Alaska Division of
Geological & Geophysical Surveys Raw Data File 2005-3 , https://doi.org/10.14509/7103
Chiaradia, M., Fontboté, L. and Beate, B., (2004), Cenozoic continental arc magmatism and
associated mineralization in Ecuador, Mineralium Deposita ,39 , pp.204-222.
Chiao, L.Y., Creager, K.C., Kirby, S., Wang, K. and Dunlop, S., (2002), Geometry and
membrane deformation rate of the subducting Cascadia slab, The Cascadia subduction zone and related subduction system—Seismic structure, intraslab earthquakes and processes, and earthquake hazards , pp.02-328.
Clowes, R.M., Zelt, C.A., Amor, J.R. and Ellis, R.M., (1995), Lithospheric structure in the
southern Canadian Cordillera from a network of seismic refraction lines,Canadian Journal of Earth Sciences , 32 (10), pp.1485-1513.
Coe, R.S., Globerman, B.R., and Thrupp, G.A., (1989), Rotation of central and southern Alas­ka in the early Tertiary: Oroclinal bending by megakinking?, in Kissel, C., and Laj, C., eds., Paleomagnetic rotations and continental defor­mation: Springer, Dordrecht, p. 327–342.
Cole, R.B., Layer, P.W., Hooks, B., Cyr, A. and Turner, J., (2007), Magmatism and deformation
in a terrane suture zone south of the Denali fault, northern Talkeetna Mountains, Alaska, in Ridgway, K.D., Trop, J.M., Glen, J.M.G., and O’Neill, J.M., eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: Geological Society of America Special Paper 431 , p. 55–94, https:// doi .org /10 .1130 /2007 .2431 (04).
Cole, R.B., Nelson, S.W., Layer, P.W. and Oswald, P.J., (2006), Eocene volcanism above a depleted mantle slab window in southern Alaska,Geological Society of America Bulletin , 118 (1-2), pp.140-158.
Dahm, T., Stiller, M., Mechie, J., Heimann, S., Hensch, M., Woith, H., Schmidt, B., Gabriel, G.
and Weber, M., (2020), Seismological and geophysical signatures of the deep crustal magma systems of the Cenozoic volcanic fields beneath the Eifel, Germany, Geochemistry, Geophysics, Geosystems ,21 (9), p.e2020GC009062.
DeMets, C. and Dixon, T.H., (1999), New kinematic models for Pacific‐North America motion
from 3 Ma to present, I: Evidence for steady motion and biases in the NUVEL‐1A model, Geophysical Research Letters , 26 (13), pp.1921-1924.
DeMets, C., Iaffaldano, G. and Merkouriev, S., (2015), High-resolution Neogene and quaternary estimates of Nubia-Eurasia-North America plate motion, Geophysical Journal International , 203 (1), pp.416-427.
Doubrovine, P.V., and Tarduno, J.A., (2008), A revised kinematic model for the relative motion
between Pacific oceanic plates and North America since the Late Cretaceous, Journal of
Geophysical Research: Solid Earth , v. 113, p. 1–20.
Ducea, M.N., Saleeby, J.B. and Bergantz, G., (2015), The architecture, chemistry, and evolution of continental magmatic arcs. Annual Review of Earth and Planetary Sciences , 43 , pp.299-331.
Dusel-Bacon, C., Holm-Denoma, C.S., Jones, J.V., Aleinikoff, J.N. and Mortensen, J.K., (2017), Detrital zircon geochronology of quartzose metasedimentary rocks from parautochthonous North America, east-central Alaska. Lithosphere , 9 (6), pp.927-952.
Dusel-Bacon, C., Day, W.C. and Aleinikoff, J.N., (2013), Geochemistry, petrography, and zircon
U–Pb geochronology of Paleozoic metaigneous rocks in the Mount Veta area of east- central Alaska: Implications for the evolution of the westernmost part of the Yukon– Tanana terrane, Canadian Journal of Earth Sciences , 50 (8), pp.826-846.
Ebherhart-Phillips, D., Christensen, D. H., Brocher, T. M., Hansen, R., Ruppert, N. A., Haeussler, P. J., Abers, G. A.. (2006), Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska, with local earthquakes and active source data, Journal of Geophysical Research , Vol. 111.
Eberhart-Phillips, D., Haeussler, P.J., Freymueller, J.T., Frankel, A.D., Rubin, C.M., Craw, P.,
Ratchkovski, N.A., Anderson, G., Carver, G.A., Crone, A.J. and Dawson, T.E., (2003), The 2002 Denali fault earthquake, Alaska: A large magnitude, slip-partitioned event, Science , 300 (5622), pp.1113-1118.
Elliott, J.L., Larsen, C.F., Freymueller, J.T. and Motyka, R.J., (2010), Tectonic block motion and glacial isostatic adjustment in southeast Alaska and adjacent Canada constrained by GPS measurements,Journal of Geophysical Research: Solid Earth , 115 (B9).
Engebretson, D.C., Cox, A. and Gordon, R.G., (1984), Relative motions between oceanic plates of the Pacific basin, Journal of Geophysical Research: Solid Earth , 89 (B12), pp.10291- 10310.
England, P., Engdahl, R., & Thatcher, W. (2004), Systematic variation in the depths of slabs beneath arc volcanoes, Geophysical Journal International , 156 (2), 377–408. https://doi.org/10.1111/j.1365-246X.2003.02132.x
Estève, C., (2020), Evolution and Tectonics of the Lithosphere in Northwestern Canada, Doctoral dissertation , Université d’Ottawa/University of Ottawa).
Estève, C., Audet, P., Schaeffer, A.J., Schutt, D.L., Aster, R.C. and Cubley, J.F., (2020), Seismic evidence for craton chiseling and displacement of lithospheric mantle by the Tintina fault in the northern Canadian Cordillera, Geology , 48 (11), pp.1120-1125.
Fasulo, C.R. and Ridgway, K.D., (2021), Detrital zircon geochronology of modern river sediment in south-central Alaska: Provenance, magmatic, and tectonic insights into the Mesozoic and Cenozoic development of the southern Alaska convergent margin, Geosphere , 17 (4), pp.1248-1267.
Ferris, A., Abers, G.A., Christensen, D.H. and Veenstra, E., 2003. High resolution image of the subducted Pacific (?) plate beneath central Alaska, 50–150 km depth. Earth and Planetary Science Letters ,214 (3-4), pp.575-588.
Finzel, E.S., (2019), Partitioning pervasive detrital geochronologic age distributions in the southern Alaskan forearc, Frontiers in Earth Science , 7 , p.217.
Gama, I., Fischer, K.M., Dalton, C.A. and Eilon, Z., (2022), Variations in Lithospheric Thickness across the Denali Fault and in Northern Alaska, Geophysical Research Letters , p.e2022GL101256.
Garver, J.I. and Davidson, C.M., (2015), Southwestern Laurentian zircons in upper Cretaceous flysch of the Chugach-Prince William terrane in Alaska, American Journal of Science , 315 (6), pp.537-556.
George, S.W., Perez, N.D., Struble, W., Curry, M.E. and Horton, B.K., (2022), Aseismic ridge subduction focused late Cenozoic exhumation above the Peruvian flat slab, Earth and Planetary Science Letters ,600 , p.117754.
Gianni, G.M. and Luján, S.P., (2021), Geodynamic controls on magmatic arc migration and quiescence. Earth-Science Reviews , 218 , p.103676.
Gillis, R.J., Herriott, M.A., LePain, T.M., Benowitz, D.L., Wypych, J.A., Donelick, A.,
O’Sullivan, R.A. and PB Layer, P.W., (2022),40Ar/39Ar and U-Pb geochronology of Cretaceous-Paleocene igneous rocks and Cenozoic strata of northwestern Cook Inlet, Alaska: Linkages between arc magmatism, cooling, faulting, and forearc subsidence.
Glazner, A.F., (2022), Cenozoic Magmatism and Plate Tectonics in Western North America:
Have We Got It Wrong? In In the Footsteps of Warren B. Hamilton: New Ideas in Earth Science ; Foulger, G.R., Hamilton, L.C., Jurdy, D.M., Stein, C.A., Howard, K.A., Stein, S., Eds.; Geological Society of America Special Paper 553; The Geological Society of America: Boulder, CO, USA, pp. 95–108.
Gómez-Vasconcelos, M.G., Macías, J.L., Avellán, D.R., Sosa-Ceballos, G., Garduño-Monroy, V.H., Cisneros-Máximo, G., Layer, P.W., Benowitz, J., López-Loera, H., López, F.M. and Perton, M., (2020), The control of preexisting faults on the distribution, morphology, and volume of monogenetic volcanism in the Michoacán-Guanajuato Volcanic Field,GSA Bulletin , 132 (11-12), pp.2455-2474.
Grow, J. A., & Atwater, T. (1970), Mid-Tertiary Tectonic Transition in the Aleutian Arc, Geological Society of America Bulletin ,81 (12), 3715. https://doi.org/10.1130/0016-7606(1970)81[3715:MTTITA]2.0.CO;2
Gutscher, M-A., J-L. Olivet, Daniel Aslanian, J-P. Eissen, and Rene Maury, (1999), The “lost Inca Plateau”: Cause of flat subduction beneath Peru?, Earth and Planetary Science Letters 171, no. 3, p. 335-341.
Hall, P.S. and Kincaid, C., (2001), Diapiric flow at subduction zones: A recipe for rapid transport, Science , 292 (5526), pp.2472-2475.
Herriott, T.M., (2014), Geologic context, age constraints, and sedimentology of a Pleistocene
volcaniclastic succession near Mount Spurr volcano, south-central Alaska, Report of Investigations , p.2.
Hughes, R.A. and Pilatasig, L.F., (2002), Cretaceous and Tertiary terrane accretion in the Cordillera Occidental of the Andes of Ecuador,Tectonophysics , 345 (1-4), pp.29-48.
Humphreys, E.D. and Grunder, A.L., (2022), Tectonic controls on the origin and segmentation of the Cascade Arc, USA. Bulletin of Volcanology , 84 (12), pp.1-13.
Isacks, B.L. and Barazangi, M., (1977), Geometry of Benioff zones: Lateral segmentation and downwards bending of the subducted lithosphere,Island Arcs, Deep Sea Trenches and Back‐Arc Basins , 1 , pp.99-114.
Jarrard, R.D., (1986), Relations among subduction parameters,Reviews of Geophysics , 24 (2), pp.217-284.
Jiang, C., Schmandt, B., Ward, K.M., Lin, F.C. and Worthington, L.L., (2018), Upper mantle seismic structure of Alaska from Rayleigh and S wave tomography, Geophysical Research Letters , 45 (19), pp.10-350.
Jicha, B.R., Garcia, M.O., and Wessel, P., (2018), Mid-Cenozoic Pacific plate motion change:
Implications for the northwest Hawaiian Ridge and circum-Pacific,Geology , v. 46, p. 939–942, https:// doi .org /10 .1130 /G45175 .1.
Johnston, S.T., Jane Wynne, P., Francis, D., Hart, C.J., Enkin, R.J. and Engebretson, D.C., (1996), Yellowstone in Yukon: the late Cretaceous Carmacks group, Geology , 24 (11), pp.997-1000.
Jones III, J. V., Todd, E., Box, S. E., Haeussler, P. J., Holm-Denoma, C. S., Karl, S. M., Graham, G. E., Bradley, D. C., Kylander-Clark, A. R., Friedman, R. M. and Layer, P. W. (2021), Cretaceous to Oligocene magmatic and tectonic evolution of the western Alaska Range: Insights from U-Pb and 40Ar/39Ar geochronology, Geosphere , 17(1), pp.118-153.
Jones, J., Caine, J., Holm-Denoma, C., Ryan, J., Benowitz, J. and Drenth, B., (2017), Unraveling the boundary between the Yukon-Tanana terrane and the parautochthonous North America in eastern Alaska. InGeological Society of America Abstracts with Programs (Vol. 49, No. 6, p. 148).
Kim, Y., Abers, G.A., Li, J., Christensen, D., Calkins, J. and Rondenay, S., (2014), Alaska Megathrust 2: Imaging the megathrust zone and Yakutat/Pacific plate interface in the Alaska subduction zone,Journal of Geophysical Research: Solid Earth , 119 (3), pp.1924- 1941.
Kirsch, M., Paterson, S.R., Wobbe, F., Ardila, A.M.M., Clausen, B.L. and Alasino, P.H., (2016),
Temporal histories of Cordilleran continental arcs: Testing models for magmatic episodicity, American Mineralogist , 101 (10), pp.2133-2154.
Kusky, T.M., Glass, A. and Tucker, R., (2007), Structure, Cr-chemistry, and age of the Border
Ranges Ultramafic-Mafic Complex: A suprasubduction zone ophiolite complex, in Ridgway, K.D., Trop, J.M., Glen, J.M.G., and O’Neill, J.M., eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: Geological Society of America Special Paper 431 , p. 55–94, https:// doi .org /10 .1130 /2007 .2431 (04).
Laurencin, M., Graindorge, D., Klingelhoefer, F., Marcaillou, B. and Evain, M., (2018), Influence of increasing convergence obliquity and shallow slab geometry onto tectonic deformation and seismogenic behavior along the Northern Lesser Antilles zone, Earth and Planetary Science Letters , 492 , pp.59-72.
Lease, R.O., Haeussler, P.J., and O’Sullivan, P., (2016), Changing exhumation patterns during
Cenozoic growth and glaciation of the Alaska Range: Insights from detrital thermochronology and geochronology, Tectonics , v. 35, p. 934–955, https:// doi .org /10 .1002 /2015TC004067.
Licht, A., Win, Z., Westerweel, J., Cogné, N., Morley, C.K., Chantraprasert, S., Poblete, F.,
Ugrai, T., Nelson, B., Aung, D.W. and Dupont-Nivet, G., (2020), Magmatic history of central Myanmar and implications for the evolution of the Burma Terrane, Gondwana Research , 87 , pp.303-319.
Liu, X., (2022), Interactions between a flat slab and overriding plate: Controlling factors of subduction dynamics and continental deformation, Dissertation.
Ma, X., Attia, S., Cawood, T., Cao, W., Xu, Z. and Li, H., (2022), Arc tempos of the Gangdese batholith, southern Tibet, Journal of Geodynamics , 149 , p.101897.
MacKenzie, L., Abers, G.A., Fischer, K.M., Syracuse, E.M., Protti, J.M., Gonzalez, V. and Strauch, W., (2008), Crustal structure along the southern Central American volcanic front, Geochemistry, Geophysics, Geosystems , 9 (8).
Manea, V.C., Pérez-Gussinyé, M. and Manea, M., (2012), Chilean flat slab subduction controlled by overriding plate thickness and trench rollback,Geology , 40 (1), pp.35-38.
Manea, V. and Gurnis, M., (2007), Subduction zone evolution and low viscosity wedges and channels, Earth and Planetary Science Letters , 264 (1-2), pp.22-45.
Mann, M. E., Abers, G. A., Daly, K., Christensen, D. H. (2022), Subduction of an Oceanic Plateau
Across Southcentral Alaska: Scattered‐Wave Imaging, Journal of Geophysical Research: Solid Earth : e2021JB022697.
Marot, M., Monfret, T., Gerbault, M., Nolet, G., Ranalli, G. and Pardo, M., (2014), Flat versus normal subduction zones: a comparison based on 3-D regional traveltime tomography and petrological modelling of central Chile and western Argentina (29–35 S), Geophysical Journal International , 199 (3), pp.1633-1654.
Mathieu, L., van Wyk de Vries, B., Pilato, M., & Troll, V. R. (2011), The interaction between volcanoes and strike-slip transtensional and transpressional fault zones: Analogue models and natural ex-amples,Journal of Structural Geology , 33, 898–906. https://doi.org/10.1016/j.jsg.2011.03.0003
McClelland, W.C., Strauss, J.V., Colpron, M., Gilotti, J.A., Faehnrich, K., Malone, S.J., Gehrels, G.E., Macdonald, F.A. and Oldow, J.S., (2021), ’Taters versus sliders: Evidence for a long-lived history of strike-slip displacement along the Canadian Arctic transform system (CATS), GSA Today, v. 31, no. 7, p. 4–11, https:// doi .org /10 .1130 /GSATG500A .1.
McConeghy, J., Flesch, L. and Elliott, J., (2022), Investigating the Effect of Mantle Flow and Viscosity Structure on Surface Velocities in Alaska Using 3‐D Geodynamic Models, Journal of Geophysical Research: Solid Earth , 127 (10), p.e2022JB024704.
Miller, M.S., O’Driscoll, L.J., Porritt, R.W. and Roeske, S.M., (2018), Multiscale crustal architecture of Alaska inferred from P receiver functions, Lithosphere , 10 (2), pp.267-278.
Miller, M.L., Bradley, D.C., Bundtzen, T.K. and McClelland, W., (2002), Late Cretaceous through Cenozoic strike-slip tectonics of southwestern Alaska, The Journal of Geology , 110 (3), pp.247-270.
O’Driscoll, L.J. and Miller, M.S., (2015), Lithospheric discontinuity structure in Alaska, thickness variations determined by Sp receiver functions. Tectonics , 34 (4), pp.694-714.
O’Driscoll, L.J., Humphreys, E.D. and Saucier, F., (2009), Subduction adjacent to deep continental roots: Enhanced negative pressure in the mantle wedge, mountain building and continental motion, Earth and Planetary Science Letters , 280 (1-4), pp.61-70.
Panuska, B.C., Stone, D.B. and Turner, D.L., 1990, Paleomagnetism of eocene volcanic rocks, Talkeetna Mountains, Alaska, Journal of Geophysical Research: Solid Earth , 95 (B5), pp.6737-6750.
Porter, Ryan, and Mary Reid, (2021), Mapping the thermal lithosphere and melting across the continental US, Geophysical Research Letters48, no. 7, e2020GL092197.
Rabiee, A., Rossetti, F., Asahara, Y., Azizi, H., Lucci, F., Lustrino, M. and Nozaem, R., (2020), Long-lived, Eocene-Miocene stationary magmatism in NW Iran along a transform plate boundary, Gondwana Research , 85 , pp.237-262
Regan, S.P., Benowitz, J.A., Waldien, T.S., Holland, M.E., Roeske, S.M., O’Sullivan, P. and Layer, P., (2021), Long distance plutonic relationships demonstrate 33 million years of strain partitioning along the Denali fault, Terra Nova , 33 (6), pp.630-640.
Regan, S.P., Benowitz, J.A. and Holland, M.E., (2020), A plutonic brother from another magma mother: Disproving the Eocene Foraker‐McGonagall pluton piercing point and implications for long‐term slip on the Denali fault. Terra Nova , 32 (1), pp.66-74.
Richards, J.P., (2003), Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic geology , 98 (8), pp.1515-1533.
Richards, M. A., & Lithgow-Bertelloni, C. (1996), Plate motion changes, the Hawaiian-Emperor bend, and the apparent success and failure of geodynamic models, Earth and Planetary Science Letters ,137 (1–4), 19–27. https://doi.org/10.1016/0012-821X(95)00209-U.
Richter, D.H., Smith, J.G., Lanphere, M.A., Dalrymple, G.B., Reed, B.L. and Shew, N., (1990), Age and progression of volcanism, Wrangell volcanic field, Alaska, Bulletin of Volcanology , 53 (1), pp.29-44.
Ridgway, K.D., Trop, J.M., Nokleberg, W.J., Davidson, C.M. and Eastham, K.R., (2002), Mesozoic and Cenozoic tectonics of the eastern and central Alaska Range: Progressive basin development and deformation in a suture zone, Geological Society of America Bulletin , 114 (12), pp.1480-1504.
Rodríguez‐González, J., Negredo, A.M. and Billen, M.I., (2012), The role of the overriding plate thermal state on slab dip variability and on the occurrence of flat subduction, Geochemistry, Geophysics, Geosystems , 13 (1).
Rondenay, S., Montési, L.G. and Abers, G.A., (2010), New geophysical insight into the origin of the Denali volcanic gap, Geophysical Journal International , 182 (2), pp.613-630.
Rossi, G., Abers, G.A., Rondenay, S. and Christensen, D.H., (2006), Unusual mantle Poisson’s ratio, subduction, and crustal structure in central Alaska, Journal of Geophysical Research: Solid Earth ,111 (B9).
Saltus, R.W. and Hudson, T.L., (2022), There is more Wrangellia—magnetic characterization of southern Alaska crust,Canadian Journal of Earth Sciences , 59 (4), pp.243-257.
Saltus, R.W., Gough, L.P. and Day, W.C., (2007), Matching magnetic trends and patterns across the Tintina Fault, Alaska and Canada: evidence for offset of about 490 kilometers, Recent US Geological Survey Studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada. Results of a , 5 .
Schaeffer, A.J. and Lebedev, S., (2014), Imaging the North American continent using waveform inversion of global and USArray data,Earth and Planetary Science Letters , 402 , pp.26- 41.
Seymour, N.M., Singleton, J.S., Mavor, S.P., Gomila, R., Stockli, D.F., Heuser, G. and Arancibia, G., (2020), The relationship between magmatism and deformation along the intra‐arc strike‐slip Atacama fault system, northern Chile, Tectonics , 39 (3), p.e2019TC005702.
Sharp, W.D. and Clague, D.A., (2006), 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific plate motion,Science , 313 (5791), pp.1281-1284.
Sharples,W., M. A. Jadamec, L. N. Moresi, and F. A. Capitanio (2014), Overriding plate controls on subduction evolution, J. Geophys. Res. Solid Earth , 119, 6684–6704,
doi:10.1002/2014JB011163.
Skinner, S.M. and Clayton, R.W., 92013), The lack of correlation between flat slabs and bathymetric impactors in South America, Earth and Planetary Science Letters , 371 , pp.1- 5.
Smart, K.J., Pavlis, T.L., Sisson, V.B., Roeske, S.M. and Snee, L.W., (1996), The Border Ranges fault system in Glacier Bay National Park, Alaska: evidence for major early Cenozoic dextral strike-slip motion,Canadian Journal of Earth Sciences , 33 (9), pp.1268-1282.
Stamatakos, J.A., Trop, J.M. and Ridgway, K.D., (2001), Late Cretaceous paleogeography of Wrangellia: paleomagnetism of the MacColl Ridge Formation, southern Alaska, revisited, Geology , 29 (10), pp.947-950.
Stern, C.R., (2011), Subduction erosion: rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle,Gondwana Research , 20 (2-3), pp.284- 308.
Stevenson, D.J. and Turner, J.S., (1977), Angle of subduction,Nature , 270 (5635), pp.334-336.
Stock, J., & Molnar, P. (1988), Uncertainties and implications of the Late Cretaceous and Tertiary position of North America relative to the Farallon, Kula, and Pacific Plates, Tectonics , 7 (6), 1339–1384. https://doi.org/10.1029/TC007i006p01339
Sykes, L.R., (1978), Intraplate seismicity, reactivation of preexisting zones of weakness, alkaline magmatism, and other tectonism postdating continental fragmentation, Reviews of Geophysics , 16 (4), pp.621-688.
Syracuse, E. M., & Abers, G. A., (2006), Global compilation of variations in slab depth beneath arc volcanoes and implications: ARC VOLCANO SLAB DEPTH, Geochemistry, Geophysics, Geosystems ,7 (5), n/a-n/a. https://doi.org/10.1029/2005GC001045
Terhune, P.J., Benowitz, J.A., Trop, J.M., O’Sullivan, P.B., Gillis, R.J. and Freymueller, J.T., (2019), Cenozoic tectono-thermal history of the southern Talkeetna Mountains, Alaska: Insights into a potentially alternating convergent and transform plate margin, Geosphere ,15 (5), pp.1539-1576.
Tibaldi, A., Bonali, F.L. and Corazzato, C., (2017), Structural control on volcanoes and magma paths from local-to orogen-scale: The central Andes case, Tectonophysics , 699 , pp.16-41.
Tikoff, B., Housen, B.A., Maxson, J.A., Nelson, E.M., Trevino, S. and Shipley, T.F., (2022), Hit- and-run model for Cretaceous–Paleogene tectonism along the western margin of Laurentia, Laurentia: Turning Points in the Evolution of a Continent: Geological Society of America Memoir , 220 .
Tovish, A., Schubert, G. and Luyendyk, B.P., (1978), Mantle flow pressure and the angle of subduction: Non‐Newtonian corner flows,Journal of Geophysical Research: Solid Earth , 83 (B12), pp.5892-5898.
Trop, J. M., Benowitz, J. A., Kirby, C. S. and Brueseke, M. E. (2022), Geochronology of the Wrangell Arc: Spatial-temporal evolution of slab-edge magmatism along a flat-slab, subduction-transform transition, Alaska-Yukon, Geosphere , 18(1), pp.19-48.
Trop, J.M., Benowitz, J.A., Koepp, D.Q., Sunderlin, D., Brueseke, M.E., Layer, P.W. and Fitzgerald, P.G., (2020), Stitch in the ditch: Nutzotin Mountains (Alaska) fluvial strata and a dike record ca. 117–114 Ma accretion of Wrangellia with western North America and initiation of the Totschunda fault, Geosphere , 16 (1), pp.82-110.
Trop, J. M., Benowitz, J., Cole, R. B. and O’Sullivan, P. (2019), Cretaceous to Miocene magmatism, sedimentation, and exhumation within the Alaska Range suture zone: A polyphase reactivated terrane boundary,Geosphere , 15(4), pp.1066-1101.
Trop, J.M., and Ridgway, K.D. (2007), Mesozoic and Cenozoic tectonic growth of southern Alaska: A sedimentary basin perspective, in Ridgway, K.D., Trop, J.M., Glen, J.M.G., and O’Neill, J.M., eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: Geological Society of America Special Paper 431, p. 55– 94, https:// doi .org /10 .1130 /2007 .2431 (04).
van Hunen, J., van den Berg, A.P. and Vlaar, N.J., (2004), Various mechanisms to induce present-day shallow flat subduction and implications for the younger Earth: a numerical parameter study,Physics of the Earth and Planetary Interiors , 146 (1-2), pp.179-194.
Van Hunen, J., Van Den Berg, A.P. and Vlaar, N.J., (2002), On the role of subducting oceanic plateaus in the development of shallow flat subduction, Tectonophysics , 352 (3-4), pp.317-333.
Veenstra, E., Christensen, D.H., Abers, G.A. and Ferris, A., (2006), Crustal thickness variation in south-central Alaska, Geology ,34 (9), pp.781-784.
Waldien, T. S., Roeske, S. M. and Benowitz, J. A., (2021), Tectonic Underplating and
Dismemberment of the Maclaren‐Kluane Schist Records Late Cretaceous Terrane Accretion Polarity and~ 480 km of Post‐52 Ma Dextral Displacement on the Denali fault, Tectonics, 40(10)
Webb, M., White, L. T., Jost, B. M., Tiranda, H., & BouDagher-Fadel, M., (2020), The history of Cenozoic magmatism and collision in NW New Guinea-New insights into the tectonic evolution of the north-ernmost margin of the Australian Plate, Gondwana Research , 82, 12– 38. https://doi.org/10.1016/j.gr.2019.12.0100.
Wells, R., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P. and Wooden, J.,( 2014), Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot, Geosphere , 10 (4), pp.692-719.
Westerweel, J., Roperch, P., Licht, A., Dupont-Nivet, G., Win, Z., Poblete, F., Ruffet, G., Swe, H.H., Thi, M.K. and Aung, D.W., (2019), Burma Terrane part of the Trans-Tethyan arc during collision with India according to palaeomagnetic data, Nature Geoscience ,12 (10), pp.863-868.
Wilson, F.H., Hults, C.P., Mull, C.G., Karl, S.M., (2015), Geologic map of Alaska. US Department of the Interior, US Geological Survey.
Wilson, C. R., Spiegelman, M., van Keken, P. E., & Hacker, B. R., (2014), Fluid flow in subduction zones: The role of solid rheology and compaction pressure, Earth and Planetary Science Letters ,401 , 261–274. https://doi.org/10.1016/j.epsl.2014.05.052
Worthington, L. L., Van Avendonk, H. J., Gulick, S. P., Christeson, G. L. and Pavlis, T. L., (2012), Crustal structure of the Yakutat terrane and the evolution of subduction and collision in southern Alaska,Journal of Geophysical Research: Solid Earth , 117(B1).
Yang, G., Li, Y., Xiao, W., & Tong, L., (2015), OIB-type rocks within West Junggar ophiolitic mélanges: Evidence for the accretion of seamounts, Earth-Science Reviews , 150 , 477–496. https://doi.org/10.1016/j.earscirev.2015.09.002