References
Albert P. R. (2012). Transcriptional regulation of the 5-HT1A receptor:
implications for mental illness. Philosophical transactions of the
Royal Society of London. Series B, Biological sciences, 367 (1601),
2402–2415. https://doi.org/10.1098/rstb.2011.0376
An, D., Peigneur, S., Hendrickx, L. A., & Tytgat, J. (2020). Targeting
Cannabinoid Receptors: Current Status and Prospects of Natural Products.International journal of molecular sciences, 21 (14), 5064.
https://doi.org/10.3390/ijms21145064
Ballmaier, M., Bortolato, M., Rizzetti, C., Zoli, M., Gessa, G., Heinz,
A., & Spano, P. (2007). Cannabinoid Receptor Antagonists Counteract
Sensorimotor Gating Deficits in the Phencyclidine Model of Psychosis.Neuropsychopharmacology , 32 (10), 2098–2107.
https://doi.org/10.1038/sj.npp.1301344
Balu D. T. (2016). The NMDA Receptor and Schizophrenia: From
Pathophysiology to Treatment. Advances in pharmacology (San Diego,
Calif.), 76 , 351–382. https://doi.org/10.1016/bs.apha.2016.01.006
Biswal, M. R., Ahmed, C. M., Ildefonso, C. J., Han, P., Li, H., Jivanji,
H., Mao, H., & Lewin, A. S. (2015). Systemic treatment with a 5HT1a
agonist induces anti-oxidant protection and preserves the retina from
mitochondrial oxidative stress. Experimental eye research, 140 ,
94–105. https://doi.org/10.1016/j.exer.2015.07.022
Borgan, F., Laurikainen, H., Veronese, M., Marques, T. R.,
Haaparanta-Solin, M., Solin, O., Dahoun, T., Rogdaki, M., Salokangas, R.
K., Karukivi, M., Di Forti, M., Turkheimer, F., Hietala, J., Howes, O.,
& METSY Group (2019). In Vivo Availability of Cannabinoid 1 Receptor
Levels in Patients with First-Episode Psychosis. JAMA psychiatry,
76 (10), 1074–1084. https://doi.org/10.1001/jamapsychiatry.2019.1427
Bowie, C. R., & Harvey, P. D. (2006). Cognitive deficits and functional
outcome in schizophrenia. Neuropsychiatric Disease and Treatment,
2 (4), 531-536. https://doi.org/10.2147/nedt.2006.2.4.531
Bubeníková-Valešová, V., Horáček, J., Vrajová, M., & Höschl, C. (2008).
Models of schizophrenia in humans and animals based on inhibition of
NMDA receptors. Neuroscience & Biobehavioral Reviews, 32 (5),
1014-1023. https://doi.org/10.1016/j.neubiorev.2008.03.012
Calapai, F., Cardia, L., Calapai, G., Di Mauro, D., Trimarchi, F.,
Ammendolia, I., & Mannucci, C. (2022). Effects of Cannabidiol on
Locomotor Activity. Life (Basel, Switzerland), 12 (5), 652.
https://doi.org/10.3390/life12050652
Ceccarini, J., De Hert, M., Van Winkel, R., Peuskens, J., Bormans, G.,
Kranaster, L., Enning, F., Koethe, D., Leweke, F. M., & Van Laere, K.
(2013). Increased ventral striatal CB1 receptor binding is related to
negative symptoms in drug-free patients with schizophrenia.NeuroImage, 79 , 304–312.
https://doi.org/10.1016/j.neuroimage.2013.04.052
Charlson, F. J., Ferrari, A. J., Santomauro, D. F., Diminic, S.,
Stockings, E., Scott, J. G., McGrath, J. J., & Whiteford, H. A. (2018).
Global Epidemiology and Burden of Schizophrenia: Findings From the
Global Burden of Disease Study 2016. Schizophrenia bulletin,
44 (6), 1195–1203. https://doi.org/10.1093/schbul/sby058
Davies, C., & Bhattacharyya, S. (2019). Cannabidiol as a potential
treatment for psychosis. Therapeutic Advances in
Psychopharmacology , 9. https://doi.org/10.1177/2045125319881916
Dickens, A. M., Borgan, F., Laurikainen, H., Lamichhane, S., Marques,
T., Rönkkö, T., Veronese, M., Lindeman, T., Hyötyläinen, T., Howes, O.,
Hietala, J., & Orešič, M. (2020). Links between central CB1-receptor
availability and peripheral endocannabinoids in patients with first
episode psychosis. NPJ schizophrenia, 6 (1), 21.
https://doi.org/10.1038/s41537-020-00110-7
Dlugosz, L., Zhou, H. Z., Scott, B. W., & Burnham, M. (2023). The
effects of cannabidiol and Δ9-tetrahydrocannabinol, alone and in
combination, in the maximal electroshock seizure model. Epilepsy
research, 190 , 107087. https://doi.org/10.1016/j.eplepsyres.2023.107087
D’Souza, D. D., Harlan R. E., and Garcia, M. M. (2002). Sexually
dimorphic effects of morphine and MK-801: sex steroid-dependent and
-independent mechanisms. Journal of Applied Physiology, 92 (2),
493-503. https://doi.org/10.1152/japplphysiol.00565.2001
Eyjolfsson, E. M., Brenner, E., Kondziella, D., & Sonnewald, U. (2006).
Repeated injection of MK-801: An animal model of schizophrenia?Neurochemistry International, 48 , 541-546.
https://doi.org/10.1016/j.neuint.2005.11.019
Feinstein, I., & Kritzer, M. F. (2013). Acute N-methyl-d-aspartate
receptor hypofunction induced by MK801 evokes sex-specific changes in
behaviors observed in open-field testing in adult male and proestrus
female rats. Neuroscience , 228 , 200–214.
https://doi.org/10.1016/j.neuroscience.2012.10.026
Felipe, V. G., Llorente, R., Del-Bel, E., Lopez-Gallardo, M., Viveros,
M. P., & Francisco, S. G. (2013). Chronic Cannabidiol Attenuates
behavioral and Glial Changes Induced by Repeated Treatment with the NMDA
Receptor Antagonist MK-801 in Mice. Behavioural Pharmacology 24 ,
e25, https://doi.org/10.1097/01.fbp.0000434770.13614.41
Fitzgerald, M. L., Chan, J., Mackie, K., Lupica, C. R., & Pickel, V. M.
(2012). Altered dendritic distribution of dopamine D2 receptors and
reduction in mitochondrial number in parvalbumin-containing interneurons
in the medial prefrontal cortex of cannabinoid-1 (CB1) receptor knockout
mice. Journal of Comparative Neurology , 520 (17),
4013–4031. https://doi.org/10.1002/cne.23141
Flügge, G., Kramer, M., Rensing, S., & Fuchs, E. (1998).
5HT1A-receptors and behaviour under chronic stress: selective
counteraction by testosterone. The European journal of
neuroscience, 10 (8), 2685–2693.
Franceschelli, A., Herchick, S., Thelen, C., Papadopoulou-Daifoti, Z.,
& Pitychoutis, P. M. (2014). Sex differences in the chronic mild stress
model of depression. Behavioural Pharmacology, 25 (5-6), 372–383.
https://doi.org/10.1097/FBP.0000000000000062
Friard, O., & Gamba, M. (2016). BORIS: a free, versatile open-source
event-logging software for video/audio coding and live observations.Methods in Ecology and Evolution , 7(11), 1325-1330,
https://doi.org/10.1111/2041-210X.12584
Haj-Dahmane, S., & Shen, R. Y. (2011). Modulation of the serotonin
system by endocannabinoid signaling. Neuropharmacology, 61 (3),
414–420. https://doi.org/10.1016/j.neuropharm.2011.02.016
Hanson, E., Healey, K., Wolf, D., Kohler, C. (2010). Assessment of
pharmacotherapy for negative symptoms of schizophrenia, Current
Psychiatry Reports , 12 (6), 563–571.
https://doi.org/10.1007/s11920-010-0148-0
Hen-Shoval, D., Amar, S., Shbiro, L., Smoum, R., Haj, C. G., Mechoulam,
R., Zalsman, G., Weller, A., & Shoval, G. (2018). Acute oral
cannabidiolic acid methyl ester reduces depression-like behavior in two
genetic animal models of depression. Behavioural Brain Research ,351 , 1–3. https://doi.org/10.1016/j.bbr.2018.05.027
Hillard C. J. (2014). Stress regulates endocannabinoid-CB1 receptor
signaling. Seminars in immunology, 26 (5), 380–388.
https://doi.org/10.1016/j.smim.2014.04.001
Jakovcevski, M., Schachner, M., & Morellini, F. (2008). Individual
variability in the stress response of C57BL/6J male mice correlates with
trait anxiety. Genes, Brain, and Behavior, 7 (2), 235–243.
https://doi.org/10.1111/j.1601-183X.2007.00345.x
Javitt, D. C., Zukin, S. R. (1991). Recent advances in the phencyclidine
model of schizophrenia. American Journal of Psychiatry, 148 (10),
1301-1308. https://doi.org/10.1176/ajp.148.10.1301. PMID: 1654746.
Kaar, S. J., Angelescu, I., Marques, T. R., & Howes, O. D. (2019).
Pre-frontal parvalbumin interneurons in schizophrenia: A meta-analysis
of post-mortem studies. Journal of Neural Transmission ,126 (12), 1637–1651. https://doi.org/10.1007/s00702-019-02080-2
Kaidanovich-Beilin, O., Lipina, T., Vukobradovic, I., Roder, J., &
Woodgett, J. R. (2011). Assessment of social interaction behaviors.Journal of visualized experiments: JoVE , (48), 2473.
https://doi.org/10.3791/2473
Kasten, C. R., Zhang, Y., & Boehm, S. L., 2nd (2019). Acute
Cannabinoids Produce Robust Anxiety-Like and Locomotor Effects in Mice,
but Long-Term Consequences Are Age- and Sex-Dependent. Frontiers
in Behavioral Neuroscience, 13 , 32.
https://doi.org/10.3389/fnbeh.2019.00032
Kim, J., Choi, P., Park, Y. T., Kim, T., Ham, J., & Kim, J. C. (2023).
The Cannabinoids, CBDA and THCA, Rescue Memory Deficits and Reduce
Amyloid-Beta and Tau Pathology in an Alzheimer’s Disease-like Mouse
Model. International Journal of Molecular Sciences, 24 (7), 6827.
https://doi.org/10.3390/ijms24076827
Kim S. A. (2021). 5-HT1A and 5-HT2A Signaling, Desensitization, and
Downregulation: Serotonergic Dysfunction and Abnormal Receptor Density
in Schizophrenia and the Prodrome. Cureus, 13 (6), e15811.
https://doi.org/10.7759/cureus.15811
Kishi, T., Meltzer, H. Y., & Iwata, N. (2013). Augmentation of
antipsychotic drug action by azapirone 5-HT1A receptor partial agonists:
a meta-analysis. The International Journal of
Neuropsychopharmacology, 16 (6), 1259–1266.
https://doi.org/10.1017/S1461145713000151
Kruk-Slomka, M., & Biala, G. (2021). Cannabidiol Attenuates
MK-801-Induced Cognitive Symptoms of Schizophrenia in the Passive
Avoidance Test in Mice. Molecules (Basel, Switzerland), 26 (19),
5977. https://doi.org/10.3390/molecules26195977
Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K., Delaney,
R., Bremner, J. D., Heninger, G. R., Bowers, M. B. Jr., & Charney, D.
S. (1994). Subanesthetic effects of the noncompetitive NMDA antagonist,
ketamine, in humans. Psychotomimetic, perceptual, cognitive, and
neuroendocrine responses. Archives of General Psychiatry, 51 (3),
199-214. https://doi.org/10.1001/archpsyc.1994.03950030035004
Lally, J., & MacCabe, J. H. (2015). Antipsychotic medication in
schizophrenia: A review. British Medical Bulletin , 114 (1),
169–179. https://doi.org/10.1093/bmb/ldv017
Langen, B., Dost, R., Egerland, U., Stange, H., & Hoefgen, N. (2012).
Effect of PDE10A inhibitors on MK-801-induced immobility in the forced
swim test. Psychopharmacology, 221 (2), 249–259.
https://doi.org/10.1007/s00213-011-2567-y
Lee, G., & Zhou, Y. (2019). NMDAR Hypofunction Animal Models of
Schizophrenia. Frontiers in Molecular Neuroscience, 12 , 185.
https://doi.org/10.3389/fnmol.2019.00185
Leifker, F. R., Bowie, C. R., & Harvey, P. D. (2009). Determinants of
everyday outcomes in schizophrenia: The influences of cognitive
impairment, functional capacity, and symptoms. Schizophrenia
Research, 115 (1), 82–87. https://doi.org/10.1016/j.schres.2009.09.004
Levine, A., Liktor-Busa, E., Lipinski, A. A., Couture, S.,
Balasubramanian, S., Aicher, S. A., Langlais, P. R., Vanderah, T. W., &
Largent-Milnes, T. M. (2021). Sex differences in the expression of the
endocannabinoid system within V1M cortex and PAG of Sprague Dawley rats.Biology of Sex Differences, 12 (1), 60.
https://doi.org/10.1186/s13293-021-00402-2
Leweke, F. M., Rohleder, C., Gerth, C. W., Hellmich, M., Pukrop, R., &
Koethe, D. (2021). Cannabidiol and Amisulpride Improve Cognition in
Acute Schizophrenia in an Explorative, Double-Blind, Active-Controlled,
Randomized Clinical Trial. Frontiers in Pharmacology, 12 , 614811.
https://doi.org/10.3389/fphar.2021.614811
Liang, J. Q., Chen, X., & Cheng, Y. (2022). Paeoniflorin Rescued
MK-801-Induced Schizophrenia-Like Behaviors in Mice via Oxidative Stress
Pathway. Frontiers in Nutrition, 9 , 870032.
https://doi.org/10.3389/fnut.2022.870032
Lin, C.Y., Tsai, G. E., & Lane, H.Y. (2014). Assessing and treating
cognitive impairment in schizophrenia: current and future. Current
Pharmaceutical Design , 20 (32), 5127–5138.
https://doi.org/10.2174/1381612819666140110120015
Litvin, Y., Phan, A., Hill, M. N., Pfaff, D. W., & McEwen, B. S.
(2013). CB1 receptor signaling regulates social anxiety and memory.Genes, Brain, and Behavior, 12 (5), 479-489.
https://doi.org/10.1111/gbb.12045
Liu, X., Zhao, G., Wang, F., & Wang, L. (2020). Sexual dimorphic
distribution of cannabinoid 1 receptor mRNA in adult C57BL/6 mice.Journal of Comparative Neurology, 528 (12), 1986-1999.
https://doi.org/10.1002/cne.24868
Lobo, M. C., Whitehurst, T. S., Kaar, S. J., & Howes, O. D. (2022). New
and emerging treatments for schizophrenia: a narrative review of their
pharmacology, efficacy and side effect profile relative to established
antipsychotics. Neuroscience and Biobehavioral Reviews, 132 ,
324–361. https://doi.org/10.1016/j.neubiorev.2021.11.032
Mabunga, D. F. N., Park, D., Ryu, O., Valencia, S. T., Adil, K. J. L.,
Kim, S., Kwon, K. J., Shin, C. Y., & Jeon, S. J. (2019). Recapitulation
of Neuropsychiatric Behavioral Features in Mice Using Acute Low-dose
MK-801 Administration. Experimental Neurobiology, 28 (6),
697–708. https://doi.org/10.5607/en.2019.28.6.697
Marder, S. R., & Galderisi, S. (2017). The current conceptualization of
negative symptoms in schizophrenia. World Psychiatry, 16 (1),
14-24. https://doi.org/10.1002/wps.20385
Marzouk, T., Winkelbeiner, S., Azizi, H., Malhotra, A., & Homan, P.
(2020). Transcranial magnetic stimulation for positive symptoms in
schizophrenia: A systematic review. Neuropsychobiology, 79 (6),
384-396. https://doi.org/10.1159/000502148
Morena, M., Patel, S., Bains, J. S., & Hill, M. N. (2016).
Neurobiological Interactions Between Stress and the Endocannabinoid
System. Neuropsychopharmacology: official publication of the
American College of Neuropsychopharmacology, 41 (1), 80–102.
https://doi.org/10.1038/npp.2015.166
Mukhopadhyay, P., Rajesh, M., Bátkai, S., Patel, V., Kashiwaya, Y.,
Liaudet, L., Evgenov, O. V., Mackie, K., Haskó, G., & Pacher, P.
(2010). CB1 cannabinoid receptors promote oxidative stress and cell
death in murine models of doxorubicin-induced cardiomyopathy and in
human cardiomyocytes. Cardiovascular Research, 85 (4), 773–784.
https://doi.org/10.1093/cvr/cvp369
Nahar, L., Delacroix, B. M., & Nam, H. W. (2021). The Role of
Parvalbumin Interneurons in Neurotransmitter Balance and Neurological
Disease. Frontiers in Psychiatry , 12 , 679960.
https://doi.org/10.3389/fpsyt.2021.679960
Navarro, G., Varani, K., Lillo, A., Vincenzi, F., Rivas-Santisteban, R.,
Raïch, I., Reyes-Resina, I., Ferreiro-Vera, C., Borea, P. A., Sánchez de
Medina, V., Nadal, X., & Franco, R. (2020). Pharmacological data of
cannabidiol- and cannabigerol-type phytocannabinoids acting on
cannabinoid CB1, CB2 and CB1/CB2 heteromer receptors.Pharmacological Research , 159 , 104940.
https://doi.org/10.1016/j.phrs.2020.104940
Nawata, Y., Hiranita, T., & Yamamoto, T. (2010). A cannabinoid CB1
Receptor Antagonist Ameliorates Impairment of Recognition Memory on
Withdrawal from MDMA (Ecstasy). Neuropsychopharmacology, 35 ,
515-520. https://doi.org/10.1038/npp.2009.158
Nikolaus, S., Müller, H. W., & Hautzel, H. (2016). Different patterns
of 5-HT receptor and transporter dysfunction in neuropsychiatric
disorders–a comparative analysis of in vivo imaging findings.Reviews in the Neurosciences, 27 (1), 27–59.
https://doi.org/10.1515/revneuro-2015-0014
Nilsson, M., Hansson, S., Carlsson, A., & Carlsson, M. L. (2007).
Differential effects of the N-methyl-d-aspartate receptor antagonist
MK-801 on different stages of object recognition memory in mice.Neuroscience, 149 (1), 123–130.
https://doi.org/10.1016/j.neuroscience.2007.07.019
Ohno, Y. (2011). Therapeutic Role of 5-HT1A Receptors in The Treatment
of Schizophrenia and Parkinson’s Disease: Therapeutic Role of 5-HT1A
Receptors. CNS Neuroscience & Therapeutics , 17 (1),
58–65. https://doi.org/10.1111/j.1755-5949.2010.00211.x
Osborne, A. L., Solowij, N., & Weston-Green, K. (2017). A systematic
review of the effect of cannabidiol on cognitive function: Relevance to
schizophrenia. Neuroscience & Biobehavioral Reviews, 72 ,
310–324. https://doi.org/10.1016/j.neubiorev.2016.11.012
Pertwee, R. G., Rock, E. M., Guenther, K., Limebeer, C. L., Stevenson,
L. A., Haj, C., Smoum, R., Parker, L. A., & Mechoulam, R. (2018).
Cannabidiolic acid methyl ester, a stable synthetic analogue of
cannabidiolic acid, can produce 5-HT 1Areceptor-mediated suppression of nausea and anxiety in rats: HU-580,
CBDA, 5-HT 1A receptor, nausea and anxiety.British Journal of Pharmacology , 175 (1), 100–112.
https://doi.org/10.1111/bph.14073
Peters, K. Z., Cheer, J. F., & Tonini, R. (2021). Modulating the
Neuromodulators: Dopamine, Serotonin, and the Endocannabinoid System.Trends in Neurosciences, 44 (6), 464-477.
https://doi.org/10.1016/j.tins.2021.02.001
Peterson, C., Sallam, N., Baglot, S., Kohro, Y., Trang, T., Hill, M. N.,
& Borgland, S. L. (2023). Sex differences in pharmacokinetics, central
accumulation, and behavioural effects of oral cannabis consumption in
male and female C57BL/6 mice. BioRxiv ,
2023.05.10.540248(preprint). https://doi.org/10.1101/2023.05.10.540248
Polissidis, A., Galanopoulos, A., Naxakis, G., Papahatjis, D.,
Papadopoulou-Daifoti, Z., & Antoniou, K. (2013). The cannabinoid CB1
receptor biphasically modulates motor activity and regulates dopamine
and glutamate release region dependently. International Journal of
Neuropsychopharmacology , 16 (2), 393–403.
https://doi.org/10.1017/S1461145712000156
Powell, C. M., & Miyakawa, T. (2006). Schizophrenia-relevant behavioral
testing in rodent models: a uniquely human disorder?. Biological
Psychiatry, 59 (12), 1198–1207.
https://doi.org/10.1016/j.biopsych.2006.05.008
Rabinowitz, J., Levine, S. Z., Garibaldi, G., Bugarski-Kirola, D.,
Berardo, C. G., & Kapur, S. (2012). Negative symptoms have greater
impact on functioning than positive symptoms in schizophrenia: Analysis
of CATIE data. Schizophrenia Research, 137 (1), 147-150.
https://doi.org/10.1016/j.schres.2012.01.015
Rademacher, D. J., Meier, S. E., Shi, L., Ho, W. S., Jarrahian, A., &
Hillard, C. J. (2008). Effects of acute and repeated restraint stress on
endocannabinoid content in the amygdala, ventral striatum, and medial
prefrontal cortex in mice. Neuropharmacology, 54 (1), 108–116.
https://doi.org/10.1016/j.neuropharm.2007.06.012
Razakarivony, O., Newman-Tancredi, A., & Zimmer, L. (2021). Towards in
vivo imaging of functionally active 5-HT1A receptors in schizophrenia:
concepts and challenges. Translational Psychiatry, 11 (1), 22.
https://doi.org/10.1038/s41398-020-01119-3
Rodrigues da Silva, N., Gomes, F. V., Sonego, A. B., Silva, N. R. da, &
Guimarães, F. S. (2020). Cannabidiol attenuates behavioral changes in a
rodent model of schizophrenia through 5-HT1A, but not CB1 and CB2
receptors. Pharmacological Research , 156 , 104749.
https://doi.org/10.1016/j.phrs.2020.104749
Rodríguez-Muñoz, M., Sánchez-Blázquez, P., Merlos, M., & Garzón-Niño,
J. (2016). Endocannabinoid control of glutamate NMDA receptors: the
therapeutic potential and consequences of dysfunction. Oncotarget,
7 (34), 55840–55862. https://doi.org/10.18632/oncotarget.10095
Sales, A. J., Fogaça, M. V., Sartim, A. G., Pereira, V. S., Wegener, G.,
Guimarães, F. S., & Joca, S. R. L. (2019). Cannabidiol Induces Rapid
and Sustained Antidepressant-Like Effects Through Increased BDNF
Signaling and Synaptogenesis in the Prefrontal Cortex. Molecular
Neurobiology, 56 (2), 1070–1081.
https://doi.org/10.1007/s12035-018-1143-4
Sales, A. J., Guimarães, F. S., & Joca, S. R. L. (2020). CBD modulates
DNA methylation in the prefrontal cortex and hippocampus of mice exposed
to forced swim. Behavioural Brain Research, 388 , 112627.
https://doi.org/10.1016/j.bbr.2020.112627
Sánchez-Blázquez, P., Rodríguez-Muñoz, M., & Garzón, J. (2014). The
cannabinoid receptor 1 associates with NMDA receptors to produce
glutamatergic hypofunction: implications in psychosis and schizophrenia.Frontiers in Pharmacology, 4 , 169.
https://doi.org/10.3389/fphar.2013.00169
Seillier, A., & Giuffrida, A. (2009). Evaluation of NMDA receptor
models of schizophrenia: divergences in the behavioral effects of
sub-chronic PCP and MK-801. Behavioural Brain Research, 204 (2),
410–415. https://doi.org/10.1016/j.bbr.2009.02.007
Sink, K. S., Segovia, K. N., Sink, J., Randall, P. A., Collins, L. E.,
Correa, M., Markus, E. J., Vemuri, V. K., Makriyannis, A., & Salamone,
J. D. (2010). Potential anxiogenic effects of cannabinoid CB1 receptor
antagonists/inverse agonists in rats: comparisons between AM4113, AM251,
and the benzodiazepine inverse agonist FG-7142. European
Neuropsychopharmacology: the journal of the European College of
Neuropsychopharmacology, 20 (2), 112–122.
https://doi.org/10.1016/j.euroneuro.2009.11.002
Švob Štrac, D., Pivac, N., & Mück-Šeler, D. (2016). The serotonergic
system and cognitive function. Translational neuroscience, 7 (1),
35–49. https://doi.org/10.1515/tnsci-2016-0007
Wedzony, K., Maćkowiak, M., Czyrak, A., Fijał, K., & Michalska, B.
(1997). Single doses of MK-801, a non-competitive antagonist of NMDA
receptors, increase the number of 5-HT1A serotonin receptors in the rat
brain. Brain Research, 756 (1-2), 84–91.
https://doi.org/10.1016/s0006-8993(97)00159-5
Yang, A., & Tsai, S.-J. (2017). New Targets for Schizophrenia Treatment
beyond the Dopamine Hypothesis. International Journal of Molecular
Sciences , 18 (8), 1689. https://doi.org/10.3390/ijms18081689
Yuen, E. Y., Jiang, Q., Chen, P., Gu, Z., Feng, J., & Yan, Z. (2005).
Serotonin 5-HT1A receptors regulate NMDA receptor channels through a
microtubule-dependent mechanism. The Journal of Neuroscience: the
official journal of the Society for Neuroscience, 25 (23), 5488–5501.
https://doi.org/10.1523/JNEUROSCI.1187-05.2005
Zou, H., Zhang, C., Xie, Q., Zhang, M., Shi, J., Jin, M., & Yu, L.
(2008). Low dose MK-801 reduces social investigation in mice.Pharmacology, Biochemistry, and Behavior, 90 (4), 753–757.
https://doi.org/10.1016/j.pbb.2008.06.002