References
Alexander S, Christopoulos A, Davenport A, Kelly E, Mathie A, Peters J, et al. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors. British Journal of Pharmacology, S27-S156. https://doi.org/10.1111/bph.15538
Ashwin N. Ananthakrishna (2015). Epidemiology and risk factors for IBD. Hepatology, 12: 205-217. https://doi.org/10.1038/nrgastro.2015.34
Bauer C, Duewell P, Mayer C, Lehr H, Fitzgerald K, Dauer M, et al. (2010). Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut, 59: 1192-1199. https://doi.org/10.1136/gut.2009.197822
Chen S, Tang C, Ding H, Wang Z, Liu X, Chai Y, et al. (2020). kMaf1 Ameliorates Sepsis-Associated Encephalopathy by Suppressing the NF-B/NLRP3 Inflammasome Signaling Pathway. Frontiers in Immunology, 11: 594071. https://doi.org/10.3389/fimmu.2020.594071
Curtis M, Alexander S, Cirino G, Docherty J, George C, Giembycz M, et al. (2018). Experimental design and analysis and their reporting Ⅱ: updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175: 987-993. https://doi.org/10.1111/bph.14153
Chen W, Li R, Zhu S, Ma J, Pang L, Ma B, et al. (2020). Nasal timosaponin BⅡ dually sensitive in situ hydrogels for the prevention of Alzheimer’s disease induced by lipopolysaccharides. International Journal of Pharmacology, 578: 119115. https://doi.org/10.1016/j.ijpharm.2020.119115
Dai Z, Chen X, An L, Li C, Zhao N, Yang F, et al. (2021). Journal of Medicinal Chemistry, 64: 871-889. https://doi.org/10.1021/acs.jmedchem.0c01924
Dick M, Sborgi L, Rühl S, Hiller S, & Broz PJNc (2016). ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nature Communication 7: 11929. https://doi.org/10.1038/ncomms11929
Elliott E, & Sutterwala FJIr (2015). Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunological Reviews, 265: 35-52. https://doi.org/10.1111/imr.12286
Fu J, & Wu HJAroi (2023). Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Immunological Reviews. https://doi.org/10.1146/annurev-immunol-081022-021207
Gadaleta R, van Erpecum K, Oldenburg B, Willemsen E, Renooij W, Murzilli S, et al. (2011). Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut, 60: 463-472. https://doi.org/10.1136/gut.2010.212159
Gasaly N, de Vos P, & Hermoso MJFⅡ (2021). Impact of Bacterial Metabolites on Gut Barrier Function and Host Immunity: A Focus on Bacterial Metabolism and Its Relevance for Intestinal Inflammation. Frontiers in Immunology, 12: 658354. https://doi.org/10.3389/fimmu.2021.658354
Grill J, Neumann J, Hiltwein F, Kolligs F, Schneider MJDd, & sciences (2015). Intestinal E-cadherin Deficiency Aggravates Dextran Sodium Sulfate-Induced Colitis. Digestive Diseases Science, 60:895-902. https://doi.org/10.1007/s10620-015-3551-x
Ji K, Kim K, Kim Y, Im A, Lee J, Park B, et al. (2019). The enhancing immune response and anti-inflammatory effects of Anemarrhena asphodeloides extract in RAW 264.7 cells. Phytomedicine, 59:152789. https://doi.org/10.1016/j.phymed.2018.12.012
Kane SJAp, & therapeutics (2006). Systematic review: adherence issues in the treatment of ulcerative colitis. Alimentary Pharmacology & Therapeutics, 23: 577-585. https://doi.org/10.1111/j.1365-2036.2006.02809.x
Krausova A, Buresova P, Sarnova L, Oyman-Eyrilmez G, Skarda J, Wohl P, et al. (2021). Plectin ensures intestinal epithelial integrity and protects colon against colitis. Mucosal Immunology, 14: 691-702. https://doi.org/10.1038/s41385-021-00380-z
Krishnan M, & McCole DJAotNYAoS (2017). T cell protein tyrosine phosphatase prevents STAT1 induction of claudin-2 expression in intestinal epithelial cells. Annals of The New York Academy of Sciences, 1405: 116-130. https://doi.org/10.1111/nyas.13439
Laval L, Martin R, Natividad J, Chain F, Miquel S, Desclée de Maredsous C, et al. (2015). Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzⅡ A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut Microbes, 6: 1-9. https://doi.org/10.4161/19490976.2014.990784
Li X, Liu Y, Wang Y, Liu Y, Xu YJJoa, & chemistry f (2023). Epoxy Triglyceride Enhances Intestinal Permeability via Caspase-1/NLRP3/GSDMD and cGAS-STING Pathways in Dextran Sulfate Sodium-Induced Colitis Mice. Journal of Agricultural and Food Chemistry, 71: 4371-4381. https://doi.org/10.1021/acs.jafc.2c08134
Li H, Fan C, Feng C, Wu Y, Lu H, He P, et al. (2019). Inhibition of phosphodiesterase-4 attenuates murine ulcerative colitis through interference with mucosal immunity. British journal of Pharmacology, 176: 2209-2226. https://doi.org/10.1111/bph.14667
Liu D, Tian Q, Liu K, Ren F, Liu G, Zhou J, et al. (2023). Ginsenoside Rg3 Ameliorates DSS-Induced Colitis by Inhibiting NLRP3 Inflammasome Activation and Regulating Microbial Homeostasis. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.2c07766
Liu L, Dong Y, Ye M, Jin S, Yang J, Joosse M, et al. (2017). The Pathogenic Role of NLRP3 Inflammasome Activation in Inflammatory Bowel Diseases of Both Mice and Humans. Journal of Crohns & Colitis 11: 737-750. https://doi.org/10.1093/ecco-jcc/jjw219
Liu M, Sun T, Li N, Peng J, Fu D, Li W, et al. (2019). BRG1 attenuates colonic inflammation and tumorigenesis through autophagy-dependent oxidative stress sequestration. Nature Communication, 10: 4614. https://doi.org/10.1038/s41467-019-12573-z
Liu X, Xiang D, Jin W, Zhao G, Li H, Xie B, et al. (2022). Timosaponin B-Ⅱ alleviates osteoarthritis-related inflammation and extracellular matrix degradation through inhibition of mitogen-activated protein kinases and nuclear factor-κB pathways in vitro. Bioengineered, 13: 3450-3461. https://doi.org/10.1080/21655979.2021.2024685
Lu W, Qiu Y, Li T, Tao X, Sun L, & Chen WJAopr (2009). Timosaponin B-Ⅱ inhibits pro-inflammatory cytokine induction by lipopolysaccharide in BV2 cells. Archives of Pharmacal Research, 32: 1301-1308. https://doi.org/10.1007/s12272-009-1916-4
Luissint A, Williams H, Kim W, Flemming S, Azcutia V, Hilgarth R, et al. (2019). Macrophage-dependent neutrophil recruitment is impaired under conditions of increased intestinal permeability in JAM-A-deficient mice. Mucosal Immunology, 12: 668-678. https://doi.org/10.1038/s41385-019-0143-7
Mai C, Wu M, Wang C, Su Z, Cheng Y, & Zhang XJMi (2019). Palmatine attenuated dextran sulfate sodium (DSS)-induced colitis via promoting mitophagy-mediated NLRP3 inflammasome inactivation. Molecular Immunology, 105: 76-85. https://doi.org/10.1016/j.molimm.2018.10.015
Mir H, Meena A, Chaudhry K, Shukla P, Gangwar R, Manda B, et al.(2016). Occludin deficiency promotes ethanol-induced disruption of colonic epithelial junctions, gut barrier dysfunction and liver damage in mice. Biochimica et Biophysica Acta, 1860: 765-774. https://doi.org/10.1016/j.bbagen.2015.12.013
Ordás I, Eckmann L, Talamini M, Baumgart D, & Sandborn WJL (2012). Ulcerative colitis. Lancet, 380: 1606-1619. https://doi.org/10.1016/S0140-6736(12)60150-0
Pai R, Hartman D, Leighton J, Pasha S, Rivers C, Regueiro M, et al. (2021). Validated Indices for Histopathologic Activity Predict Development of Colorectal Neoplasia in Ulcerative Colitis. Journal of Crohns & Colitis, 15:1481-1490. https://doi.org/10.1093/ecco-jcc/jjab042
Peng L, Wen L, Shi Q, Gao F, Huang B, Meng J, et al. (2020). Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation. Cell Death Discovery, 11: 978. https://doi.org/10.1038/s41419-020-03178-2
Qiao S, Lv C, Tao Y, Miao Y, Zhu Y, Zhang W, et al. (2020). Arctigenin disrupts NLRP3 inflammasome assembly in colonic macrophages via downregulating fatty acid oxidation to prevent colitis-associated cancer. Cancer Letters, 491: 162-179. https://doi.org/10.1016/j.canlet.2020.08.033
Ramos G, & Papadakis KJMCp (2019). Mechanisms of Disease: Inflammatory Bowel Diseases.Mayo Clinic Proceedings, 94: 155-165. https://doi.org/10.1016/j.mayocp.2018.09.013
Rathinam V, & Chan FJTimm (2018). Inflammasome, Inflammation, and Tissue Homeostasis.Trends in Molecular Medicine, 24: 304-318. https://doi.org/10.1016/j.molmed.2018.01.004
Song M, Chen Z, Qiu R, Zhi T, Xie W, Zhou Y, et al. (2022). Inhibition of NLRP3-mediated crosstalk between hepatocytes and liver macrophages by geniposidic acid alleviates cholestatic liver inflammatory injury. Redox Biology, 55: 102404. https://doi.org/10.1016/10.1016/j.redox.2022.102404
Spalinger M, Sayoc-Becerra A, Santos A, Shawki A, Canale V, Krishnan M, et al. (2020). PTPN2 Regulates Interactions Between Macrophages and Intestinal Epithelial Cells to Promote Intestinal Barrier Function. Gastroenterology, 159: 1763-1777.e1714. https://doi.org/10.1053/j.gastro.2020.07.004
Sun L, Ouyang J, Zeng F, & Wu SJB (2022). An AIEgen-based oral-administration nanosystem for detection and therapy of ulcerative colitis via 3D-MSOT/NIR-Ⅱ fluorescent imaging and inhibiting NLRP3 inflammasome. Biomaterials, 283: 121468. https://doi.org/10.1016/j.biomaterials.2022.121468
Texler B, Zollner A, Reinstadler V, Reider S, Macheiner S, Jelusic B, et al. (2022). Tofacitinib-Induced Modulation of Intestinal Adaptive and Innate Immunity and Factors Driving Cellular and Systemic Pharmacokinetics. Cellular and Molecular Gastroenterology and Hepatology, 13: 383-404. https://doi.org/10.1016/j.jcmgh.2021.09.004.
Turner JJNrI (2009). Intestinal mucosal barrier function in health and disease. Nature Reviews Immunology, 9: 799-809. https://doi.org/10.1038/nri2653
Urwanisch L, Luciano M, & Horejs-Hoeck JJIjoms (2021). The NLRP3 Inflammasome and Its Role in the Pathogenicity of Leukemia. International Jouranl of Molecular Sciences, 22. https://doi.org/10.3390/ijms22031271
Wang L, Cai J, Zhao X, Ma L, Zeng P, Zhou L, et al. (2023). Palmitoylation prevents sustained inflammation by limiting NLRP3 inflammasome activation through chaperone-mediated autophagy. Molecular Cell, 83: 281-297.e210. https://doi.org/10.1016/j.molcel.2022.12.002
Wang N, Xu P, Wu R, Wang X, Wang Y, Shou D, et al. (2021). Timosaponin BⅡ improved osteoporosis caused by hyperglycemia through promoting autophagy of osteoblasts via suppressing the mTOR/NFκB signaling pathway. Free Radical Biology and Medicine, 171: 112-123. https://doi.org/10.1016/j.freeradbiomed.2021.05.014
Wang S, Lin Y, Yuan X, Li F, Guo L, & Wu BJNc (2018). REV-ERBα integrates colon clock with experimental colitis through regulation of NF-κB/NLRP3 axis. Nature Communication, 9: 4246. https://doi.org/10.1038/s41467-018-06568-5
Xu P, Xi Y, Zhu J, Zhang M, Luka Z, Stolz D, et al. (2021). Intestinal Sulfation Is Essential to Protect Against Colitis and Colonic Carcinogenesis. Gastroenterology, 161: 271-286.e211. https://doi.org/10.1053/j.gastro.2021.03.048
Zhang L, Gui S, Xu Y, Zeng J, Wang J, Chen Q, et al. (2021). Musca domesticaColon tissue-accumulating mesoporous carbon nanoparticles loaded with cecropin for ulcerative colitis therapy. Theranostics, 11: 3417-3438. https://doi.org/10.7150/thno.53105
Zhang T, Wang J, Wang S, Ma CJTm, & methods (2015). Timosaponin B-Ⅱ inhibits lipopolysaccharide-induced acute lung toxicity via TLR/NF-κB pathway. Toxicology Mechanisms and Methods, 25: 665-671. https://doi.org/10.3109/15376516.2015.1045652
Zhao X, Liu C, Qi Y, Fang L, Luo J, Bi K, et al. (2016). Timosaponin B-Ⅱ ameliorates scopolamine-induced cognition deficits by attenuating acetylcholinesterase activity and brain oxidative damage in mice. Metabolic Brain Disease, 31: 1455-1461. https://doi.org/10.1007/s11011-016-9877-z
Zhou Y, Gao C, Vong C, Tao H, Li H, Wang S, et al. (2022). Rhein regulates redox-mediated activation of NLRP3 inflammasomes in intestinal inflammation through macrophage-activated crosstalk. British Journal of Pharmacology, 179: 1978-1997. https://doi.org/10.1111/bph.15773