References
1. Yoshida A, Furube E, Mannari T, et al. TRPV1 is crucial for proinflammatory STAT3 signaling and thermoregulation-associated pathways in the brain during inflammation.Sci Rep . May 18 2016;6:26088. doi:srep26088 [pii]
10.1038/srep26088
2. Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci . 2001;24:487-517. doi:10.1146/annurev.neuro.24.1.487
24/1/487 [pii]
3. Garami A, Pakai E, Oliveira DL, et al. Thermoregulatory phenotype of the Trpv1 knockout mouse: thermoeffector dysbalance with hyperkinesis. The Journal of neuroscience : the official journal of the Society for Neuroscience . Feb 2 2011;31(5):1721-33. doi:31/5/1721 [pii]
10.1523/JNEUROSCI.4671-10.2011
4. Gunthorpe MJ, Szallasi A. Peripheral TRPV1 receptors as targets for drug development: new molecules and mechanisms. Curr Pharm Des . 2008;14(1):32-41.
5. Caterina M, Schumacher M, Tominaga M, Rosen T, Levine J, Juluis D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature . 1997;389:816-824.
6. Szallasi A, Cortright DN, Blum CA, Eid SR. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov . May 2007;6(5):357-72.
7. Alsalem M, Millns P, Altarifi A, El-Salem K, Chapman V, Kendall DA. Anti-nociceptive and desensitizing effects of olvanil on capsaicin-induced thermal hyperalgesia in the rat. journal article. BMC Pharmacology and Toxicology . July 21 2016;17(1):31. doi:10.1186/s40360-016-0074-9
8. Hurley JD, Akers AT, Friedman JR, Nolan NA, Brown KC, Dasgupta P. Non-pungent long chain capsaicin-analogs arvanil and olvanil display better anti-invasive activity than capsaicin in human small cell lung cancers. Cell Adh Migr . Jan 2 2017;11(1):80-97. doi:10.1080/19336918.2016.1187368
9. Moulton EA, Pendse G, Morris S, et al. Capsaicin-induced thermal hyperalgesia and sensitization in the human trigeminal nociceptive pathway: an fMRI study. Neuroimage . May 1 2007;35(4):1586-600. doi:S1053-8119(07)00102-4 [pii]
10.1016/j.neuroimage.2007.02.001
10. Alsalem M, Aldossary SA, Haddad M, et al. The desensitization of the transient receptor potential vanilloid 1 by nonpungent agonists and its resensitization by bradykinin. NeuroReport . 2020;31(11)
11. Mizumura K. Peripheral mechanism of hyperalgesia–sensitization of nociceptors. Nagoya J Med Sci . Nov 1997;60(3-4):69-87.
12. Yam MF, Loh YC, Tan CS, Khadijah Adam S, Abdul Manan N, Basir R. General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation.International journal of molecular sciences . Jul 24 2018;19(8)doi:ijms19082164 [pii]
10.3390/ijms19082164
13. Choi SI, Hwang SW. Depolarizing Effectors of Bradykinin Signaling in Nociceptor Excitation in Pain Perception. Biomol Ther (Seoul) . May 1 2018;26(3):255-267. doi:biomolther.2017.127 [pii]
10.4062/biomolther.2017.127
14. McEachern AE, Shelton ER, Bhakta S, et al. Expression cloning of a rat B2 bradykinin receptor.Proceedings of the National Academy of Sciences of the United States of America . Sep 1 1991;88(17):7724-8.
15. Pesquero JB, Pesquero JL, Oliveira SM, et al. Molecular cloning and functional characterization of a mouse bradykinin B1 receptor gene. Biochem Biophys Res Commun . Mar 7 1996;220(1):219-25. doi:S0006-291X(96)90384-8 [pii]
10.1006/bbrc.1996.0384
16. Supowit SC, Zhao H, Katki KA, Gupta P, Dipette DJ. Bradykinin and prostaglandin E(1) regulate calcitonin gene-related peptide expression in cultured rat sensory neurons. Regul Pept . Feb 25 2011;167(1):105-11. doi:S0167-0115(10)00441-6 [pii]
10.1016/j.regpep.2010.12.006
17. Vellani V, Zachrisson O, McNaughton PA. Functional bradykinin B1 receptors are expressed in nociceptive neurones and are upregulated by the neurotrophin GDNF.The Journal of physiology . Oct 15 2004;560(Pt 2):391-401. doi:10.1113/jphysiol.2004.067462
jphysiol.2004.067462 [pii]
18. Fox A, Wotherspoon G, McNair K, et al. Regulation and function of spinal and peripheral neuronal B1 bradykinin receptors in inflammatory mechanical hyperalgesia.Pain . Aug 2003;104(3):683-91. doi:S0304395903001416 [pii]
19. Wotherspoon G, Winter J. Bradykinin B1 receptor is constitutively expressed in the rat sensory nervous system. Neuroscience letters . Nov 24 2000;294(3):175-8. doi:S0304394000015615 [pii]
20. Bareis DL, Manganiello VC, Hirata F, Vaughan M, Axelrod J. Bradykinin stimulates phospholipid methylation, calcium influx, prostaglandin formation, and cAMP accumulation in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America . May 1983;80(9):2514-8.
21. Jenkins DW, Sellers LA, Feniuk W, Humphrey PP. Characterization of bradykinin-induced prostaglandin E2 release from cultured rat trigeminal ganglion neurones. Eur J Pharmacol . May 23 2003;469(1-3):29-36. doi:S0014299903017321 [pii]
22. Tang HB, Inoue A, Oshita K, Nakata Y. Sensitization of vanilloid receptor 1 induced by bradykinin via the activation of second messenger signaling cascades in rat primary afferent neurons. Eur J Pharmacol . Sep 13 2004;498(1-3):37-43. doi:10.1016/j.ejphar.2004.07.076
S0014-2999(04)00811-8 [pii]
23. Inoue A, Iwasa M, Nishikura Y, Ogawa S, Nakasuka A, Nakata Y. The long-term exposure of rat cultured dorsal root ganglion cells to bradykinin induced the release of prostaglandin E2 by the activation of cyclooxygenase-2.Neuroscience letters . Jul 3 2006;401(3):242-7. doi:S0304-3940(06)00287-4 [pii]
10.1016/j.neulet.2006.03.026
24. Huang J, Zhang X, McNaughton PA. Inflammatory pain: the cellular basis of heat hyperalgesia. Curr Neuropharmacol . Jul 2006;4(3):197-206.
25. Amorim MA, Jentsch Matias de Oliveira JR, Souza Oliveira VH, Cabrini DA, Otuki MF, André E. Role of nitric oxide, bradykinin B2 receptor, and TRPV1 in the airway alterations caused by simvastatin in rats. European Journal of Pharmacology . 2021/12/05/ 2021;912:174591. doi:https://doi.org/10.1016/j.ejphar.2021.174591
26. Sugiura T, Tominaga M, Katsuya H, Mizumura K. Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1. J Neurophysiol . Jul 2002;88(1):544-8. doi:10.1152/jn.2002.88.1.544
27. Ferreira J, Campos MM, Araujo R, Bader M, Pesquero JB, Calixto JB. The use of kinin B1 and B2 receptor knockout mice and selective antagonists to characterize the nociceptive responses caused by kinins at the spinal level.Neuropharmacology . Dec 2002;43(7):1188-97. doi:S0028390802003118 [pii]
28. Liviero F, Campisi M, Mason P, Guarnieri G, Pavanello S, Maestrelli P. Modulation of transient receptor potential vanilloid-1 (TRPV1) by inhaled prostaglandin-E2 (PGE2) and bradykinin (BK) is associated with increased cough sensitivity to capsaicin (CPS) and autonomic dysregulation of cardiac rhythm in healthy subjects. European Respiratory Journal . 2020;56(suppl 64):3157. doi:10.1183/13993003.congress-2020.3157
29. Tveden-Nyborg P, Bergmann TK, Jessen N, Simonsen U, Lykkesfeldt J. BCPT policy for experimental and clinical studies. Basic & clinical pharmacology & toxicology . Jan 2021;128(1):4-8. doi:10.1111/bcpt.13492
30. Lembeck F, Popper H, Juan H. Release of prostaglandins by bradykinin as an intrinsic mechanism of its algesic effect. Naunyn Schmiedebergs Arch Pharmacol . Jul 1976;294(1):69-73.
31. Taiwo YO, Heller PH, Levine JD. Characterization of distinct phospholipases mediating bradykinin and noradrenaline hyperalgesia. Neuroscience . 1990;39(2):523-31. doi:0306-4522(90)90288-F [pii]
32. Taiwo YO, Levine JD. Effects of cyclooxygenase products of arachidonic acid metabolism on cutaneous nociceptive threshold in the rat. Brain research . Dec 24 1990;537(1-2):372-4. doi:0006-8993(90)90389-S [pii]
10.1016/0006-8993(90)90389-s
33. Beiche F, Brune K, Geisslinger G, Goppelt-Struebe M. Expression of cyclooxygenase isoforms in the rat spinal cord and their regulation during adjuvant-induced arthritis.Inflammation research : official journal of the European Histamine Research Society [et al] . Dec 1998;47(12):482-7. doi:10.1007/s000110050362 [pii]
10.1007/s000110050362
34. Sun W, Yang F, Wang Y, et al. Contribution of large-sized primary sensory neuronal sensitization to mechanical allodynia by upregulation of hyperpolarization-activated cyclic nucleotide gated channels via cyclooxygenase 1 cascade.Neuropharmacology . 2017/02/01/ 2017;113:217-230. doi:https://doi.org/10.1016/j.neuropharm.2016.10.012
35. Chopra B, Giblett S, Little JG, et al. Cyclooxygenase-1 is a marker for a subpopulation of putative nociceptive neurons in rat dorsal root ganglia. Eur J Neurosci . Mar 2000;12(3):911-20. doi:ejn979 [pii]
36. Dou W, Jiao Y, Goorha S, Raghow R, Ballou LR. Nociception and the differential expression of cyclooxygenase-1 (COX-1), the COX-1 variant retaining intron-1 (COX-1v), and COX-2 in mouse dorsal root ganglia (DRG). Prostaglandins Other Lipid Mediat . Oct 2004;74(1-4):29-43. doi:S1098-8823(04)00054-1 [pii]
37. Steranka LR, Manning DC, DeHaas CJ, et al. Bradykinin as a pain mediator: receptors are localized to sensory neurons, and antagonists have analgesic actions.Proceedings of the National Academy of Sciences of the United States of America . May 1988;85(9):3245-9. doi:10.1073/pnas.85.9.3245
38. Wang H, Kohno T, Amaya F, et al. Bradykinin produces pain hypersensitivity by potentiating spinal cord glutamatergic synaptic transmission. The Journal of neuroscience : the official journal of the Society for Neuroscience . Aug 31 2005;25(35):7986-92. doi:25/35/7986 [pii]
10.1523/JNEUROSCI.2393-05.2005
39. Ruscheweyh R, Forsthuber L, Schoffnegger D, Sandkuhler J. Modification of classical neurochemical markers in identified primary afferent neurons with Abeta-, Adelta-, and C-fibers after chronic constriction injury in mice. J Comp Neurol . May 10 2007;502(2):325-36. doi:10.1002/cne.21311
40. Donaldson LF, Humphrey PS, Oldfield S, Giblett S, Grubb BD. Expression and regulation of prostaglandin E receptor subtype mRNAs in rat sensory ganglia and spinal cord in response to peripheral inflammation. Prostaglandins Other Lipid Mediat . Jan 2001;63(3):109-22. doi:S0090-6980(00)00101-5 [pii]
41. Engblom D, Ek M, Ericsson-Dahlstrand A, Blomqvist A. EP3 and EP4 receptor mRNA expression in peptidergic cell groups of the rat parabrachial nucleus.Neuroscience . 2004;126(4):989-99. doi:10.1016/j.neuroscience.2004.03.042
S0306452204002271 [pii]
42. Lin CR, Amaya F, Barrett L, et al. Prostaglandin E2 receptor EP4 contributes to inflammatory pain hypersensitivity. The Journal of pharmacology and experimental therapeutics . Dec 2006;319(3):1096-103. doi:jpet.106.105569 [pii]
10.1124/jpet.106.105569
43. Ma W, Li L, Xing S. PGE2/EP4 receptor and TRPV1 channel are involved in repeated restraint stress-induced prolongation of sensitization pain evoked by subsequent PGE2 challenge. Brain research . Oct 15 2019;1721:146335. doi:10.1016/j.brainres.2019.146335
44. Petho G, Derow A, Reeh PW. Bradykinin-induced nociceptor sensitization to heat is mediated by cyclooxygenase products in isolated rat skin. Eur J Neurosci . Jul 2001;14(2):210-8. doi:ejn1651 [pii]
45. McCoy JM, Wicks JR, Audoly LP. The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis. The Journal of clinical investigation . Sep 2002;110(5):651-8. doi:10.1172/JCI15528
46. Nakao K, Murase A, Ohshiro H, et al. CJ-023,423, a novel, potent and selective prostaglandin EP4 receptor antagonist with antihyperalgesic properties. The Journal of pharmacology and experimental therapeutics . Aug 2007;322(2):686-94. doi:jpet.107.122010 [pii]
10.1124/jpet.107.122010
47. Burgess GM, Mullaney I, McNeill M, Dunn PM, Rang HP. Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture. The Journal of neuroscience : the official journal of the Society for Neuroscience . 1989;9(9):3314-3325. doi:10.1523/JNEUROSCI.09-09-03314.1989
48. Premkumar LS, Ahern GP. Induction of vanilloid receptor channel activity by protein kinase C.Nature . Dec 21-28 2000;408(6815):985-90. doi:10.1038/35050121
49. Wilson RJ, Giblin GM, Roomans S, et al. GW627368X ((N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl} benzene sulphonamide): a novel, potent and selective prostanoid EP4 receptor antagonist. Br J Pharmacol . Jun 2006;148(3):326-39. doi:0706726 [pii]
10.1038/sj.bjp.0706726