauer C, Duewell P, Mayer C, Lehr H, Fitzgerald K, Dauer M, et
al. (2010). Colitis induced in mice with dextran sulfate sodium (DSS)
is mediated by the NLRP3 inflammasome. Gut, 59: 1192-1199.
https://doi.org/10.1136/gut.2009.197822
Chen S, Tang C, Ding H, Wang Z, Liu X, Chai Y, et al. (2020).
kMaf1 Ameliorates Sepsis-Associated
Encephalopathy by Suppressing the NF-B/NLRP3 Inflammasome Signaling
Pathway. Frontiers in Immunology, 11: 594071.
https://doi.org/10.3389/fimmu.2020.594071
Curtis M, Alexander S, Cirino G, Docherty J, George C, Giembycz M,
et al. (2018). Experimental design and analysis and their reporting Ⅱ:
updated and simplified guidance for authors and peer reviewers. British
Journal of Pharmacology, 175: 987-993.
https://doi.org/10.1111/bph.14153
Chen W, Li R, Zhu S, Ma J, Pang L, Ma B, et al. (2020).
Nasal timosaponin BⅡ dually
sensitive in situ hydrogels for the prevention of Alzheimer’s disease
induced by lipopolysaccharides. International Journal of Pharmacology,
578: 119115. https://doi.org/10.1016/j.ijpharm.2020.119115
Dai Z, Chen X, An L, Li C, Zhao N, Yang F, et al. (2021). Journal
of Medicinal Chemistry, 64: 871-889.
https://doi.org/10.1021/acs.jmedchem.0c01924
Dick M, Sborgi L, Rühl S, Hiller S, & Broz PJNc (2016). ASC filament
formation serves as a signal amplification mechanism for inflammasomes.
Nature Communication 7: 11929.
https://doi.org/10.1038/ncomms11929
Elliott E, & Sutterwala FJIr (2015).
Initiation and perpetuation of NLRP3
inflammasome activation and assembly. Immunological Reviews,
265: 35-52. https://doi.org/10.1111/imr.12286
Fu J, & Wu HJAroi (2023). Structural Mechanisms of NLRP3 Inflammasome
Assembly and Activation. Immunological
Reviews.
https://doi.org/10.1146/annurev-immunol-081022-021207
Gadaleta R, van Erpecum K, Oldenburg B, Willemsen E, Renooij W, Murzilli
S, et al. (2011). Farnesoid X receptor activation inhibits
inflammation and preserves the intestinal barrier in inflammatory bowel
disease. Gut, 60: 463-472.
https://doi.org/10.1136/gut.2010.212159
Gasaly N, de Vos P, & Hermoso MJFⅡ (2021). Impact of Bacterial
Metabolites on Gut Barrier Function and Host Immunity: A Focus on
Bacterial Metabolism and Its Relevance for Intestinal Inflammation.
Frontiers in Immunology, 12: 658354.
https://doi.org/10.3389/fimmu.2021.658354
Grill J, Neumann J, Hiltwein F, Kolligs F, Schneider MJDd, & sciences
(2015). Intestinal E-cadherin Deficiency Aggravates Dextran Sodium
Sulfate-Induced Colitis. Digestive Diseases Science, 60:895-902. https://doi.org/10.1007/s10620-015-3551-x
Ji K, Kim K, Kim Y, Im A, Lee J, Park B, et al. (2019). The
enhancing immune response and anti-inflammatory effects of Anemarrhena
asphodeloides extract in RAW 264.7 cells. Phytomedicine, 59:152789. https://doi.org/10.1016/j.phymed.2018.12.012
Kane SJAp, & therapeutics (2006).
Systematic review: adherence issues
in the treatment of ulcerative colitis. Alimentary Pharmacology &
Therapeutics, 23: 577-585.
https://doi.org/10.1111/j.1365-2036.2006.02809.x
Krausova A, Buresova P, Sarnova L, Oyman-Eyrilmez G, Skarda J, Wohl
P, et al. (2021). Plectin
ensures intestinal epithelial integrity and protects colon against
colitis. Mucosal Immunology, 14: 691-702.
https://doi.org/10.1038/s41385-021-00380-z
Krishnan M, & McCole DJAotNYAoS (2017). T cell protein tyrosine
phosphatase prevents STAT1 induction of claudin-2 expression in
intestinal epithelial cells. Annals of The New York Academy of Sciences,
1405: 116-130. https://doi.org/10.1111/nyas.13439
Laval L, Martin R, Natividad J, Chain F, Miquel S, Desclée de Maredsous
C, et al. (2015). Lactobacillus rhamnosus CNCM I-3690 and the
commensal bacterium Faecalibacterium prausnitzⅡ A2-165 exhibit similar
protective effects to induced barrier hyper-permeability in mice. Gut
Microbes, 6: 1-9.
https://doi.org/10.4161/19490976.2014.990784
Li X, Liu Y, Wang Y, Liu Y, Xu YJJoa, & chemistry f (2023). Epoxy
Triglyceride Enhances Intestinal Permeability via Caspase-1/NLRP3/GSDMD
and cGAS-STING Pathways in Dextran Sulfate Sodium-Induced Colitis Mice.
Journal of Agricultural and Food Chemistry, 71: 4371-4381.
https://doi.org/10.1021/acs.jafc.2c08134
Li H, Fan C, Feng C, Wu Y, Lu H, He P, et al. (2019).
Inhibition of phosphodiesterase-4
attenuates murine ulcerative colitis through interference with mucosal
immunity. British journal of Pharmacology, 176: 2209-2226.
https://doi.org/10.1111/bph.14667
Liu D, Tian Q, Liu K, Ren F, Liu G, Zhou J, et al. (2023).
Ginsenoside Rg3 Ameliorates DSS-Induced Colitis by Inhibiting NLRP3
Inflammasome Activation and Regulating Microbial Homeostasis. Journal of
Agricultural and Food Chemistry.
https://doi.org/10.1021/acs.jafc.2c07766
Liu L, Dong Y, Ye M, Jin S, Yang J, Joosse M, et al. (2017). The
Pathogenic Role of NLRP3 Inflammasome Activation in Inflammatory Bowel
Diseases of Both Mice and Humans. Journal of Crohns & Colitis
11: 737-750. https://doi.org/10.1093/ecco-jcc/jjw219
Liu M, Sun T, Li N, Peng J, Fu D, Li W, et al. (2019).
BRG1 attenuates colonic inflammation
and tumorigenesis through autophagy-dependent oxidative stress
sequestration. Nature Communication, 10: 4614.
https://doi.org/10.1038/s41467-019-12573-z
Liu X, Xiang D, Jin W, Zhao G, Li H, Xie B, et al. (2022).
Timosaponin B-Ⅱ alleviates osteoarthritis-related inflammation and
extracellular matrix degradation through inhibition of mitogen-activated
protein kinases and nuclear factor-κB pathways in vitro. Bioengineered,
13: 3450-3461. https://doi.org/10.1080/21655979.2021.2024685
Lu W, Qiu Y, Li T, Tao X, Sun L, & Chen WJAopr (2009). Timosaponin B-Ⅱ
inhibits pro-inflammatory cytokine induction by lipopolysaccharide in
BV2 cells. Archives of Pharmacal Research, 32: 1301-1308.
https://doi.org/10.1007/s12272-009-1916-4
Luissint A, Williams H, Kim W, Flemming S, Azcutia V, Hilgarth R,
et al. (2019). Macrophage-dependent neutrophil recruitment is impaired
under conditions of increased intestinal permeability in JAM-A-deficient
mice. Mucosal Immunology, 12: 668-678.
https://doi.org/10.1038/s41385-019-0143-7
Mai C, Wu M, Wang C, Su Z, Cheng Y, & Zhang XJMi (2019).
Palmatine attenuated dextran sulfate
sodium (DSS)-induced colitis via promoting mitophagy-mediated NLRP3
inflammasome inactivation. Molecular Immunology, 105: 76-85.
https://doi.org/10.1016/j.molimm.2018.10.015
Mir H, Meena A, Chaudhry K, Shukla P, Gangwar R, Manda B, et al.(2016). Occludin deficiency promotes ethanol-induced disruption of
colonic epithelial junctions, gut barrier dysfunction and liver damage
in mice. Biochimica et Biophysica Acta, 1860: 765-774.
https://doi.org/10.1016/j.bbagen.2015.12.013
Ordás I, Eckmann L, Talamini M, Baumgart D, & Sandborn WJL (2012).
Ulcerative colitis. Lancet, 380: 1606-1619.
https://doi.org/10.1016/S0140-6736(12)60150-0
Pai R, Hartman D, Leighton J, Pasha S, Rivers C, Regueiro M, et
al. (2021). Validated Indices for
Histopathologic Activity Predict Development of Colorectal Neoplasia in
Ulcerative Colitis. Journal of Crohns & Colitis, 15:1481-1490. https://doi.org/10.1093/ecco-jcc/jjab042
Peng L, Wen L, Shi Q, Gao F, Huang B, Meng J, et al. (2020).
Scutellarin ameliorates pulmonary fibrosis through inhibiting
NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation.
Cell Death Discovery, 11: 978.
https://doi.org/10.1038/s41419-020-03178-2
Qiao S, Lv C, Tao Y, Miao Y, Zhu Y, Zhang W, et al. (2020).
Arctigenin disrupts NLRP3 inflammasome assembly in colonic macrophages
via downregulating fatty acid oxidation to prevent colitis-associated
cancer. Cancer Letters, 491: 162-179.
https://doi.org/10.1016/j.canlet.2020.08.033
Ramos G, & Papadakis KJMCp (2019). Mechanisms of Disease: Inflammatory
Bowel Diseases.Mayo Clinic Proceedings, 94: 155-165.
https://doi.org/10.1016/j.mayocp.2018.09.013
Rathinam V, & Chan FJTimm (2018). Inflammasome, Inflammation, and
Tissue Homeostasis.Trends in Molecular Medicine, 24: 304-318.
https://doi.org/10.1016/j.molmed.2018.01.004
Song M, Chen Z, Qiu R, Zhi T, Xie W, Zhou Y, et al. (2022). Inhibition
of NLRP3-mediated crosstalk between hepatocytes and liver macrophages by
geniposidic acid alleviates cholestatic liver inflammatory injury. Redox
Biology, 55: 102404. https://doi.org/10.1016/10.1016/j.redox.2022.102404
Spalinger M, Sayoc-Becerra A, Santos A, Shawki A, Canale V, Krishnan
M, et al. (2020). PTPN2 Regulates Interactions Between
Macrophages and Intestinal Epithelial Cells to Promote Intestinal
Barrier Function. Gastroenterology, 159: 1763-1777.e1714.
https://doi.org/10.1053/j.gastro.2020.07.004
Sun L, Ouyang J, Zeng F, & Wu SJB (2022). An AIEgen-based
oral-administration nanosystem for detection and therapy of ulcerative
colitis via 3D-MSOT/NIR-Ⅱ fluorescent imaging and inhibiting NLRP3
inflammasome. Biomaterials, 283: 121468.
https://doi.org/10.1016/j.biomaterials.2022.121468
Texler B, Zollner A, Reinstadler V, Reider S, Macheiner S, Jelusic
B, et al. (2022). Tofacitinib-Induced Modulation of Intestinal
Adaptive and Innate Immunity and Factors Driving Cellular and Systemic
Pharmacokinetics. Cellular and Molecular Gastroenterology and
Hepatology, 13: 383-404.
https://doi.org/10.1016/j.jcmgh.2021.09.004.
Turner JJNrI (2009). Intestinal mucosal barrier function in health and
disease. Nature Reviews Immunology, 9: 799-809.
https://doi.org/10.1038/nri2653
Urwanisch L, Luciano M, & Horejs-Hoeck JJIjoms (2021). The NLRP3
Inflammasome and Its Role in the Pathogenicity of Leukemia.
International Jouranl of Molecular Sciences, 22.
https://doi.org/10.3390/ijms22031271
Wang L, Cai J, Zhao X, Ma L, Zeng P, Zhou L, et al. (2023).
Palmitoylation prevents sustained inflammation by limiting NLRP3
inflammasome activation through chaperone-mediated autophagy. Molecular
Cell, 83: 281-297.e210.
https://doi.org/10.1016/j.molcel.2022.12.002
Wang N, Xu P, Wu R, Wang X, Wang Y, Shou D, et al. (2021).
Timosaponin BⅡ improved osteoporosis
caused by hyperglycemia through promoting autophagy of osteoblasts via
suppressing the mTOR/NFκB signaling pathway. Free Radical Biology and
Medicine, 171: 112-123.
https://doi.org/10.1016/j.freeradbiomed.2021.05.014
Wang S, Lin Y, Yuan X, Li F, Guo L, & Wu BJNc (2018). REV-ERBα
integrates colon clock with experimental colitis through regulation of
NF-κB/NLRP3 axis. Nature Communication, 9: 4246.
https://doi.org/10.1038/s41467-018-06568-5
Xu P, Xi Y, Zhu J, Zhang M, Luka Z, Stolz D, et al. (2021).
Intestinal Sulfation Is Essential to Protect Against Colitis and Colonic
Carcinogenesis. Gastroenterology, 161: 271-286.e211.
https://doi.org/10.1053/j.gastro.2021.03.048
Zhang L, Gui S, Xu Y, Zeng J, Wang J, Chen Q, et al. (2021).
Musca domesticaColon tissue-accumulating mesoporous carbon nanoparticles
loaded with cecropin for ulcerative colitis therapy. Theranostics,
11: 3417-3438. https://doi.org/10.7150/thno.53105
Zhang T, Wang J, Wang S, Ma CJTm, & methods (2015).
Timosaponin B-Ⅱ inhibits
lipopolysaccharide-induced acute lung toxicity via TLR/NF-κB pathway.
Toxicology Mechanisms and Methods, 25: 665-671.
https://doi.org/10.3109/15376516.2015.1045652
Zhao X, Liu C, Qi Y, Fang L, Luo J, Bi K, et al. (2016).
Timosaponin B-Ⅱ ameliorates
scopolamine-induced cognition deficits by attenuating
acetylcholinesterase activity and brain oxidative damage in mice.
Metabolic Brain Disease, 31: 1455-1461.
https://doi.org/10.1007/s11011-016-9877-z
Zhou Y, Gao C, Vong C, Tao H, Li H, Wang S, et al. (2022).
Rhein regulates redox-mediated
activation of NLRP3 inflammasomes in intestinal inflammation through
macrophage-activated crosstalk. British Journal of Pharmacology,
179: 1978-1997. https://doi.org/10.1111/bph.15773