Alaska Division of
Geological & Geophysical Surveys Raw Data File 2005-3 ,
https://doi.org/10.14509/7103
Chiaradia, M., Fontboté, L. and Beate, B., (2004), Cenozoic continental
arc magmatism and
associated mineralization in Ecuador, Mineralium Deposita ,39 , pp.204-222.
Chiao, L.Y., Creager, K.C., Kirby, S., Wang, K. and Dunlop, S., (2002),
Geometry and
membrane deformation rate of the subducting Cascadia slab, The
Cascadia subduction zone and related subduction system—Seismic
structure, intraslab earthquakes and processes, and earthquake hazards ,
pp.02-328.
Clowes, R.M., Zelt, C.A., Amor, J.R. and Ellis, R.M., (1995),
Lithospheric structure in the
southern Canadian Cordillera from a network of seismic refraction lines,Canadian Journal of Earth Sciences , 32 (10), pp.1485-1513.
Coe, R.S., Globerman, B.R., and Thrupp, G.A., (1989), Rotation of
central and southern Alaska in the early Tertiary: Oroclinal bending by
megakinking?, in Kissel, C., and Laj, C., eds., Paleomagnetic
rotations and continental deformation: Springer, Dordrecht, p.
327–342.
Cole, R.B., Layer, P.W., Hooks, B., Cyr, A. and Turner, J., (2007),
Magmatism and deformation
in a terrane suture zone south of the Denali fault, northern Talkeetna
Mountains, Alaska, in Ridgway, K.D., Trop, J.M., Glen, J.M.G., and
O’Neill, J.M., eds., Tectonic Growth of a Collisional Continental
Margin: Crustal Evolution of Southern Alaska: Geological Society of
America Special Paper 431 , p. 55–94, https:// doi .org /10 .1130 /2007
.2431 (04).
Cole, R.B., Nelson, S.W., Layer, P.W. and Oswald, P.J., (2006), Eocene
volcanism above a depleted mantle slab window in southern Alaska,Geological Society of America Bulletin , 118 (1-2),
pp.140-158.
Dahm, T., Stiller, M., Mechie, J., Heimann, S., Hensch, M., Woith, H.,
Schmidt, B., Gabriel, G.
and Weber, M., (2020), Seismological and geophysical signatures of the
deep crustal magma systems of the Cenozoic volcanic fields beneath the
Eifel, Germany, Geochemistry, Geophysics, Geosystems ,21 (9), p.e2020GC009062.
DeMets, C. and Dixon, T.H., (1999), New kinematic models for
Pacific‐North America motion
from 3 Ma to present, I: Evidence for steady motion and biases in the
NUVEL‐1A model, Geophysical Research Letters , 26 (13),
pp.1921-1924.
DeMets, C., Iaffaldano, G. and Merkouriev, S., (2015), High-resolution
Neogene and quaternary estimates of Nubia-Eurasia-North America plate
motion, Geophysical Journal International , 203 (1),
pp.416-427.
Doubrovine, P.V., and Tarduno, J.A., (2008), A revised kinematic model
for the relative motion
between Pacific oceanic plates and North America since the Late
Cretaceous, Journal of
Geophysical Research: Solid Earth , v. 113, p. 1–20.
Ducea, M.N., Saleeby, J.B. and Bergantz, G., (2015), The architecture,
chemistry, and evolution of continental magmatic arcs. Annual
Review of Earth and Planetary Sciences , 43 , pp.299-331.
Dusel-Bacon, C., Holm-Denoma, C.S., Jones, J.V., Aleinikoff, J.N. and
Mortensen, J.K., (2017), Detrital zircon geochronology of quartzose
metasedimentary rocks from parautochthonous North America, east-central
Alaska. Lithosphere , 9 (6), pp.927-952.
Dusel-Bacon, C., Day, W.C. and Aleinikoff, J.N., (2013), Geochemistry,
petrography, and zircon
U–Pb geochronology of Paleozoic metaigneous rocks in the Mount Veta
area of east- central Alaska: Implications for the evolution of the
westernmost part of the Yukon– Tanana terrane, Canadian Journal
of Earth Sciences , 50 (8), pp.826-846.
Ebherhart-Phillips, D., Christensen, D. H., Brocher, T. M., Hansen, R.,
Ruppert, N. A., Haeussler, P. J., Abers, G. A.. (2006), Imaging the
transition from Aleutian subduction to Yakutat collision in central
Alaska, with local earthquakes and active source data, Journal of
Geophysical Research , Vol. 111.
Eberhart-Phillips, D., Haeussler, P.J., Freymueller, J.T., Frankel,
A.D., Rubin, C.M., Craw, P.,
Ratchkovski, N.A., Anderson, G., Carver, G.A., Crone, A.J. and Dawson,
T.E., (2003), The 2002 Denali fault earthquake, Alaska: A large
magnitude, slip-partitioned event, Science , 300 (5622),
pp.1113-1118.
Elliott, J.L., Larsen, C.F., Freymueller, J.T. and Motyka, R.J., (2010),
Tectonic block motion and glacial isostatic adjustment in southeast
Alaska and adjacent Canada constrained by GPS measurements,Journal of Geophysical Research: Solid Earth , 115 (B9).
Engebretson, D.C., Cox, A. and Gordon, R.G., (1984), Relative motions
between oceanic plates of the Pacific basin, Journal of
Geophysical Research: Solid Earth , 89 (B12), pp.10291- 10310.
England, P., Engdahl, R., & Thatcher, W. (2004), Systematic variation
in the depths of slabs beneath arc volcanoes, Geophysical Journal
International , 156 (2), 377–408.
https://doi.org/10.1111/j.1365-246X.2003.02132.x
Estève, C., (2020), Evolution and Tectonics of the Lithosphere in
Northwestern Canada, Doctoral dissertation , Université
d’Ottawa/University of Ottawa).
Estève, C., Audet, P., Schaeffer, A.J., Schutt, D.L., Aster, R.C. and
Cubley, J.F., (2020), Seismic evidence for craton chiseling and
displacement of lithospheric mantle by the Tintina fault in the northern
Canadian Cordillera, Geology , 48 (11), pp.1120-1125.
Fasulo, C.R. and Ridgway, K.D., (2021), Detrital zircon geochronology of
modern river sediment in south-central Alaska: Provenance, magmatic, and
tectonic insights into the Mesozoic and Cenozoic development of the
southern Alaska convergent margin, Geosphere , 17 (4),
pp.1248-1267.
Ferris, A., Abers, G.A., Christensen, D.H. and Veenstra, E., 2003. High
resolution image of the subducted Pacific (?) plate beneath central
Alaska, 50–150 km depth. Earth and Planetary Science Letters ,214 (3-4), pp.575-588.
Finzel, E.S., (2019), Partitioning pervasive detrital geochronologic age
distributions in the southern Alaskan forearc, Frontiers in Earth
Science , 7 , p.217.
Gama, I., Fischer, K.M., Dalton, C.A. and Eilon, Z., (2022), Variations
in Lithospheric Thickness across the Denali Fault and in Northern
Alaska, Geophysical Research Letters , p.e2022GL101256.
Garver, J.I. and Davidson, C.M., (2015), Southwestern Laurentian zircons
in upper Cretaceous flysch of the Chugach-Prince William terrane in
Alaska, American Journal of Science , 315 (6), pp.537-556.
George, S.W., Perez, N.D., Struble, W., Curry, M.E. and Horton, B.K.,
(2022), Aseismic ridge subduction focused late Cenozoic exhumation above
the Peruvian flat slab, Earth and Planetary Science Letters ,600 , p.117754.
Gianni, G.M. and Luján, S.P., (2021), Geodynamic controls on magmatic
arc migration and quiescence. Earth-Science Reviews , 218 ,
p.103676.
Gillis, R.J., Herriott, M.A., LePain, T.M., Benowitz, D.L., Wypych,
J.A., Donelick, A.,
O’Sullivan, R.A. and PB Layer, P.W., (2022),40Ar/39Ar and U-Pb geochronology of
Cretaceous-Paleocene igneous rocks and Cenozoic strata of northwestern
Cook Inlet, Alaska: Linkages between arc magmatism, cooling, faulting,
and forearc subsidence.
Glazner, A.F., (2022), Cenozoic Magmatism and Plate Tectonics in Western
North America:
Have We Got It Wrong? In In the Footsteps of Warren B. Hamilton:
New Ideas in Earth Science ; Foulger, G.R., Hamilton, L.C., Jurdy, D.M.,
Stein, C.A., Howard, K.A., Stein, S., Eds.; Geological Society of
America Special Paper 553; The Geological Society of America: Boulder,
CO, USA, pp. 95–108.
Gómez-Vasconcelos, M.G., Macías, J.L., Avellán, D.R., Sosa-Ceballos, G.,
Garduño-Monroy, V.H., Cisneros-Máximo, G., Layer, P.W., Benowitz, J.,
López-Loera, H., López, F.M. and Perton, M., (2020), The control of
preexisting faults on the distribution, morphology, and volume of
monogenetic volcanism in the Michoacán-Guanajuato Volcanic Field,GSA Bulletin , 132 (11-12), pp.2455-2474.
Grow, J. A., & Atwater, T. (1970), Mid-Tertiary Tectonic Transition in
the Aleutian Arc, Geological Society of America Bulletin ,81 (12), 3715.
https://doi.org/10.1130/0016-7606(1970)81[3715:MTTITA]2.0.CO;2
Gutscher, M-A., J-L. Olivet, Daniel Aslanian, J-P. Eissen, and Rene
Maury, (1999), The “lost Inca Plateau”: Cause of flat subduction
beneath Peru?, Earth and Planetary Science Letters 171, no. 3, p.
335-341.
Hall, P.S. and Kincaid, C., (2001), Diapiric flow at subduction zones: A
recipe for rapid transport, Science , 292 (5526),
pp.2472-2475.
Herriott, T.M., (2014), Geologic context, age constraints, and
sedimentology of a Pleistocene
volcaniclastic succession near Mount Spurr volcano, south-central
Alaska, Report of Investigations , p.2.
Hughes, R.A. and Pilatasig, L.F., (2002), Cretaceous and Tertiary
terrane accretion in the Cordillera Occidental of the Andes of Ecuador,Tectonophysics , 345 (1-4), pp.29-48.
Humphreys, E.D. and Grunder, A.L., (2022), Tectonic controls on the
origin and segmentation of the Cascade Arc, USA. Bulletin of
Volcanology , 84 (12), pp.1-13.
Isacks, B.L. and Barazangi, M., (1977), Geometry of Benioff zones:
Lateral segmentation and downwards bending of the subducted lithosphere,Island Arcs, Deep Sea Trenches and Back‐Arc Basins , 1 ,
pp.99-114.
Jarrard, R.D., (1986), Relations among subduction parameters,Reviews of Geophysics , 24 (2), pp.217-284.
Jiang, C., Schmandt, B., Ward, K.M., Lin, F.C. and Worthington, L.L.,
(2018), Upper mantle seismic structure of Alaska from Rayleigh and S
wave tomography, Geophysical Research Letters , 45 (19),
pp.10-350.
Jicha, B.R., Garcia, M.O., and Wessel, P., (2018), Mid-Cenozoic Pacific
plate motion change:
Implications for the northwest Hawaiian Ridge and circum-Pacific,Geology , v. 46, p. 939–942, https:// doi .org /10 .1130 /G45175
.1.
Johnston, S.T., Jane Wynne, P., Francis, D., Hart, C.J., Enkin, R.J. and
Engebretson, D.C., (1996), Yellowstone in Yukon: the late Cretaceous
Carmacks group, Geology , 24 (11), pp.997-1000.
Jones III, J. V., Todd, E., Box, S. E., Haeussler, P. J., Holm-Denoma,
C. S., Karl, S. M., Graham, G. E., Bradley, D. C., Kylander-Clark, A.
R., Friedman, R. M. and Layer, P. W. (2021), Cretaceous to Oligocene
magmatic and tectonic evolution of the western Alaska Range: Insights
from U-Pb and 40Ar/39Ar
geochronology, Geosphere , 17(1), pp.118-153.
Jones, J., Caine, J., Holm-Denoma, C., Ryan, J., Benowitz, J. and
Drenth, B., (2017), Unraveling the boundary between the Yukon-Tanana
terrane and the parautochthonous North America in eastern Alaska. InGeological Society of America Abstracts with Programs (Vol. 49,
No. 6, p. 148).
Kim, Y., Abers, G.A., Li, J., Christensen, D., Calkins, J. and Rondenay,
S., (2014), Alaska Megathrust 2: Imaging the megathrust zone and
Yakutat/Pacific plate interface in the Alaska subduction zone,Journal of Geophysical Research: Solid Earth , 119 (3),
pp.1924- 1941.
Kirsch, M., Paterson, S.R., Wobbe, F., Ardila, A.M.M., Clausen, B.L. and
Alasino, P.H., (2016),
Temporal histories of Cordilleran continental arcs: Testing models for
magmatic episodicity, American Mineralogist , 101 (10),
pp.2133-2154.
Kusky, T.M., Glass, A. and Tucker, R., (2007), Structure, Cr-chemistry,
and age of the Border
Ranges Ultramafic-Mafic Complex: A suprasubduction zone ophiolite
complex, in Ridgway, K.D., Trop, J.M., Glen, J.M.G., and O’Neill, J.M.,
eds., Tectonic Growth of a Collisional Continental Margin: Crustal
Evolution of Southern Alaska: Geological Society of America Special
Paper 431 , p. 55–94, https:// doi .org /10 .1130 /2007 .2431 (04).
Laurencin, M., Graindorge, D., Klingelhoefer, F., Marcaillou, B. and
Evain, M., (2018), Influence of increasing convergence obliquity and
shallow slab geometry onto tectonic deformation and seismogenic behavior
along the Northern Lesser Antilles zone, Earth and Planetary
Science Letters , 492 , pp.59-72.
Lease, R.O., Haeussler, P.J., and O’Sullivan, P., (2016), Changing
exhumation patterns during
Cenozoic growth and glaciation of the Alaska Range: Insights from
detrital thermochronology and geochronology, Tectonics , v. 35, p.
934–955, https:// doi .org /10 .1002 /2015TC004067.
Licht, A., Win, Z., Westerweel, J., Cogné, N., Morley, C.K.,
Chantraprasert, S., Poblete, F.,
Ugrai, T., Nelson, B., Aung, D.W. and Dupont-Nivet, G., (2020), Magmatic
history of central Myanmar and implications for the evolution of the
Burma Terrane, Gondwana Research , 87 , pp.303-319.
Liu, X., (2022), Interactions between a flat slab and overriding plate:
Controlling factors of subduction dynamics and continental deformation,
Dissertation.
Ma, X., Attia, S., Cawood, T., Cao, W., Xu, Z. and Li, H., (2022), Arc
tempos of the Gangdese batholith, southern Tibet, Journal of
Geodynamics , 149 , p.101897.
MacKenzie, L., Abers, G.A., Fischer, K.M., Syracuse, E.M., Protti, J.M.,
Gonzalez, V. and Strauch, W., (2008), Crustal structure along the
southern Central American volcanic front, Geochemistry,
Geophysics, Geosystems , 9 (8).
Manea, V.C., Pérez-Gussinyé, M. and Manea, M., (2012), Chilean flat slab
subduction controlled by overriding plate thickness and trench rollback,Geology , 40 (1), pp.35-38.
Manea, V. and Gurnis, M., (2007), Subduction zone evolution and low
viscosity wedges and channels, Earth and Planetary Science
Letters , 264 (1-2), pp.22-45.
Mann, M. E., Abers, G. A., Daly, K., Christensen, D. H. (2022),
Subduction of an Oceanic Plateau
Across Southcentral Alaska: Scattered‐Wave Imaging, Journal of
Geophysical Research: Solid Earth : e2021JB022697.
Marot, M., Monfret, T., Gerbault, M., Nolet, G., Ranalli, G. and Pardo,
M., (2014), Flat versus normal subduction zones: a comparison based on
3-D regional traveltime tomography and petrological modelling of central
Chile and western Argentina (29–35 S), Geophysical Journal
International , 199 (3), pp.1633-1654.
Mathieu, L., van Wyk de Vries, B., Pilato, M., & Troll, V. R. (2011),
The interaction between volcanoes and strike-slip transtensional and
transpressional fault zones: Analogue models and natural ex-amples,Journal of Structural Geology , 33, 898–906.
https://doi.org/10.1016/j.jsg.2011.03.0003
McClelland, W.C., Strauss, J.V., Colpron, M., Gilotti, J.A., Faehnrich,
K., Malone, S.J., Gehrels, G.E., Macdonald, F.A. and Oldow, J.S.,
(2021), ’Taters versus sliders: Evidence for a long-lived history of
strike-slip displacement along the Canadian Arctic transform system
(CATS), GSA Today, v. 31, no. 7, p. 4–11, https:// doi .org /10 .1130
/GSATG500A .1.
McConeghy, J., Flesch, L. and Elliott, J., (2022), Investigating the
Effect of Mantle Flow and Viscosity Structure on Surface Velocities in
Alaska Using 3‐D Geodynamic Models, Journal of Geophysical
Research: Solid Earth , 127 (10), p.e2022JB024704.
Miller, M.S., O’Driscoll, L.J., Porritt, R.W. and Roeske, S.M., (2018),
Multiscale crustal architecture of Alaska inferred from P receiver
functions, Lithosphere , 10 (2), pp.267-278.
Miller, M.L., Bradley, D.C., Bundtzen, T.K. and McClelland, W., (2002),
Late Cretaceous through Cenozoic strike-slip tectonics of southwestern
Alaska, The Journal of Geology , 110 (3), pp.247-270.
O’Driscoll, L.J. and Miller, M.S., (2015), Lithospheric discontinuity
structure in Alaska, thickness variations determined by Sp receiver
functions. Tectonics , 34 (4), pp.694-714.
O’Driscoll, L.J., Humphreys, E.D. and Saucier, F., (2009), Subduction
adjacent to deep continental roots: Enhanced negative pressure in the
mantle wedge, mountain building and continental motion, Earth and
Planetary Science Letters , 280 (1-4), pp.61-70.
Panuska, B.C., Stone, D.B. and Turner, D.L., 1990, Paleomagnetism of
eocene volcanic rocks, Talkeetna Mountains, Alaska, Journal of
Geophysical Research: Solid Earth , 95 (B5), pp.6737-6750.
Porter, Ryan, and Mary Reid, (2021), Mapping the thermal lithosphere and
melting across the continental US, Geophysical Research Letters48, no. 7, e2020GL092197.
Rabiee, A., Rossetti, F., Asahara, Y., Azizi, H., Lucci, F., Lustrino,
M. and Nozaem, R., (2020), Long-lived, Eocene-Miocene stationary
magmatism in NW Iran along a transform plate boundary, Gondwana
Research , 85 , pp.237-262
Regan, S.P., Benowitz, J.A., Waldien, T.S., Holland, M.E., Roeske, S.M.,
O’Sullivan, P. and Layer, P., (2021), Long distance plutonic
relationships demonstrate 33 million years of strain partitioning along
the Denali fault, Terra Nova , 33 (6), pp.630-640.
Regan, S.P., Benowitz, J.A. and Holland, M.E., (2020), A plutonic
brother from another magma mother: Disproving the Eocene
Foraker‐McGonagall pluton piercing point and implications for long‐term
slip on the Denali fault. Terra Nova , 32 (1), pp.66-74.
Richards, J.P., (2003), Tectono-magmatic precursors for porphyry
Cu-(Mo-Au) deposit formation. Economic geology , 98 (8),
pp.1515-1533.
Richards, M. A., & Lithgow-Bertelloni, C. (1996), Plate motion changes,
the Hawaiian-Emperor bend, and the apparent success and failure of
geodynamic models, Earth and Planetary Science Letters ,137 (1–4), 19–27.
https://doi.org/10.1016/0012-821X(95)00209-U.
Richter, D.H., Smith, J.G., Lanphere, M.A., Dalrymple, G.B., Reed, B.L.
and Shew, N., (1990), Age and progression of volcanism, Wrangell
volcanic field, Alaska, Bulletin of Volcanology , 53 (1),
pp.29-44.
Ridgway, K.D., Trop, J.M., Nokleberg, W.J., Davidson, C.M. and Eastham,
K.R., (2002), Mesozoic and Cenozoic tectonics of the eastern and central
Alaska Range: Progressive basin development and deformation in a suture
zone, Geological Society of America Bulletin , 114 (12),
pp.1480-1504.
Rodríguez‐González, J., Negredo, A.M. and Billen, M.I., (2012), The role
of the overriding plate thermal state on slab dip variability and on the
occurrence of flat subduction, Geochemistry, Geophysics,
Geosystems , 13 (1).
Rondenay, S., Montési, L.G. and Abers, G.A., (2010), New geophysical
insight into the origin of the Denali volcanic gap, Geophysical
Journal International , 182 (2), pp.613-630.
Rossi, G., Abers, G.A., Rondenay, S. and Christensen, D.H., (2006),
Unusual mantle Poisson’s ratio, subduction, and crustal structure in
central Alaska, Journal of Geophysical Research: Solid Earth ,111 (B9).
Saltus, R.W. and Hudson, T.L., (2022), There is more
Wrangellia—magnetic characterization of southern Alaska crust,Canadian Journal of Earth Sciences , 59 (4), pp.243-257.
Saltus, R.W., Gough, L.P. and Day, W.C., (2007), Matching magnetic
trends and patterns across the Tintina Fault, Alaska and Canada:
evidence for offset of about 490 kilometers, Recent US Geological
Survey Studies in the Tintina Gold Province, Alaska, United States, and
Yukon, Canada. Results of a , 5 .
Schaeffer, A.J. and Lebedev, S., (2014), Imaging the North American
continent using waveform inversion of global and USArray data,Earth and Planetary Science Letters , 402 , pp.26- 41.
Seymour, N.M., Singleton, J.S., Mavor, S.P., Gomila, R., Stockli, D.F.,
Heuser, G. and Arancibia, G., (2020), The relationship between magmatism
and deformation along the intra‐arc strike‐slip Atacama fault system,
northern Chile, Tectonics , 39 (3), p.e2019TC005702.
Sharp, W.D. and Clague, D.A., (2006), 50-Ma initiation of
Hawaiian-Emperor bend records major change in Pacific plate motion,Science , 313 (5791), pp.1281-1284.
Sharples,W., M. A. Jadamec, L. N. Moresi, and F. A. Capitanio (2014),
Overriding plate controls on subduction evolution, J. Geophys.
Res. Solid Earth , 119, 6684–6704,
doi:10.1002/2014JB011163.
Skinner, S.M. and Clayton, R.W., 92013), The lack of correlation between
flat slabs and bathymetric impactors in South America, Earth and
Planetary Science Letters , 371 , pp.1- 5.
Smart, K.J., Pavlis, T.L., Sisson, V.B., Roeske, S.M. and Snee, L.W.,
(1996), The Border Ranges fault system in Glacier Bay National Park,
Alaska: evidence for major early Cenozoic dextral strike-slip motion,Canadian Journal of Earth Sciences , 33 (9), pp.1268-1282.
Stamatakos, J.A., Trop, J.M. and Ridgway, K.D., (2001), Late Cretaceous
paleogeography of Wrangellia: paleomagnetism of the MacColl Ridge
Formation, southern Alaska, revisited, Geology , 29 (10),
pp.947-950.
Stern, C.R., (2011), Subduction erosion: rates, mechanisms, and its role
in arc magmatism and the evolution of the continental crust and mantle,Gondwana Research , 20 (2-3), pp.284- 308.
Stevenson, D.J. and Turner, J.S., (1977), Angle of subduction,Nature , 270 (5635), pp.334-336.
Stock, J., & Molnar, P. (1988), Uncertainties and implications of the
Late Cretaceous and Tertiary position of North America relative to the
Farallon, Kula, and Pacific Plates, Tectonics , 7 (6),
1339–1384. https://doi.org/10.1029/TC007i006p01339
Sykes, L.R., (1978), Intraplate seismicity, reactivation of preexisting
zones of weakness, alkaline magmatism, and other tectonism postdating
continental fragmentation, Reviews of Geophysics , 16 (4),
pp.621-688.
Syracuse, E. M., & Abers, G. A., (2006), Global compilation of
variations in slab depth beneath arc volcanoes and implications: ARC
VOLCANO SLAB DEPTH, Geochemistry, Geophysics, Geosystems ,7 (5), n/a-n/a. https://doi.org/10.1029/2005GC001045
Terhune, P.J., Benowitz, J.A., Trop, J.M., O’Sullivan, P.B., Gillis,
R.J. and Freymueller, J.T., (2019), Cenozoic tectono-thermal history of
the southern Talkeetna Mountains, Alaska: Insights into a potentially
alternating convergent and transform plate margin, Geosphere ,15 (5), pp.1539-1576.
Tibaldi, A., Bonali, F.L. and Corazzato, C., (2017), Structural control
on volcanoes and magma paths from local-to orogen-scale: The central
Andes case, Tectonophysics , 699 , pp.16-41.
Tikoff, B., Housen, B.A., Maxson, J.A., Nelson, E.M., Trevino, S. and
Shipley, T.F., (2022), Hit- and-run model for Cretaceous–Paleogene
tectonism along the western margin of Laurentia, Laurentia:
Turning Points in the Evolution of a Continent: Geological Society of
America Memoir , 220 .
Tovish, A., Schubert, G. and Luyendyk, B.P., (1978), Mantle flow
pressure and the angle of subduction: Non‐Newtonian corner flows,Journal of Geophysical Research: Solid Earth , 83 (B12),
pp.5892-5898.
Trop, J. M., Benowitz, J. A., Kirby, C. S. and Brueseke, M. E. (2022),
Geochronology of the Wrangell Arc: Spatial-temporal evolution of
slab-edge magmatism along a flat-slab, subduction-transform transition,
Alaska-Yukon, Geosphere , 18(1), pp.19-48.
Trop, J.M., Benowitz, J.A., Koepp, D.Q., Sunderlin, D., Brueseke, M.E.,
Layer, P.W. and Fitzgerald, P.G., (2020), Stitch in the ditch: Nutzotin
Mountains (Alaska) fluvial strata and a dike record ca. 117–114 Ma
accretion of Wrangellia with western North America and initiation of the
Totschunda fault, Geosphere , 16 (1), pp.82-110.
Trop, J. M., Benowitz, J., Cole, R. B. and O’Sullivan, P. (2019),
Cretaceous to Miocene magmatism, sedimentation, and exhumation within
the Alaska Range suture zone: A polyphase reactivated terrane boundary,Geosphere , 15(4), pp.1066-1101.
Trop, J.M., and Ridgway, K.D. (2007), Mesozoic and Cenozoic tectonic
growth of southern Alaska: A sedimentary basin perspective, in Ridgway,
K.D., Trop, J.M., Glen, J.M.G., and O’Neill, J.M., eds., Tectonic Growth
of a Collisional Continental Margin: Crustal Evolution of Southern
Alaska: Geological Society of America Special Paper 431, p. 55– 94,
https:// doi .org /10 .1130 /2007 .2431 (04).
van Hunen, J., van den Berg, A.P. and Vlaar, N.J., (2004), Various
mechanisms to induce present-day shallow flat subduction and
implications for the younger Earth: a numerical parameter study,Physics of the Earth and Planetary Interiors , 146 (1-2),
pp.179-194.
Van Hunen, J., Van Den Berg, A.P. and Vlaar, N.J., (2002), On the role
of subducting oceanic plateaus in the development of shallow flat
subduction, Tectonophysics , 352 (3-4), pp.317-333.
Veenstra, E., Christensen, D.H., Abers, G.A. and Ferris, A., (2006),
Crustal thickness variation in south-central Alaska, Geology ,34 (9), pp.781-784.
Waldien, T. S., Roeske, S. M. and Benowitz, J. A., (2021), Tectonic
Underplating and
Dismemberment of the Maclaren‐Kluane Schist Records Late Cretaceous
Terrane Accretion Polarity and~ 480 km of Post‐52 Ma
Dextral Displacement on the Denali fault, Tectonics, 40(10)
Webb, M., White, L. T., Jost, B. M., Tiranda, H., & BouDagher-Fadel,
M., (2020), The history of Cenozoic magmatism and collision in NW New
Guinea-New insights into the tectonic evolution of the north-ernmost
margin of the Australian Plate, Gondwana Research , 82, 12– 38.
https://doi.org/10.1016/j.gr.2019.12.0100.
Wells, R., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P.
and Wooden, J.,( 2014), Geologic history of Siletzia, a large igneous
province in the Oregon and Washington Coast Range: Correlation to the
geomagnetic polarity time scale and implications for a long-lived
Yellowstone hotspot, Geosphere , 10 (4), pp.692-719.
Westerweel, J., Roperch, P., Licht, A., Dupont-Nivet, G., Win, Z.,
Poblete, F., Ruffet, G., Swe, H.H., Thi, M.K. and Aung, D.W., (2019),
Burma Terrane part of the Trans-Tethyan arc during collision with India
according to palaeomagnetic data, Nature Geoscience ,12 (10), pp.863-868.
Wilson, F.H., Hults, C.P., Mull, C.G., Karl, S.M., (2015), Geologic map
of Alaska. US Department of the Interior, US Geological Survey.
Wilson, C. R., Spiegelman, M., van Keken, P. E., & Hacker, B. R.,
(2014), Fluid flow in subduction zones: The role of solid rheology and
compaction pressure, Earth and Planetary Science Letters ,401 , 261–274. https://doi.org/10.1016/j.epsl.2014.05.052
Worthington, L. L., Van Avendonk, H. J., Gulick, S. P., Christeson, G.
L. and Pavlis, T. L., (2012), Crustal structure of the Yakutat terrane
and the evolution of subduction and collision in southern Alaska,Journal of Geophysical Research: Solid Earth , 117(B1).
Yang, G., Li, Y., Xiao, W., & Tong, L., (2015), OIB-type rocks within
West Junggar ophiolitic mélanges: Evidence for the accretion of
seamounts, Earth-Science Reviews , 150 , 477–496.
https://doi.org/10.1016/j.earscirev.2015.09.002