References
[1] J.W. Pollard, Trophic macrophages in development and disease, Nature reviews. Immunology 9(4) (2009) 259-70.
[2] S.K. Biswas, A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm, Nat Immunol 11(10) (2010) 889-96.
[3] R. Takemura, Z. Werb, Secretory products of macrophages and their physiological functions, Am J Physiol 246(1 Pt 1) (1984) C1-9.
[4] G. Arango Duque, M. Fukuda, S.J. Turco, S. Stäger, A. Descoteaux, Leishmania promastigotes induce cytokine secretion in macrophages through the degradation of synaptotagmin XI, J Immunol 193(5) (2014) 2363-72.
[5] S.M. Wahl, Transforming growth factor beta (TGF-beta) in inflammation: a cause and a cure, J Clin Immunol 12(2) (1992) 61-74.
[6] A. Das, M. Sinha, S. Datta, M. Abas, S. Chaffee, C.K. Sen, S. Roy, Monocyte and macrophage plasticity in tissue repair and regeneration, Am J Pathol 185(10) (2015) 2596-606.
[7] F. Ginhoux, M. Greter, M. Leboeuf, S. Nandi, P. See, S. Gokhan, M.F. Mehler, S.J. Conway, L.G. Ng, E.R. Stanley, I.M. Samokhvalov, M. Merad, Fate mapping analysis reveals that adult microglia derive from primitive macrophages, Science 330(6005) (2010) 841-5.
[8] C. Schulz, E. Gomez Perdiguero, L. Chorro, H. Szabo-Rogers, N. Cagnard, K. Kierdorf, M. Prinz, B. Wu, S.E. Jacobsen, J.W. Pollard, J. Frampton, K.J. Liu, F. Geissmann, A lineage of myeloid cells independent of Myb and hematopoietic stem cells, Science 336(6077) (2012) 86-90.
[9] T.N. Shaw, S.A. Houston, K. Wemyss, H.M. Bridgeman, T.A. Barbera, T. Zangerle-Murray, P. Strangward, A.J.L. Ridley, P. Wang, S. Tamoutounour, J.E. Allen, J.E. Konkel, J.R. Grainger, Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression, J Exp Med 215(6) (2018) 1507-1518.
[10] F. Ginhoux, M. Guilliams, Tissue-Resident Macrophage Ontogeny and Homeostasis, Immunity 44(3) (2016) 439-449.
[11] F. Ginhoux, S. Jung, Monocytes and macrophages: developmental pathways and tissue homeostasis, Nature reviews. Immunology 14(6) (2014) 392-404.
[12] K. Liddiard, P.R. Taylor, Understanding local macrophage phenotypes in disease: shape-shifting macrophages, Nat Med 21(2) (2015) 119-20.
[13] S. El Sayed, I. Patik, N.S. Redhu, J.N. Glickman, K. Karagiannis, E.S.Y. El Naenaeey, G.A. Elmowalid, A.M. Abd El Wahab, S.B. Snapper, B.H. Horwitz, CCR2 promotes monocyte recruitment and intestinal inflammation in mice lacking the interleukin-10 receptor, Sci Rep 12(1) (2022) 452.
[14] P.G. Andres, P.L. Beck, E. Mizoguchi, A. Mizoguchi, A.K. Bhan, T. Dawson, W.A. Kuziel, N. Maeda, R.P. MacDermott, D.K. Podolsky, H.C. Reinecker, Mice with a selective deletion of the CC chemokine receptors 5 or 2 are protected from dextran sodium sulfate-mediated colitis: lack of CC chemokine receptor 5 expression results in a NK1.1+ lymphocyte-associated Th2-type immune response in the intestine, J Immunol 164(12) (2000) 6303-12.
[15] L. van de Laar, W. Saelens, S. De Prijck, L. Martens, C.L. Scott, G. Van Isterdael, E. Hoffmann, R. Beyaert, Y. Saeys, B.N. Lambrecht, M. Guilliams, Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into Functional Tissue-Resident Macrophages, Immunity 44(4) (2016) 755-68.
[16] F. Geissmann, P. Revy, N. Brousse, Y. Lepelletier, C. Folli, A. Durandy, P. Chambon, M. Dy, Retinoids regulate survival and antigen presentation by immature dendritic cells, J Exp Med 198(4) (2003) 623-34.
[17] I.R. Dunay, R.A. Damatta, B. Fux, R. Presti, S. Greco, M. Colonna, L.D. Sibley, Gr1(+) inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii, Immunity 29(2) (2008) 306-17.
[18] F. Geissmann, M.G. Manz, S. Jung, M.H. Sieweke, M. Merad, K. Ley, Development of monocytes, macrophages, and dendritic cells, Science 327(5966) (2010) 656-61.
[19] D. Hashimoto, A. Chow, C. Noizat, P. Teo, M.B. Beasley, M. Leboeuf, C.D. Becker, P. See, J. Price, D. Lucas, M. Greter, A. Mortha, S.W. Boyer, E.C. Forsberg, M. Tanaka, N. van Rooijen, A. García-Sastre, E.R. Stanley, F. Ginhoux, P.S. Frenette, M. Merad, Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes, Immunity 38(4) (2013) 792-804.
[20] C.C. Bain, A.S. MacDonald, The impact of the lung environment on macrophage development, activation and function: diversity in the face of adversity, Mucosal Immunol 15(2) (2022) 223-234.
[21] C.C. Bain, C.L. Scott, H. Uronen-Hansson, S. Gudjonsson, O. Jansson, O. Grip, M. Guilliams, B. Malissen, W.W. Agace, A.M. Mowat, Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors, Mucosal Immunol 6(3) (2013) 498-510.
[22] D. Bernardo, A.C. Marin, S. Fernández-Tomé, A. Montalban-Arques, A. Carrasco, E. Tristán, L. Ortega-Moreno, I. Mora-Gutiérrez, A. Díaz-Guerra, R. Caminero-Fernández, P. Miranda, F. Casals, M. Caldas, M. Jiménez, S. Casabona, F. De la Morena, M. Esteve, C. Santander, M. Chaparro, J.P. Gisbert, Human intestinal pro-inflammatory CD11c(high)CCR2(+)CX3CR1(+) macrophages, but not their tolerogenic CD11c(-)CCR2(-)CX3CR1(-) counterparts, are expanded in inflammatory bowel disease, Mucosal Immunol 11(4) (2018) 1114-1126.
[23] A. Bujko, N. Atlasy, O.J.B. Landsverk, L. Richter, S. Yaqub, R. Horneland, O. Øyen, E.M. Aandahl, L. Aabakken, H.G. Stunnenberg, E.S. Bækkevold, F.L. Jahnsen, Transcriptional and functional profiling defines human small intestinal macrophage subsets, J Exp Med 215(2) (2018) 441-458.
[24] U.M. Gundra, N.M. Girgis, D. Ruckerl, S. Jenkins, L.N. Ward, Z.D. Kurtz, K.E. Wiens, M.S. Tang, U. Basu-Roy, A. Mansukhani, J.E. Allen, P. Loke, Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct, Blood 123(20) (2014) e110-22.
[25] Y. Yu, Z. Yue, M. Xu, M. Zhang, X. Shen, Z. Ma, J. Li, X. Xie, Macrophages play a key role in tissue repair and regeneration, PeerJ 10 (2022) e14053.
[26] S.J. Leibovich, R. Ross, The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum, Am J Pathol 78(1) (1975) 71-100.
[27] T. Castro-Dopico, A. Fleming, T.W. Dennison, J.R. Ferdinand, K. Harcourt, B.J. Stewart, Z. Cader, Z.K. Tuong, C. Jing, L.S.C. Lok, R.J. Mathews, A. Portet, A. Kaser, S. Clare, M.R. Clatworthy, GM-CSF Calibrates Macrophage Defense and Wound Healing Programs during Intestinal Infection and Inflammation, Cell Rep 32(1) (2020) 107857.
[28] C.D. Mills, K. Kincaid, J.M. Alt, M.J. Heilman, A.M. Hill, M-1/M-2 macrophages and the Th1/Th2 paradigm, J Immunol 164(12) (2000) 6166-73.
[29] S. Ma, J. Zhang, H. Liu, S. Li, Q. Wang, The Role of Tissue-Resident Macrophages in the Development and Treatment of Inflammatory Bowel Disease, Front Cell Dev Biol 10 (2022) 896591.
[30] M.A. Odenwald, J.R. Turner, The intestinal epithelial barrier: a therapeutic target?, Nat Rev Gastroenterol Hepatol 14(1) (2017) 9-21.
[31] C. Chelakkot, J. Ghim, S.H. Ryu, Mechanisms regulating intestinal barrier integrity and its pathological implications, Exp Mol Med 50(8) (2018) 1-9.
[32] S.K. Shahi, S. Ghimire, P. Lehman, A.K. Mangalam, Obesity induced gut dysbiosis contributes to disease severity in an animal model of multiple sclerosis, Front Immunol 13 (2022) 966417.
[33] K. Shimizu, H. Ogura, T. Hamasaki, M. Goto, O. Tasaki, T. Asahara, K. Nomoto, M. Morotomi, A. Matsushima, Y. Kuwagata, H. Sugimoto, Altered gut flora are associated with septic complications and death in critically ill patients with systemic inflammatory response syndrome, Dig Dis Sci 56(4) (2011) 1171-7.
[34] F.A. Sylvester, Inflammatory Bowel Disease: Effects on Bone and Mechanisms, Adv Exp Med Biol 1033 (2017) 133-150.
[35] P. Paone, P.D. Cani, Mucus barrier, mucins and gut microbiota: the expected slimy partners?, Gut 69(12) (2020) 2232-2243.
[36] T. Kobayashi, M. Iwaki, A. Nakajima, A. Nogami, M. Yoneda, Current Research on the Pathogenesis of NAFLD/NASH and the Gut-Liver Axis: Gut Microbiota, Dysbiosis, and Leaky-Gut Syndrome, Int J Mol Sci 23(19) (2022).
[37] Y. Kinashi, K. Hase, Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity, Front Immunol 12 (2021) 673708.
[38] J. Schulthess, S. Pandey, M. Capitani, K.C. Rue-Albrecht, I. Arnold, F. Franchini, A. Chomka, N.E. Ilott, D.G.W. Johnston, E. Pires, J. McCullagh, S.N. Sansom, C.V. Arancibia-Cárcamo, H.H. Uhlig, F. Powrie, The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages, Immunity 50(2) (2019) 432-445.e7.
[39] M. Nakajima, K. Arimatsu, T. Kato, Y. Matsuda, T. Minagawa, N. Takahashi, H. Ohno, K. Yamazaki, Oral Administration of P. gingivalis Induces Dysbiosis of Gut Microbiota and Impaired Barrier Function Leading to Dissemination of Enterobacteria to the Liver, PLoS One 10(7) (2015) e0134234.
[40] H. Liu, X.L. Hong, T.T. Sun, X.W. Huang, J.L. Wang, H. Xiong, Fusobacterium nucleatum exacerbates colitis by damaging epithelial barriers and inducing aberrant inflammation, J Dig Dis 21(7) (2020) 385-398.
[41] C. Hill, F. Guarner, G. Reid, G.R. Gibson, D.J. Merenstein, B. Pot, L. Morelli, R.B. Canani, H.J. Flint, S. Salminen, P.C. Calder, M.E. Sanders, Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic, Nat Rev Gastroenterol Hepatol 11(8) (2014) 506-14.
[42] M.F. Viola, G. Boeckxstaens, Intestinal resident macrophages: Multitaskers of the gut, Neurogastroenterol Motil 32(8) (2020) e13843.
[43] C.C. Bain, A. Schridde, Origin, Differentiation, and Function of Intestinal Macrophages, Front Immunol 9 (2018) 2733.
[44] A.S. Chikina, F. Nadalin, M. Maurin, M. San-Roman, T. Thomas-Bonafos, X.V. Li, S. Lameiras, S. Baulande, S. Henri, B. Malissen, L. Lacerda Mariano, J. Barbazan, J.M. Blander, I.D. Iliev, D. Matic Vignjevic, A.M. Lennon-Duménil, Macrophages Maintain Epithelium Integrity by Limiting Fungal Product Absorption, Cell 183(2) (2020) 411-428.e16.
[45] A. Mantovani, F. Marchesi, IL-10 and macrophages orchestrate gut homeostasis, Immunity 40(5) (2014) 637-9.
[46] S.C. Nalle, J.R. Turner, Intestinal barrier loss as a critical pathogenic link between inflammatory bowel disease and graft-versus-host disease, Mucosal Immunol 8(4) (2015) 720-30.
[47] M.R. Spalinger, A. Sayoc-Becerra, A.N. Santos, A. Shawki, V. Canale, M. Krishnan, A. Niechcial, N. Obialo, M. Scharl, J. Li, M.G. Nair, D.F. McCole, PTPN2 Regulates Interactions Between Macrophages and Intestinal Epithelial Cells to Promote Intestinal Barrier Function, Gastroenterology 159(5) (2020) 1763-1777.e14.
[48] T. de Sablet, L. Potiron, M. Marquis, F.I. Bussière, S. Lacroix-Lamandé, F. Laurent, Cryptosporidium parvum increases intestinal permeability through interaction with epithelial cells and IL-1β and TNFα released by inflammatory monocytes, Cell Microbiol 18(12) (2016) 1871-1880.
[49] X. Han, S. Ding, H. Jiang, G. Liu, Roles of Macrophages in the Development and Treatment of Gut Inflammation, Front Cell Dev Biol 9 (2021) 625423.
[50] A.A. Hill, M. Kim, D.F. Zegarra-Ruiz, L.C. Chang, K. Norwood, A. Assié, W.H. Wu, M.C. Renfroe, H.W. Song, A.M. Major, B.S. Samuel, J.M. Hyser, R.S. Longman, G.E. Diehl, Acute high-fat diet impairs macrophage-supported intestinal damage resolution, JCI Insight 8(3) (2023).
[51] M. Vujičić, S. Despotović, T. Saksida, I. Stojanović, The Effect of Macrophage Migration Inhibitory Factor on Intestinal Permeability: FITC-Dextran Serum Measurement and Transmission Electron Microscopy, Methods Mol Biol 2080 (2020) 193-201.
[52] L. Farr, S. Ghosh, N. Jiang, K. Watanabe, M. Parlak, R. Bucala, S. Moonah, CD74 Signaling Links Inflammation to Intestinal Epithelial Cell Regeneration and Promotes Mucosal Healing, Cell Mol Gastroenterol Hepatol 10(1) (2020) 101-112.
[53] T.A. Wynn, L. Barron, Macrophages: master regulators of inflammation and fibrosis, Semin Liver Dis 30(3) (2010) 245-57.
[54] P. Krzyszczyk, R. Schloss, A. Palmer, F. Berthiaume, The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes, Front Physiol 9 (2018) 419.
[55] O. Martin-Rodriguez, T. Gauthier, F. Bonnefoy, M. Couturier, A. Daoui, C. Chagué, S. Valmary-Degano, C. Gay, P. Saas, S. Perruche, Pro-Resolving Factors Released by Macrophages After Efferocytosis Promote Mucosal Wound Healing in Inflammatory Bowel Disease, Front Immunol 12 (2021) 754475.
[56] E. Zigmond, S. Jung, Intestinal macrophages: well educated exceptions from the rule, Trends Immunol 34(4) (2013) 162-8.
[57] M.H. Yun, H. Davaapil, J.P. Brockes, Recurrent turnover of senescent cells during regeneration of a complex structure, Elife 4 (2015).
[58] D.C. Kluth, Pro-resolution properties of macrophages in renal injury, Kidney Int 72(3) (2007) 234-6.
[59] E. Manole, C. Niculite, I.M. Lambrescu, G. Gaina, O. Ioghen, L.C. Ceafalan, M.E. Hinescu, Macrophages and Stem Cells-Two to Tango for Tissue Repair?, Biomolecules 11(5) (2021).
[60] K. Sommer, M. Wiendl, T.M. Müller, K. Heidbreder, C. Voskens, M.F. Neurath, S. Zundler, Intestinal Mucosal Wound Healing and Barrier Integrity in IBD-Crosstalk and Trafficking of Cellular Players, Front Med (Lausanne) 8 (2021) 643973.
[61] R. Sun, D. Wang, Y. Song, Q. Li, P. Su, Y. Pang, Granulin as an important immune molecule involved in lamprey tissue repair and regeneration by promoting cell proliferation and migration, Cell Mol Biol Lett 27(1) (2022) 64.
[62] J.A. Zepp, J. Zhao, C. Liu, K. Bulek, L. Wu, X. Chen, Y. Hao, Z. Wang, X. Wang, W. Ouyang, M.F. Kalady, J. Carman, W.P. Yang, J. Zhu, C. Blackburn, Y.H. Huang, T.A. Hamilton, B. Su, X. Li, IL-17A-Induced PLET1 Expression Contributes to Tissue Repair and Colon Tumorigenesis, J Immunol 199(11) (2017) 3849-3857.
[63] M. Luo, W. Lai, Z. He, L. Wu, Development of an Optimized Culture System for Generating Mouse Alveolar Macrophage-like Cells, J Immunol 207(6) (2021) 1683-1693.
[64] J.J. Karrich, M. Romera-Hernández, N. Papazian, S. Veenbergen, F. Cornelissen, P. Aparicio-Domingo, F.H. Stenhouse, C.D. Peddie, R.M. Hoogenboezem, C.W.J. den Hollander, T. Gaskell, T. Medley, L. Boon, C.C. Blackburn, D.R. Withers, J.N. Samsom, T. Cupedo, Expression of Plet1 controls interstitial migration of murine small intestinal dendritic cells, Eur J Immunol 49(2) (2019) 290-301.
[65] C.A. Janeway, Jr., R. Medzhitov, Innate immune recognition, Annu Rev Immunol 20 (2002) 197-216.
[66] A. Amamou, C. O’Mahony, M. Leboutte, G. Savoye, S. Ghosh, R. Marion-Letellier, Gut Microbiota, Macrophages and Diet: An Intriguing New Triangle in Intestinal Fibrosis, Microorganisms 10(3) (2022).
[67] Y. Yang, X. Wang, T. Huycke, D.R. Moore, S.A. Lightfoot, M.M. Huycke, Colon Macrophages Polarized by Commensal Bacteria Cause Colitis and Cancer through the Bystander Effect, Transl Oncol 6(5) (2013) 596-606.
[68] D. Parada Venegas, M.K. De la Fuente, G. Landskron, M.J. González, R. Quera, G. Dijkstra, H.J.M. Harmsen, K.N. Faber, M.A. Hermoso, Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases, Front Immunol 10 (2019) 277.
[69] A. Hayashi, T. Sato, N. Kamada, Y. Mikami, K. Matsuoka, T. Hisamatsu, T. Hibi, A. Roers, H. Yagita, T. Ohteki, A. Yoshimura, T. Kanai, A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice, Cell Host Microbe 13(6) (2013) 711-22.
[70] Ivanov, II, K. Honda, Intestinal commensal microbes as immune modulators, Cell Host Microbe 12(4) (2012) 496-508.
[71] P. Rodríguez-Viso, A. Domene, D. Vélez, V. Devesa, M. Zúñiga, V. Monedero, Lactic acid bacteria strains reduce in vitro mercury toxicity on the intestinal mucosa, Food Chem Toxicol 173 (2023) 113631.
[72] D.J. Jia, Q.W. Wang, Y.Y. Hu, J.M. He, Q.W. Ge, Y.D. Qi, L.Y. Chen, Y. Zhang, L.N. Fan, Y.F. Lin, Y. Sun, Y. Jiang, L. Wang, Y.F. Fang, H.Q. He, X.E. Pi, W. Liu, S.J. Chen, L.J. Wang, Lactobacillus johnsonii alleviates colitis by TLR1/2-STAT3 mediated CD206(+) macrophages(IL-10) activation, Gut Microbes 14(1) (2022) 2145843.
[73] X.W. Xiang, R. Wang, L.W. Yao, Y.F. Zhou, P.L. Sun, B. Zheng, Y.F. Chen, Anti-Inflammatory Effects of Mytilus coruscus Polysaccharide on RAW264.7 Cells and DSS-Induced Colitis in Mice, Mar Drugs 19(8) (2021).
[74] J.E. Kim, B. Li, L. Fei, R. Horne, D. Lee, A.K. Loe, H. Miyake, E. Ayar, D.K. Kim, M.G. Surette, D.J. Philpott, P. Sherman, G. Guo, A. Pierro, T.H. Kim, Gut microbiota promotes stem cell differentiation through macrophage and mesenchymal niches in early postnatal development, Immunity 55(12) (2022) 2300-2317.e6.
[75] P. Hiengrach, W. Panpetch, A. Chindamporn, A. Leelahavanichkul, Macrophage depletion alters bacterial gut microbiota partly through fungal overgrowth in feces that worsens cecal ligation and puncture sepsis mice, Sci Rep 12(1) (2022) 9345.
[76] P. Zhu, T. Lu, J. Wu, D. Fan, B. Liu, X. Zhu, H. Guo, Y. Du, F. Liu, Y. Tian, Z. Fan, Author Correction: Gut microbiota drives macrophage-dependent self-renewal of intestinal stem cells via niche enteric serotonergic neurons, Cell Res 32(12) (2022) 1132.
[77] L. Liang, L. Liu, W. Zhou, C. Yang, G. Mai, H. Li, Y. Chen, Gut microbiota-derived butyrate regulates gut mucus barrier repair by activating the macrophage/WNT/ERK signaling pathway, Clin Sci (Lond) 136(4) (2022) 291-307.
[78] J. Ji, D. Shu, M. Zheng, J. Wang, C. Luo, Y. Wang, F. Guo, X. Zou, X. Lv, Y. Li, T. Liu, H. Qu, Microbial metabolite butyrate facilitates M2 macrophage polarization and function, Sci Rep 6 (2016) 24838.
[79] S. Ostadmohammadi, S.A. Nojoumi, A. Fateh, S.D. Siadat, F. Sotoodehnejadnematalahi, Interaction between Clostridium species and microbiota to progress immune regulation, Acta Microbiol Immunol Hung (2022).
[80] J.V. Lacavé-Lapalun, M. Benderitter, C. Linard, Flagellin or lipopolysaccharide treatment modified macrophage populations after colorectal radiation of rats, J Pharmacol Exp Ther 346(1) (2013) 75-85.
[81] J. Wu, Q. Li, X. Fu, Fusobacterium nucleatum Contributes to the Carcinogenesis of Colorectal Cancer by Inducing Inflammation and Suppressing Host Immunity, Transl Oncol 12(6) (2019) 846-851.
[82] M. Kelm, F. Anger, Mucosa and microbiota - the role of intrinsic parameters on intestinal wound healing, Front Surg 9 (2022) 905049.
[83] C. Li, Y. Xu, T. Gao, S. Zhang, Z. Lin, S. Gu, Y. Fang, X. Yuan, S. Yu, Q. Jiang, Z. Lou, X. Zhang, J. Zhang, Q. Wu, M. Gu, X. Ding, J. Sun, Y. Chen, Ruxolitinib Alleviates Inflammation, Apoptosis, and Intestinal Barrier Leakage in Ulcerative Colitis via STAT3, Inflamm Bowel Dis (2023).
[84] Y. Lin, P. Xia, F. Cao, C. Zhang, Y. Yang, H. Jiang, H. Lin, H. Liu, R. Liu, X. Liu, J. Cai, Protective effects of activated vitamin D receptor on radiation-induced intestinal injury, J Cell Mol Med 27(2) (2023) 246-258.
[85] R. Rao, G. Samak, Role of Glutamine in Protection of Intestinal Epithelial Tight Junctions, J Epithel Biol Pharmacol 5(Suppl 1-M7) (2012) 47-54.
[86] L. Huang, Z. Liu, P. Wu, X. Yue, Z. Lian, P. He, Y. Liu, R. Zhou, J. Zhao, Puerariae lobatae Radix Alleviates Pre-Eclampsia by Remodeling Gut Microbiota and Protecting the Gut and Placental Barriers, Nutrients 14(23) (2022).
[87] M. Kanlioz, U. Ekici, M.F. Ferhatoğlu, Total Gastrointestinal Flora Transplantation in the Treatment of Leaky Gut Syndrome and Flora Loss, Cureus 14(11) (2022) e31071.
[88] M. Biazzo, G. Deidda, Fecal Microbiota Transplantation as New Therapeutic Avenue for Human Diseases, J Clin Med 11(14) (2022).
[89] A. Foey, N. Habil, A. Strachan, J. Beal, Lacticaseibacillus casei Strain Shirota Modulates Macrophage-Intestinal Epithelial Cell Co-Culture Barrier Integrity, Bacterial Sensing and Inflammatory Cytokines, Microorganisms 10(10) (2022).
[90] R. Compton, D. Williams, W. Browder, The beneficial effect of enhanced macrophage function on the healing of bowel anastomoses, Am Surg 62(1) (1996) 14-8.
[91] K.M. Vannella, T.A. Wynn, Mechanisms of Organ Injury and Repair by Macrophages, Annu Rev Physiol 79 (2017) 593-617.
[92] H. Yonekawa, E. Murata, M. Akita, A. Satomi, Reorganized small intestine from fetal mouse as an in vitro wound healing model, J Gastroenterol 38(5) (2003) 442-50.
[93] G.F. Pierce, T.A. Mustoe, B.W. Altrock, T.F. Deuel, A. Thomason, Role of platelet-derived growth factor in wound healing, J Cell Biochem 45(4) (1991) 319-26.
[94] N. Bohin, K.P. McGowan, T.M. Keeley, E.A. Carlson, K.S. Yan, L.C. Samuelson, Insulin-like Growth Factor-1 and mTORC1 Signaling Promote the Intestinal Regenerative Response After Irradiation Injury, Cell Mol Gastroenterol Hepatol 10(4) (2020) 797-810.
[95] Y. Torashima, D.E. Levin, E.R. Barthel, A.L. Speer, F.G. Sala, X. Hou, T.C. Grikscheit, Fgf10 overexpression enhances the formation of tissue-engineered small intestine, J Tissue Eng Regen Med 10(2) (2016) 132-9.
[96] J. Dalli, I. Vlasakov, I.R. Riley, A.R. Rodriguez, B.W. Spur, N.A. Petasis, N. Chiang, C.N. Serhan, Maresin conjugates in tissue regeneration biosynthesis enzymes in human macrophages, Proc Natl Acad Sci U S A 113(43) (2016) 12232-12237.
[97] M. Quiros, D. Feier, D. Birkl, R. Agarwal, D.W. Zhou, A.J. García, C.A. Parkos, A. Nusrat, Resolvin E1 is a pro-repair molecule that promotes intestinal epithelial wound healing, Proc Natl Acad Sci U S A 117(17) (2020) 9477-9482.
[98] P.J. Dalal, R. Sumagin, Emerging Functions of ICAM-1 in Macrophage Efferocytosis and Wound Healing, J Cell Immunol 2(5) (2020) 250-253.
[99] M.G. Rohani, R.S. McMahan, M.V. Razumova, A.L. Hertz, M. Cieslewicz, S.H. Pun, M. Regnier, Y. Wang, T.P. Birkland, W.C. Parks, MMP-10 Regulates Collagenolytic Activity of Alternatively Activated Resident Macrophages, J Invest Dermatol 135(10) (2015) 2377-2384.
[100] S. Takahashi, N. Kobayashi, S. Okabe, Regulation by endogenous interleukin-1 of mRNA expression of healing-related factors in gastric ulcers in rats, J Pharmacol Exp Ther 291(2) (1999) 634-41.
[101] C.R. Harrell, B.S. Markovic, C. Fellabaum, N. Arsenijevic, V. Djonov, V. Volarevic, The role of Interleukin 1 receptor antagonist in mesenchymal stem cell-based tissue repair and regeneration, Biofactors 46(2) (2020) 263-275.
[102] T. Harel-Adar, T. Ben Mordechai, Y. Amsalem, M.S. Feinberg, J. Leor, S. Cohen, Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair, Proc Natl Acad Sci U S A 108(5) (2011) 1827-32.
[103] R.M. Boehler, R. Kuo, S. Shin, A.G. Goodman, M.A. Pilecki, R.M. Gower, J.N. Leonard, L.D. Shea, Lentivirus delivery of IL-10 to promote and sustain macrophage polarization towards an anti-inflammatory phenotype, Biotechnol Bioeng 111(6) (2014) 1210-21.
[104] S. Banerjee, H. Cui, N. Xie, Z. Tan, S. Yang, M. Icyuz, V.J. Thannickal, E. Abraham, G. Liu, miR-125a-5p regulates differential activation of macrophages and inflammation, J Biol Chem 288(49) (2013) 35428-36.
[105] Q. Chen, H. Wang, Y. Liu, Y. Song, L. Lai, Q. Han, X. Cao, Q. Wang, Inducible microRNA-223 down-regulation promotes TLR-triggered IL-6 and IL-1β production in macrophages by targeting STAT3, PLoS One 7(8) (2012) e42971.
[106] J. Li, J. Zhang, H. Guo, S. Yang, W. Fan, N. Ye, Z. Tian, T. Yu, G. Ai, Z. Shen, H. He, P. Yan, H. Lin, X. Luo, H. Li, Y. Wu, Critical Role of Alternative M2 Skewing in miR-155 Deletion-Mediated Protection of Colitis, Front Immunol 9 (2018) 904.
[107] Y. Zhang, M. Zhang, X. Li, Z. Tang, X. Wang, M. Zhong, Q. Suo, Y. Zhang, K. Lv, Silencing MicroRNA-155 Attenuates Cardiac Injury and Dysfunction in Viral Myocarditis via Promotion of M2 Phenotype Polarization of Macrophages, Sci Rep 6 (2016) 22613.
[108] F. Deng, J. Yan, J. Lu, M. Luo, P. Xia, S. Liu, X. Wang, F. Zhi, D. Liu, M2 Macrophage-Derived Exosomal miR-590-3p Attenuates DSS-Induced Mucosal Damage and Promotes Epithelial Repair via the LATS1/YAP/ β-Catenin Signalling Axis, J Crohns Colitis 15(4) (2021) 665-677.
[109] R. Yang, Y. Liao, L. Wang, P. He, Y. Hu, D. Yuan, Z. Wu, X. Sun, Exosomes Derived From M2b Macrophages Attenuate DSS-Induced Colitis, Front Immunol 10 (2019) 2346.
[110] I.R. Turnbull, S. Gilfillan, M. Cella, T. Aoshi, M. Miller, L. Piccio, M. Hernandez, M. Colonna, Cutting edge: TREM-2 attenuates macrophage activation, J Immunol 177(6) (2006) 3520-4.
[111] C. Hornuss, R. Hammermann, M. Fuhrmann, U.R. Juergens, K. Racké, Human and rat alveolar macrophages express multiple EDG receptors, Eur J Pharmacol 429(1-3) (2001) 303-8.
[112] H. Lee, J.J. Liao, M. Graeler, M.C. Huang, E.J. Goetzl, Lysophospholipid regulation of mononuclear phagocytes, Biochim Biophys Acta 1582(1-3) (2002) 175-7.
[113] D. Meriwether, A.E. Jones, J.W. Ashby, R.S. Solorzano-Vargas, N. Dorreh, S. Noori, V. Grijalva, A.B. Ball, M. Semis, A.S. Divakaruni, J.J. Mack, H.R. Herschman, M.G. Martin, A.M. Fogelman, S.T. Reddy, Macrophage COX2 Mediates Efferocytosis, Resolution Reprogramming, and Intestinal Epithelial Repair, Cell Mol Gastroenterol Hepatol 13(4) (2022) 1095-1120.