Figure 5. (a-d) The 2D-GIWAXS patterns of blend films base on PJ1-γ . (e) The in-plane and out-of-plane line cuts of the 2D GIWAXS patterns for the blend films base on PJ1-γ .
To examine the molecular stacking and crystallinity of different films, grazing-incidence wide-angle X- Ray scattering (GIWAXS) experiments were conducted. Figures 5a-5d displays the two-dimensional patterns and line-cuts along the out-of-plane and in-plane directions of the blended films prepared from either SqP or BC method. The d -spacing and crystal coherence length (CCL) of these films are summarized in Table S6 . The π-π stacking distances for all four films were found to be 3.70 Å. The CCL values for (BC)PM6:PJ1 , (BC)PM6:PJ1 +SA, (SqP)PM6/PJ1 , and (SqP)PM6/PJ1 +SA are 16.8 Å, 16.9 Å, 16.7 Å, and 16.2 Å, respectively. Notably, the d -spacing and CCL between the PYF-T-o and PJ1 films are largely different (Table S1 ). For example, the CCLs for the (100) peak of the PYF-T-o base blend films are in the range of 54-58 Å, while those of the PJ1 based films are in the range of 88-95 Å, highlighting the effect of the difference in the miscibility between materials on the phase separation behavior of the blend film.
Figure 6. Normalized PCE change with light-soaking time using an MPP tracking method for the BC and SqP devices.
The long-term photostability of all-PSC is crucial for their future commercial application. To assess the photostability of different all-PSCs, we continuously monitored the performance of the optimized (BC)PM6:PJ1-γ and (BC)PM6:PJ1-γ +SA devices and their SqP counterparts under 1 sun LED illumination in a test chamber. As shown inFigure 6 , the (BC)PM6:PJ1-γ device has a rapid decrease in PCE with a T80 value of ~65 h. In contrast, the SqP method and the addition of SA both lead to enhanced stability than the BC device. Specifically, after adding SA, the T80 value of the (BC)PM6:PJ1-γ +SA device slightly increases from about 65 h device to 140 h. Furthermore, the SA-free SqP device shows a significant increase in T80 value to nearly 250 h. Notably, after over 300 h of continuous illumination, the (SqP)PM6/PJ1-γ +SA devices exhibit the highest photostability (T80 value is almost 310 h). The result that the SqP method could increase T80 of all-PSC has been reported in our previous reports using other material combinations, which is further confirmed by this work. The surprising result of this work is that the incorporation of the small amount of SA further promotes the stability of the all-PSCs.
Conclusion
In conclusion, the incorporation of a small amount of solid additive into the binary all-polymer system has successfully achieved a maximum PCE of 18% in devices sequentially processed from the hydrocarbon solvent, toluene, which is among the highest PCEs of non-halogen solvent processed all-PSCs. This demonstrates a relatively simple approach to further enhance the performance of all-PSCs. We studied four different comparisons side-by-side in this work, namely, toluene vs. chloroform, blend-casting vs. sequential processing, SA-free vs SA, PYF-T-ovs PJ1-γ . Finally, the stability of the devices was assessed using MPPT, and the SqP devices with SA exhibited approximately 80% PCE retention after continuous exposure to 1-sun illumination for over 400 hours. This presents a new avenue for exploring highly efficient and stable all-polymer systems in future research.
Supporting Information
Supplementary data associated with this article can be found in the online version at XXX
Acknowledgement
G. Z., C. Z., and L. Z. contributed equally to this work. The work was supported by the Guangdong Basic and Applied Basic Research Foundation (2022A1515010875), Guangdong Basic and Applied Basic Research Foundation (2021A1515110017), Natural Science Foundation of Top Talent of SZTU (grant no. 20200205), Project of Education Commission of Guangdong Province of China (2021KQNCX080), Research on the electrochemical reaction mechanism of the anode of medium-Low temperature direct ammonia SOFCs (20231063020006), the project of all solid-state high energy density energy storage system (20221063010031) and the project of Shenzhen Overseas Talent upon Industrialization of 1kw stack for direct ammonia SOFCs (20221061010002). S. L. would like to thank Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515011673), Education Department of Guangdong Province (No. 2021KCXTD045) and National Natural Science Foundation of China (No. 12274303). H. H. thanks for the support from the Fundamental Research Funds for the Central Universities (2232023A-01), NSFC No. 52103202 and beamline BL16B1 at Shanghai Synchrotron Radiation Facility (SSRF) for the synchrotron experiment.
Author Contribution
Guoping Zhang: Investigation, conceptualization, writing-original, writing-review & editing, performing experiments and analysis Chaoyue Zhao: Analysis about GIWAXS and devices fabrication, writing-review & editing Liangxiang Zhu: Device fabrication, J-V measurements, Contact angle test and formal analysis Lihong Wang: Data analysis on device J-V characteristics and light intensity dependence studies Wenzhao Xiong: GIWAXS experiments and data analysis Huawei Hu: GIWAXS experiments and data analysis, and providing resources for morphology investigation Qing Bai: Investigation and formal analysis Yaping Wang: Participated in device testing and formal analysis Chen Xie: Investigation on properties of active layer and formal analysis Peng You: Investigation on properties of active layer and formal analysis He Yan: Resources on materials Dan Wu: Analysis of the EQE & UV-Vis absorption results Tao Yang: Analysis of the AFM and mobility results Mingxia Qiu: Resources on J-V characterization, EQE, and supervision Shunpu Li: Resources on device fabrication, J-V measurements, supervision, and funding acquisition Guangye Zhang: Resources on laboratory, supervision of the whole project, funding acquisition that supported most of the project, project administration, writing manuscript, revision & editing
Reference
[1] K. K. Zhou, K. H. Xian, Q. C. Qi, M. Y. Gao, Z. X. Peng, J. W. Liu, Y. Liu, S. M. Li, Y. D. Zhang, Y. H. Geng, L. Ye, Advanced Functional Materials 2022 , 32, 14.
[2] Y. Zhang, B. Q. Wu, Y. K. He, W. Y. Deng, J. W. Li, J. Y. Li, N. Qiao, Y. F. Xing, X. Y. Yuan, N. Li, C. J. Brabec, H. B. Wu, G. H. Lu, C. H. Duan, F. Huang, Y. Cao, Nano Energy 2022 , 93, 11.
[3] G. Zeng, W. J. Chen, X. B. Chen, Y. Hu, Y. Chen, B. Zhang, H. Y. Chen, W. W. Sun, Y. X. Shen, Y. W. Li, F. Yan, Y. F. Li, J. Am. Chem. Soc. 2022 , 144, 8658.
[4] Y. C. Liang, D. F. Zhang, Z. R. Wu, T. Jia, L. Luer, H. R. Tang, L. Hong, J. B. Zhang, K. Zhang, C. J. Brabec, N. Li, F. Huang,Nat. Energy 2022 , 7, 1180.
[5] Z. G. Zhang, Y. F. Li, Angew. Chem.-Int. Edit.2021 , 60, 4422.
[6] R. Sun, W. Wang, H. Yu, Z. Chen, X. X. Xia, H. Shen, J. Guo, M. M. Shi, Y. N. Zheng, Y. Wu, W. Y. Yang, T. Wang, Q. Wu, Y. Yang, X. H. Lu, J. L. Xia, C. J. Brabec, H. Yan, Y. F. Li, J. Min, Joule2021 , 5, 1548.
[7] B. Kan, F. Ershad, Z. Y. Rao, C. J. Yu, Nano Research2021 , 14, 2891.
[8] Y. Song, K. Zhang, S. Dong, R. X. Xia, F. Huang, Y. Cao,ACS Appl. Mater. Interfaces 2020 , 12, 18473.
[9] G. Zeng, W. Chen, X. Chen, Y. Hu, Y. Chen, B. Zhang, H. Chen, W. Sun, Y. Shen, Y. Li, F. Yan, Y. Li, J. Am. Chem. Soc.2022 , 144, 8658.
[10] Y. Song, K. Zhang, S. Dong, R. Xia, F. Huang, Y. Cao, ACS Appl. Mater. Interfaces 2020 , 12, 18473.
[11] Y. W. Han, S. J. Jeon, H. S. Lee, H. Park, K. S. Kim, H.-W. Lee, D. K. Moon, Advanced Energy Materials 2019 , 9, 1902065.
[12] R. Sun, T. Wang, Q. Fan, M. Wu, X. Yang, X. Wu, Y. Yu, X. Xia, F. Cui, J. Wan, X. Lu, X. Hao, A. K. Y. Jen, E. Spiecker, J. Min,Joule 2023 , 7, 221.
[13] R. Ma, Q. Fan, T. A. Dela Peña, B. Wu, H. Liu, Q. Wu, Q. Wei, J. Wu, X. Lu, M. Li, W. Ma, G. Li, Advanced Materials2023 , 35, 2212275.
[14] Y. Cai, C. Xie, Q. Li, C. Liu, J. Gao, M. H. Jee, J. Qiao, Y. Li, J. Song, X. Hao, H. Y. Woo, Z. Tang, Y. Zhou, C. Zhang, H. Huang, Y. Sun, Advanced Materials 2023 , 35, 2208165.
[15] J. Wang, Y. Cui, Y. Xu, K. Xian, P. Bi, Z. Chen, K. Zhou, L. Ma, T. Zhang, Y. Yang, Y. Zu, H. Yao, X. Hao, L. Ye, J. Hou,Advanced Materials 2022 , 34, 2205009.
[16] Y. Li, Q. Li, Y. H. Cai, H. Jin, J. Q. Zhang, Z. Tang, C. F. Zhang, Z. X. Wei, Y. M. Sun, Energy & Environmental Science2022 , 15, 3854.
[17] C. Zhang, Z. W. Ge, J. W. Xue, W. Ma, Y. M. Sun,Macromolecular Chemistry and Physics 2023 , 224, 7.
[18] B. Q. Wu, Y. L. Li, S. Z. Tian, Y. Zhang, L. H. Pan, K. Z. Liu, M. Q. Yang, F. Huang, Y. Cao, C. H. Duan, Chinese Journal of Chemistry 2023 , 41, 790.
[19] P. Wang, Y. H. Zhu, H. X. Tao, Y. L. Ma, D. D. Cai, Q. S. Tu, R. C. Liao, Q. D. Zheng, Chinese Journal of Polymer Science2023 , DOI: 10.1007/s10118-023-2909-39.
[20] C. Wang, C. Guan, T. Wu, X. Q. Liu, J. Fang, F. Liu, C. Y. Xiao, W. W. Li, ACS Appl. Mater. Interfaces 2023 , 15, 13363.
[21] Z. Q. Zhang, D. Deng, Y. Li, J. W. Ding, Q. Wu, L. L. Zhang, G. J. Zhang, M. J. Iqbal, R. Wang, J. Q. Zhang, X. H. Qiu, Z. X. Wei,Advanced Energy Materials 2022 , 12, 10.
[22] Z. Y. Li, F. Peng, H. L. Quan, X. T. Qian, L. Ying, Y. Cao,Chem. Eng. J. 2022 , 430, 9.
[23] Y. X. Kong, Y. X. Li, J. Y. Yuan, L. M. Ding, Infomat2022 , 4, 8.
[24] T. Jia, J. B. Zhang, H. R. Tang, J. C. Jia, K. Zhang, W. Y. Deng, S. Dong, F. Huang, Chem. Eng. J. 2022 , 433, 8.
[25] K. Hu, J. Q. Du, C. Zhu, W. B. Lai, J. Li, J. M. Xin, W. Ma, Z. J. Zhang, J. Y. Zhang, L. Meng, Y. F. Li, Sci. China-Chem.2022 , 65, 954.
[26] J. C. Jia, Q. R. Huang, T. Jia, K. Zhang, J. Zhang, J. S. Miao, F. Huang, C. L. Yang, Advanced Energy Materials 2022 , 12, 9.
[27] Q. Ma, Z. R. Jia, L. Meng, H. Yang, J. Y. Zhang, W. B. Lai, J. Guo, X. Jiang, C. H. Cui, Y. F. Li, Advanced Functional Materials2023 , 33, 8.
[28] L. Zhang, T. Jia, L. Pan, B. Wu, Z. Wang, K. Gao, F. Liu, C. Duan, F. Huang, Y. Cao, Science China Chemistry 2021 , 64, 408.
[29] H. Sun, B. Liu, Y. Ma, J.-W. Lee, J. Yang, J. Wang, Y. Li, B. Li, K. Feng, Y. Shi, B. Zhang, D. Han, H. Meng, L. Niu, B. J. Kim, Q. Zheng, X. Guo, Advanced Materials 2021 , 33, 2102635.
[30] T. Jia, J. Zhang, W. Zhong, Y. Liang, K. Zhang, S. Dong, L. Ying, F. Liu, X. Wang, F. Huang, Y. Cao, Nano Energy2020 , 72, 104718.
[31] K. Feng, Z. Wu, M. Su, S. Ma, Y. Shi, K. Yang, Y. Wang, Y. Zhang, W. Sun, X. Cheng, L. Huang, J. Min, H. Y. Woo, X. Guo,Advanced Functional Materials 2021 , 31, 2008494.
[32] C. Duan, Z. Li, S. Pang, Y.-L. Zhu, B. Lin, F. J. M. Colberts, P. J. Leenaers, E. Wang, Z.-Y. Sun, W. Ma, S. C. J. Meskers, R. A. J. Janssen, Solar RRL 2018 , 2, 1800247.
[33] C. Shang, S. Zhang, D. Han, X. Ding, Y. Zhang, C. Yang, J. Ding, X. Bao, ACS Appl. Mater. Interfaces 2023 , 15, 5538.
[34] G. P. Zhang, L. H. Wang, C. Y. Zhao, Y. J. Wang, R. Y. Hu, J. X. Che, S. Y. He, W. Chen, L. F. Cao, Z. H. Luo, M. X. Qiu, S. P. Li, G. Y. Zhang, Polymers 2022 , 14, 11.
[35] Y. Yue, B. Zheng, J. Ni, W. Yang, L. Huo, J. Wang, L. Jiang,Advanced Science 2022 , 9, 2204030.
[36] B. Li, X. Zhang, Z. Wu, J. Yang, B. Liu, Q. Liao, J. Wang, K. Feng, R. Chen, H. Y. Woo, F. Ye, L. Niu, X. Guo, H. Sun, Science China Chemistry 2022 , 65, 1157.
[37] K. An, F. Peng, W. Zhong, W. Deng, D. Zhang, L. Ying, H. Wu, F. Huang, Y. Cao, Science China Chemistry 2021 , 64, 2010.
[38] J. Y. Zhang, L. F. Zhang, X. K. Wang, Z. J. Xie, L. Hu, H. D. Mao, G. D. Xu, L. C. Tan, Y. W. Chen, Advanced Energy Materials2022 , 12, 8.
[39] J. X. Li, X. C. Meng, Z. Q. Huang, R. Y. Dai, W. P. Sheng, C. X. Gong, L. C. Tan, Y. W. Chen, Advanced Functional Materials2022 , 32, 10.
[40] D. Chen, S. Q. Liu, B. Huang, J. Oh, F. Y. Wu, J. B. Liu, C. Yang, L. Chen, Y. W. Chen, Small 2022 , 18, 9.
[41] Z. Xing, X. C. Meng, R. Sun, T. Hu, Z. Q. Huang, J. Min, X. T. Hu, Y. W. Chen, Advanced Functional Materials 2020 , 30, 7.
[42] S. Q. Liu, D. Chen, X. T. Hu, Z. Xing, J. Wan, L. Zhang, L. C. Tan, W. H. Zhou, Y. W. Chen, Advanced Functional Materials2020 , 30, 8.
[43] Z. Q. Huang, X. T. Hu, Z. Xing, X. C. Meng, X. P. Duan, J. Long, T. Hu, L. C. Tan, Y. W. Chen, J. Phys. Chem. C2020 , 124, 8129.
[44] X. C. Meng, L. Zhang, Y. P. Xie, X. T. Hu, Z. Xing, Z. Q. Huang, C. Liu, L. C. Tan, W. H. Zhou, Y. M. Sun, W. Ma, Y. W. Chen,Advanced Materials 2019 , 31, 10.
[45] X. C. Meng, X. T. Hu, X. Yang, J. P. Yin, Q. X. Wang, L. Q. Huang, Z. K. N. Yu, T. Hu, L. C. Tan, W. H. Zhou, Y. W. Chen, ACS Appl. Mater. Interfaces 2018 , 10, 8917.
[46] X. T. Hu, X. C. Meng, J. Xiong, Z. Q. Huang, X. Yang, L. C. Tan, Y. W. Chen, Adv. Mater. Technol. 2017 , 2, 8.
[47] C. Zhao, J. Yi, L. Wang, G. Lu, H. Huang, H. K. Kim, H. Yu, C. Xie, P. You, G. Lu, M. Qiu, H. Yan, S. Li, G. Zhang, Nano Energy2022 , 104, 107872.
[48] N. Al-Shekaili, S. Hashim, F. F. Muhammadsharif, M. Z. Al-Abri, K. Sulaiman, M. Y. Yahya, M. Ridzuan Ahmed, Materials Today: Proceedings 2021 , 42, 1921.
[49] C. Zhao, R. Ma, Y. Hou, L. Zhu, X. Zou, W. Xiong, H. Hu, L. Wang, H. Yu, Y. Wang, G. Zhang, J. Yi, L. Chen, D. Wu, T. Yang, G. Li, M. Qiu, H. Yan, S. Li, G. Zhang, Advanced Energy Materials2023 , DOI: 10.1002/aenm.202300904.
[50] Y. Zhang, D. Deng, Z. Wang, Y. Wang, J. Zhang, J. Fang, Y. Yang, G. Lu, W. Ma, Z. Wei, Advanced Energy Materials2017 , 7, 1701548.
[51] L. Bu, S. Gao, W. Wang, L. Zhou, S. Feng, X. Chen, D. Yu, S. Li, G. Lu, Advanced Electronic Materials 2016 , 2, 1600359.