Figure 5. (a-d) The 2D-GIWAXS patterns of blend films base on
PJ1-γ . (e) The in-plane and out-of-plane line cuts of the 2D
GIWAXS patterns for the blend films base on PJ1-γ .
To examine the molecular stacking and crystallinity of different films,
grazing-incidence wide-angle X- Ray scattering (GIWAXS)
experiments were conducted. Figures 5a-5d displays the
two-dimensional patterns and line-cuts along the out-of-plane and
in-plane directions of the blended films prepared from either SqP or BC
method. The d -spacing and crystal coherence length (CCL) of these
films are summarized in Table S6 . The π-π stacking distances
for all four films were found to be 3.70 Å. The CCL values for
(BC)PM6:PJ1-γ , (BC)PM6:PJ1-γ +SA, (SqP)PM6/PJ1-γ ,
and (SqP)PM6/PJ1-γ +SA are 16.8 Å, 16.9 Å, 16.7 Å, and 16.2 Å,
respectively. Notably, the d -spacing and CCL between the
PYF-T-o and PJ1-γ films are largely different
(Table S1 ). For example, the CCLs for the (100) peak of the
PYF-T-o base blend films are in the range of 54-58 Å, while those
of the PJ1-γ based films are in the range of 88-95 Å,
highlighting the effect of the difference in the miscibility between
materials on the phase separation behavior of the blend film.
Figure 6. Normalized PCE change with light-soaking time using
an MPP tracking method for the BC and SqP devices.
The long-term photostability of all-PSC is crucial for their future
commercial application. To assess the photostability of different
all-PSCs, we continuously monitored the performance of the optimized
(BC)PM6:PJ1-γ and (BC)PM6:PJ1-γ +SA devices and their SqP
counterparts under 1 sun LED illumination in a test chamber. As shown inFigure 6 , the (BC)PM6:PJ1-γ device has a rapid decrease
in PCE with a T80 value of ~65 h. In contrast, the SqP
method and the addition of SA both lead to enhanced stability than the
BC device. Specifically, after adding SA, the T80 value of the
(BC)PM6:PJ1-γ +SA device slightly increases from about 65 h device
to 140 h. Furthermore, the SA-free SqP device shows a significant
increase in T80 value to nearly 250 h. Notably, after over 300 h of
continuous illumination, the (SqP)PM6/PJ1-γ +SA devices exhibit
the highest photostability (T80 value is almost 310 h). The result that
the SqP method could increase T80 of all-PSC has been reported in our
previous reports using other material combinations, which is further
confirmed by this work. The surprising result of this work is that the
incorporation of the small amount of SA further promotes the stability
of the all-PSCs.
Conclusion
In conclusion, the incorporation of a small amount of solid additive
into the binary all-polymer system has successfully achieved a maximum
PCE of 18% in devices sequentially processed from the hydrocarbon
solvent, toluene, which is among the highest PCEs of non-halogen solvent
processed all-PSCs. This demonstrates a relatively simple approach to
further enhance the performance of all-PSCs. We studied four different
comparisons side-by-side in this work, namely, toluene vs. chloroform,
blend-casting vs. sequential processing, SA-free vs SA, PYF-T-ovs PJ1-γ . Finally, the stability of the devices was assessed
using MPPT, and the SqP devices with SA exhibited approximately 80% PCE
retention after continuous exposure to 1-sun illumination for over 400
hours. This presents a new avenue for exploring highly efficient and
stable all-polymer systems in future research.
Supporting Information
Supplementary data associated with this article can be found in the
online version at XXX
Acknowledgement
G. Z., C. Z., and L. Z. contributed equally to this work. The work was
supported by the Guangdong Basic and Applied Basic Research Foundation
(2022A1515010875), Guangdong Basic and Applied Basic Research Foundation
(2021A1515110017), Natural Science Foundation of Top Talent of SZTU
(grant no. 20200205), Project of Education Commission of Guangdong
Province of China (2021KQNCX080), Research on the electrochemical
reaction mechanism of the anode of medium-Low temperature direct ammonia
SOFCs (20231063020006), the project of all solid-state high energy
density energy storage system (20221063010031) and the project of
Shenzhen Overseas Talent upon Industrialization of 1kw stack for direct
ammonia SOFCs (20221061010002). S. L. would like to thank Guangdong
Basic and Applied Basic Research Foundation (No. 2019A1515011673),
Education Department of Guangdong Province (No. 2021KCXTD045) and
National Natural Science Foundation of China (No. 12274303). H. H.
thanks for the support from the Fundamental Research Funds for the
Central Universities (2232023A-01), NSFC No. 52103202 and beamline
BL16B1 at Shanghai Synchrotron Radiation Facility (SSRF) for the
synchrotron experiment.
Author Contribution
Guoping Zhang: Investigation, conceptualization, writing-original,
writing-review & editing, performing experiments and analysis
Chaoyue Zhao: Analysis about GIWAXS and devices fabrication,
writing-review & editing
Liangxiang Zhu: Device fabrication, J-V measurements, Contact angle test
and formal analysis
Lihong Wang: Data analysis on device J-V characteristics and light
intensity dependence studies
Wenzhao Xiong: GIWAXS experiments and data analysis
Huawei Hu: GIWAXS experiments and data analysis, and providing resources
for morphology investigation
Qing Bai: Investigation and formal analysis
Yaping Wang: Participated in device testing and formal analysis
Chen Xie: Investigation on properties of active layer and formal
analysis
Peng You: Investigation on properties of active layer and formal
analysis
He Yan: Resources on materials
Dan Wu: Analysis of the EQE & UV-Vis absorption results
Tao Yang: Analysis of the AFM and mobility results
Mingxia Qiu: Resources on J-V characterization, EQE, and supervision
Shunpu Li: Resources on device fabrication, J-V measurements,
supervision, and funding acquisition
Guangye Zhang: Resources on laboratory, supervision of the whole
project, funding acquisition that supported most of the project, project
administration, writing manuscript, revision & editing
Reference
[1] K. K. Zhou, K. H. Xian, Q. C. Qi, M. Y. Gao, Z. X. Peng, J. W.
Liu, Y. Liu, S. M. Li, Y. D. Zhang, Y. H. Geng, L. Ye, Advanced
Functional Materials 2022 , 32, 14.
[2] Y. Zhang, B. Q. Wu, Y. K. He, W. Y. Deng, J. W. Li, J. Y. Li, N.
Qiao, Y. F. Xing, X. Y. Yuan, N. Li, C. J. Brabec, H. B. Wu, G. H. Lu,
C. H. Duan, F. Huang, Y. Cao, Nano Energy 2022 , 93, 11.
[3] G. Zeng, W. J. Chen, X. B. Chen, Y. Hu, Y. Chen, B. Zhang, H. Y.
Chen, W. W. Sun, Y. X. Shen, Y. W. Li, F. Yan, Y. F. Li, J. Am.
Chem. Soc. 2022 , 144, 8658.
[4] Y. C. Liang, D. F. Zhang, Z. R. Wu, T. Jia, L. Luer, H. R. Tang,
L. Hong, J. B. Zhang, K. Zhang, C. J. Brabec, N. Li, F. Huang,Nat. Energy 2022 , 7, 1180.
[5] Z. G. Zhang, Y. F. Li, Angew. Chem.-Int. Edit.2021 , 60, 4422.
[6] R. Sun, W. Wang, H. Yu, Z. Chen, X. X. Xia, H. Shen, J. Guo, M.
M. Shi, Y. N. Zheng, Y. Wu, W. Y. Yang, T. Wang, Q. Wu, Y. Yang, X. H.
Lu, J. L. Xia, C. J. Brabec, H. Yan, Y. F. Li, J. Min, Joule2021 , 5, 1548.
[7] B. Kan, F. Ershad, Z. Y. Rao, C. J. Yu, Nano Research2021 , 14, 2891.
[8] Y. Song, K. Zhang, S. Dong, R. X. Xia, F. Huang, Y. Cao,ACS Appl. Mater. Interfaces 2020 , 12, 18473.
[9] G. Zeng, W. Chen, X. Chen, Y. Hu, Y. Chen, B. Zhang, H. Chen, W.
Sun, Y. Shen, Y. Li, F. Yan, Y. Li, J. Am. Chem. Soc.2022 , 144, 8658.
[10] Y. Song, K. Zhang, S. Dong, R. Xia, F. Huang, Y. Cao, ACS
Appl. Mater. Interfaces 2020 , 12, 18473.
[11] Y. W. Han, S. J. Jeon, H. S. Lee, H. Park, K. S. Kim, H.-W.
Lee, D. K. Moon, Advanced Energy Materials 2019 , 9,
1902065.
[12] R. Sun, T. Wang, Q. Fan, M. Wu, X. Yang, X. Wu, Y. Yu, X. Xia,
F. Cui, J. Wan, X. Lu, X. Hao, A. K. Y. Jen, E. Spiecker, J. Min,Joule 2023 , 7, 221.
[13] R. Ma, Q. Fan, T. A. Dela Peña, B. Wu, H. Liu, Q. Wu, Q. Wei,
J. Wu, X. Lu, M. Li, W. Ma, G. Li, Advanced Materials2023 , 35, 2212275.
[14] Y. Cai, C. Xie, Q. Li, C. Liu, J. Gao, M. H. Jee, J. Qiao, Y.
Li, J. Song, X. Hao, H. Y. Woo, Z. Tang, Y. Zhou, C. Zhang, H. Huang, Y.
Sun, Advanced Materials 2023 , 35, 2208165.
[15] J. Wang, Y. Cui, Y. Xu, K. Xian, P. Bi, Z. Chen, K. Zhou, L.
Ma, T. Zhang, Y. Yang, Y. Zu, H. Yao, X. Hao, L. Ye, J. Hou,Advanced Materials 2022 , 34, 2205009.
[16] Y. Li, Q. Li, Y. H. Cai, H. Jin, J. Q. Zhang, Z. Tang, C. F.
Zhang, Z. X. Wei, Y. M. Sun, Energy & Environmental Science2022 , 15, 3854.
[17] C. Zhang, Z. W. Ge, J. W. Xue, W. Ma, Y. M. Sun,Macromolecular Chemistry and Physics 2023 , 224, 7.
[18] B. Q. Wu, Y. L. Li, S. Z. Tian, Y. Zhang, L. H. Pan, K. Z. Liu,
M. Q. Yang, F. Huang, Y. Cao, C. H. Duan, Chinese Journal of
Chemistry 2023 , 41, 790.
[19] P. Wang, Y. H. Zhu, H. X. Tao, Y. L. Ma, D. D. Cai, Q. S. Tu,
R. C. Liao, Q. D. Zheng, Chinese Journal of Polymer Science2023 , DOI: 10.1007/s10118-023-2909-39.
[20] C. Wang, C. Guan, T. Wu, X. Q. Liu, J. Fang, F. Liu, C. Y.
Xiao, W. W. Li, ACS Appl. Mater. Interfaces 2023 , 15,
13363.
[21] Z. Q. Zhang, D. Deng, Y. Li, J. W. Ding, Q. Wu, L. L. Zhang, G.
J. Zhang, M. J. Iqbal, R. Wang, J. Q. Zhang, X. H. Qiu, Z. X. Wei,Advanced Energy Materials 2022 , 12, 10.
[22] Z. Y. Li, F. Peng, H. L. Quan, X. T. Qian, L. Ying, Y. Cao,Chem. Eng. J. 2022 , 430, 9.
[23] Y. X. Kong, Y. X. Li, J. Y. Yuan, L. M. Ding, Infomat2022 , 4, 8.
[24] T. Jia, J. B. Zhang, H. R. Tang, J. C. Jia, K. Zhang, W. Y.
Deng, S. Dong, F. Huang, Chem. Eng. J. 2022 , 433, 8.
[25] K. Hu, J. Q. Du, C. Zhu, W. B. Lai, J. Li, J. M. Xin, W. Ma, Z.
J. Zhang, J. Y. Zhang, L. Meng, Y. F. Li, Sci. China-Chem.2022 , 65, 954.
[26] J. C. Jia, Q. R. Huang, T. Jia, K. Zhang, J. Zhang, J. S. Miao,
F. Huang, C. L. Yang, Advanced Energy Materials 2022 ,
12, 9.
[27] Q. Ma, Z. R. Jia, L. Meng, H. Yang, J. Y. Zhang, W. B. Lai, J.
Guo, X. Jiang, C. H. Cui, Y. F. Li, Advanced Functional Materials2023 , 33, 8.
[28] L. Zhang, T. Jia, L. Pan, B. Wu, Z. Wang, K. Gao, F. Liu, C.
Duan, F. Huang, Y. Cao, Science China Chemistry 2021 ,
64, 408.
[29] H. Sun, B. Liu, Y. Ma, J.-W. Lee, J. Yang, J. Wang, Y. Li, B.
Li, K. Feng, Y. Shi, B. Zhang, D. Han, H. Meng, L. Niu, B. J. Kim, Q.
Zheng, X. Guo, Advanced Materials 2021 , 33, 2102635.
[30] T. Jia, J. Zhang, W. Zhong, Y. Liang, K. Zhang, S. Dong, L.
Ying, F. Liu, X. Wang, F. Huang, Y. Cao, Nano Energy2020 , 72, 104718.
[31] K. Feng, Z. Wu, M. Su, S. Ma, Y. Shi, K. Yang, Y. Wang, Y.
Zhang, W. Sun, X. Cheng, L. Huang, J. Min, H. Y. Woo, X. Guo,Advanced Functional Materials 2021 , 31, 2008494.
[32] C. Duan, Z. Li, S. Pang, Y.-L. Zhu, B. Lin, F. J. M. Colberts,
P. J. Leenaers, E. Wang, Z.-Y. Sun, W. Ma, S. C. J. Meskers, R. A. J.
Janssen, Solar RRL 2018 , 2, 1800247.
[33] C. Shang, S. Zhang, D. Han, X. Ding, Y. Zhang, C. Yang, J.
Ding, X. Bao, ACS Appl. Mater. Interfaces 2023 , 15,
5538.
[34] G. P. Zhang, L. H. Wang, C. Y. Zhao, Y. J. Wang, R. Y. Hu, J.
X. Che, S. Y. He, W. Chen, L. F. Cao, Z. H. Luo, M. X. Qiu, S. P. Li, G.
Y. Zhang, Polymers 2022 , 14, 11.
[35] Y. Yue, B. Zheng, J. Ni, W. Yang, L. Huo, J. Wang, L. Jiang,Advanced Science 2022 , 9, 2204030.
[36] B. Li, X. Zhang, Z. Wu, J. Yang, B. Liu, Q. Liao, J. Wang, K.
Feng, R. Chen, H. Y. Woo, F. Ye, L. Niu, X. Guo, H. Sun, Science
China Chemistry 2022 , 65, 1157.
[37] K. An, F. Peng, W. Zhong, W. Deng, D. Zhang, L. Ying, H. Wu, F.
Huang, Y. Cao, Science China Chemistry 2021 , 64, 2010.
[38] J. Y. Zhang, L. F. Zhang, X. K. Wang, Z. J. Xie, L. Hu, H. D.
Mao, G. D. Xu, L. C. Tan, Y. W. Chen, Advanced Energy Materials2022 , 12, 8.
[39] J. X. Li, X. C. Meng, Z. Q. Huang, R. Y. Dai, W. P. Sheng, C.
X. Gong, L. C. Tan, Y. W. Chen, Advanced Functional Materials2022 , 32, 10.
[40] D. Chen, S. Q. Liu, B. Huang, J. Oh, F. Y. Wu, J. B. Liu, C.
Yang, L. Chen, Y. W. Chen, Small 2022 , 18, 9.
[41] Z. Xing, X. C. Meng, R. Sun, T. Hu, Z. Q. Huang, J. Min, X. T.
Hu, Y. W. Chen, Advanced Functional Materials 2020 , 30,
7.
[42] S. Q. Liu, D. Chen, X. T. Hu, Z. Xing, J. Wan, L. Zhang, L. C.
Tan, W. H. Zhou, Y. W. Chen, Advanced Functional Materials2020 , 30, 8.
[43] Z. Q. Huang, X. T. Hu, Z. Xing, X. C. Meng, X. P. Duan, J.
Long, T. Hu, L. C. Tan, Y. W. Chen, J. Phys. Chem. C2020 , 124, 8129.
[44] X. C. Meng, L. Zhang, Y. P. Xie, X. T. Hu, Z. Xing, Z. Q.
Huang, C. Liu, L. C. Tan, W. H. Zhou, Y. M. Sun, W. Ma, Y. W. Chen,Advanced Materials 2019 , 31, 10.
[45] X. C. Meng, X. T. Hu, X. Yang, J. P. Yin, Q. X. Wang, L. Q.
Huang, Z. K. N. Yu, T. Hu, L. C. Tan, W. H. Zhou, Y. W. Chen, ACS
Appl. Mater. Interfaces 2018 , 10, 8917.
[46] X. T. Hu, X. C. Meng, J. Xiong, Z. Q. Huang, X. Yang, L. C.
Tan, Y. W. Chen, Adv. Mater. Technol. 2017 , 2, 8.
[47] C. Zhao, J. Yi, L. Wang, G. Lu, H. Huang, H. K. Kim, H. Yu, C.
Xie, P. You, G. Lu, M. Qiu, H. Yan, S. Li, G. Zhang, Nano Energy2022 , 104, 107872.
[48] N. Al-Shekaili, S. Hashim, F. F. Muhammadsharif, M. Z. Al-Abri,
K. Sulaiman, M. Y. Yahya, M. Ridzuan Ahmed, Materials Today:
Proceedings 2021 , 42, 1921.
[49] C. Zhao, R. Ma, Y. Hou, L. Zhu, X. Zou, W. Xiong, H. Hu, L.
Wang, H. Yu, Y. Wang, G. Zhang, J. Yi, L. Chen, D. Wu, T. Yang, G. Li,
M. Qiu, H. Yan, S. Li, G. Zhang, Advanced Energy Materials2023 , DOI: 10.1002/aenm.202300904.
[50] Y. Zhang, D. Deng, Z. Wang, Y. Wang, J. Zhang, J. Fang, Y.
Yang, G. Lu, W. Ma, Z. Wei, Advanced Energy Materials2017 , 7, 1701548.
[51] L. Bu, S. Gao, W. Wang, L. Zhou, S. Feng, X. Chen, D. Yu, S.
Li, G. Lu, Advanced Electronic Materials 2016 , 2,
1600359.