References
1. Holmgren A. Thioredoxin. Annu Rev Biochem. 1985;54:237-271.
2. Eklund H, Gleason FK, Holmgren A. Structural and functional relations among thioredoxins of different species. Proteins.1991;11(1):13-28.
3. Arner ES. Focus on mammalian thioredoxin reductases–important selenoproteins with versatile functions. Biochim Biophys Acta.2009;1790(6):495-526.
4. Rhee SG, Chae HZ, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med. 2005;38(12):1543-1552.
5. Lee S, Kim SM, Lee RT. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal. 2013;18(10):1165-1207.
6. Lillig CH, Holmgren A. Thioredoxin and related molecules–from biology to health and disease. Antioxid Redox Signal.2007;9(1):25-47.
7. Yamada Y, Nakamura H, Adachi T, et al. Elevated serum levels of thioredoxin in patients with acute exacerbation of asthma. Immunol Lett. 2003;86(2):199-205.
8. Tinkov AA, Bjorklund G, Skalny AV, et al. The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome: towards a possible prognostic marker? Cell Mol Life Sci.2018;75(9):1567-1586.
9. Lu J, Holmgren A. The thioredoxin superfamily in oxidative protein folding. Antioxid Redox Signal. 2014;21(3):457-470.
10. Nasoohi S, Ismael S, Ishrat T. Thioredoxin-Interacting Protein (TXNIP) in Cerebrovascular and Neurodegenerative Diseases: Regulation and Implication. Mol Neurobiol. 2018;55(10):7900-7920.
11. Nakamura H, Hoshino Y, Okuyama H, Matsuo Y, Yodoi J. Thioredoxin 1 delivery as new therapeutics. Adv Drug Deliv Rev.2009;61(4):303-309.
12. Barnes PJ. Pathophysiology of asthma. Br J Clin Pharmacol.1996;42(1):3-10.
13. Locksley RM. Asthma and allergic inflammation. Cell.2010;140(6):777-783.
14. Kuperman DA, Huang X, Koth LL, et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med. 2002;8(8):885-889.
15. Saito A, Okazaki H, Sugawara I, Yamamoto K, Takizawa H. Potential action of IL-4 and IL-13 as fibrogenic factors on lung fibroblasts in vitro. Int Arch Allergy Immunol. 2003;132(2):168-176.
16. Barnes PJ. Reactive oxygen species and airway inflammation.Free Radic Biol Med. 1990;9(3):235-243.
17. Das D, Wang YH, Hsieh CY, Suzuki YJ. Major vault protein regulates cell growth/survival signaling through oxidative modifications.Cell Signal. 2016;28(1):12-18.
18. Bozza MT, Lintomen L, Kitoko JZ, Paiva CN, Olsen PC. The Role of MIF on Eosinophil Biology and Eosinophilic Inflammation. Clin Rev Allergy Immunol. 2020;58(1):15-24.
19. Weiss ST. Emerging mechanisms and novel targets in allergic inflammation and asthma. Genome Med. 2017;9(1):107.
20. Mokra D, Tonhajzerova I, Mokry J, Petraskova M, Hutko M, Calkovska A. Cardiovascular side effects of aminophylline in meconium-induced acute lung injury. Adv Exp Med Biol. 2013;756:341-347.
21. Ito W, Kobayashi N, Takeda M, et al. Thioredoxin in allergic inflammation. Int Arch Allergy Immunol. 2011;155 Suppl 1:142-146.
22. Ichiki H, Hoshino T, Kinoshita T, et al. Thioredoxin suppresses airway hyperresponsiveness and airway inflammation in asthma.Biochem Biophys Res Commun. 2005;334(4):1141-1148.
23. Imaoka H, Hoshino T, Takei S, et al. Effects of thioredoxin on established airway remodeling in a chronic antigen exposure asthma model. Biochem Biophys Res Commun. 2007;360(3):525-530.
24. Torii M, Wang L, Ma N, et al. Thioredoxin suppresses airway inflammation independently of systemic Th1/Th2 immune modulation.Eur J Immunol. 2010;40(3):787-796.
25. Imaoka H, Hoshino T, Okamoto M, et al. Endogenous and exogenous thioredoxin 1 prevents goblet cell hyperplasia in a chronic antigen exposure asthma model. Allergol Int. 2009;58(3):403-410.
26. Jia JJ, Zeng XS, Li Y, Ma S, Bai J. Ephedrine induced thioredoxin-1 expression through beta-adrenergic receptor/cyclic AMP/protein kinase A/dopamine- and cyclic AMP-regulated phosphoprotein signaling pathway.Cell Signal. 2013;25(5):1194-1201.
27. Galli E, Neri I, Ricci G, et al. Consensus Conference on Clinical Management of pediatric Atopic Dermatitis. Ital J Pediatr.2016;42:26.
28. Kaplan DH, Jenison MC, Saeland S, Shlomchik WD, Shlomchik MJ. Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity. 2005;23(6):611-620.
29. Miyachi Y, Uchida K, Komura J, Asada Y, Niwa Y. Auto-oxidative damage in cement dermatitis. Arch Dermatol Res.1985;277(4):288-292.
30. Nakamura H, Masutani H, Yodoi J. Extracellular thioredoxin and thioredoxin-binding protein 2 in control of cancer. Semin Cancer Biol. 2006;16(6):444-451.
31. Fukunaga A, Horikawa T, Ogura K, et al. Thioredoxin suppresses the contact hypersensitivity response by inhibiting leukocyte recruitment during the elicitation phase. Antioxid Redox Signal.2009;11(6):1227-1235.
32. Ono R, Masaki T, Dien S, et al. Suppressive effect of recombinant human thioredoxin on ultraviolet light-induced inflammation and apoptosis in murine skin. J Dermatol. 2012;39(10):843-851.
33. Tian H, Matsuo Y, Fukunaga A, Ono R, Nishigori C, Yodoi J. Thioredoxin ameliorates cutaneous inflammation by regulating the epithelial production and release of pro-inflammatory cytokines.Front Immunol. 2013;4:269.
34. Brough HA, Liu AH, Sicherer S, et al. Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy. J Allergy Clin Immunol.2015;135(1):164-170.
35. Venkataraman D, Soto-Ramirez N, Kurukulaaratchy RJ, et al. Filaggrin loss-of-function mutations are associated with food allergy in childhood and adolescence. J Allergy Clin Immunol. 2014;134(4):876-882 e874.
36. Vickery BP, Scurlock AM, Kulis M, et al. Sustained unresponsiveness to peanut in subjects who have completed peanut oral immunotherapy.J Allergy Clin Immunol. 2014;133(2):468-475.
37. Sampson HA. Peanut oral immunotherapy: is it ready for clinical practice? J Allergy Clin Immunol Pract. 2013;1(1):15-21.
38. Bauer RN, Manohar M, Singh AM, Jay DC, Nadeau KC. The future of biologics: applications for food allergy. J Allergy Clin Immunol.2015;135(2):312-323.
39. Buchanan BB, Adamidi C, Lozano RM, et al. Thioredoxin-linked mitigation of allergic responses to wheat. Proc Natl Acad Sci U S A. 1997;94(10):5372-5377.
40. del Val G, Yee BC, Lozano RM, et al. Thioredoxin treatment increases digestibility and lowers allergenicity of milk. J Allergy Clin Immunol. 1999;103(4):690-697.
41. Matsumoto T, Shimada Y, Hirai S. Mitigated binding of IgE to thioredoxin-treated salt-soluble wheat allergens in a child with Baker’s asthma. Ann Allergy Asthma Immunol. 2007;98(6):599-600.
42. Taketani Y, Kinugasa K, Furukawa S, et al. Yeast thioredoxin-enriched extracts for mitigating the allergenicity of foods.Biosci Biotechnol Biochem. 2011;75(10):1872-1879.
43. Shahriari-Farfani T, Shahpiri A, Taheri-Kafrani A. Enhancement of Tryptic Digestibility of Milk beta-Lactoglobulin Through Treatment with Recombinant Rice Glutathione/Thioredoxin and NADPH Thioredoxin Reductase/Thioredoxin Systems. Appl Biochem Biotechnol.2019;187(2):649-661.
44. Jung D, Lee S, Hong S. Effects of acupuncture and moxibustion in a mouse model of allergic rhinitis. Otolaryngol Head Neck Surg.2012;146(1):19-25.
45. Jeong KT, Kim SG, Lee J, et al. Anti-allergic effect of a Korean traditional medicine, Biyeom-Tang on mast cells and allergic rhinitis.BMC Complement Altern Med. 2014;14:54.
46. Durham SR, Penagos M. Sublingual or subcutaneous immunotherapy for allergic rhinitis? J Allergy Clin Immunol. 2016;137(2):339-349 e310.
47. Kramer MF, Jordan TR, Klemens C, et al. Factors contributing to nasal allergic late phase eosinophilia. Am J Otolaryngol.2006;27(3):190-199.
48. Shi Q, Lei Z, Cheng G, et al. Mitochondrial ROS activate interleukin-1beta expression in allergic rhinitis. Oncol Lett.2018;16(3):3193-3200.
49. Edo Y, Otaki A, Asano K. Quercetin Enhances the Thioredoxin Production of Nasal Epithelial Cells In Vitro and In Vivo.Medicines (Basel). 2018;5(4).
50. Bonadonna P, Lombardo C. Drug allergy in mastocytosis. Immunol Allergy Clin North Am. 2014;34(2):397-405.
51. Son A, Nakamura H, Kondo N, et al. Redox regulation of mast cell histamine release in thioredoxin-1 (TRX) transgenic mice. Cell Res. 2006;16(2):230-239.
52. Inomata Y, Tanihara H, Tanito M, et al. Suppression of choroidal neovascularization by thioredoxin-1 via interaction with complement factor H. Invest Ophthalmol Vis Sci. 2008;49(11):5118-5125.
53. King BC, Nowakowska J, Karsten CM, Kohl J, Renstrom E, Blom AM. Truncated and full-length thioredoxin-1 have opposing activating and inhibitory properties for human complement with relevance to endothelial surfaces. J Immunol. 2012;188(8):4103-4112.
54. Mitsui A, Hamuro J, Nakamura H, et al. Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span.Antioxid Redox Signal. 2002;4(4):693-696.
55. Du Y, Zhang H, Lu J, Holmgren A. Glutathione and glutaredoxin act as a backup of human thioredoxin reductase 1 to reduce thioredoxin 1 preventing cell death by aurothioglucose. J Biol Chem.2012;287(45):38210-38219.
56. Tan SX, Greetham D, Raeth S, Grant CM, Dawes IW, Perrone GG. The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae. J Biol Chem. 2010;285(9):6118-6126.
57. Kang SW, Chae HZ, Seo MS, Kim K, Baines IC, Rhee SG. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem. 1998;273(11):6297-6302.
58. Weiser WY, Temple PA, Witek-Giannotti JS, Remold HG, Clark SC, David JR. Molecular cloning of a cDNA encoding a human macrophage migration inhibitory factor. Proc Natl Acad Sci U S A.1989;86(19):7522-7526.
59. Lang T, Foote A, Lee JP, Morand EF, Harris J. MIF: Implications in the Pathoetiology of Systemic Lupus Erythematosus. Front Immunol.2015;6:577.
60. Das R, Moss JE, Robinson E, et al. Role of macrophage migration inhibitory factor in the Th2 immune response to epicutaneous sensitization. J Clin Immunol. 2011;31(4):666-680.
61. Kleemann R, Kapurniotu A, Frank RW, et al. Disulfide analysis reveals a role for macrophage migration inhibitory factor (MIF) as thiol-protein oxidoreductase. J Mol Biol. 1998;280(1):85-102.
62. Thiele M, Bernhagen J. Link between macrophage migration inhibitory factor and cellular redox regulation. Antioxid Redox Signal.2005;7(9-10):1234-1248.
63. Tamaki H, Nakamura H, Nishio A, et al. Human thioredoxin-1 ameliorates experimental murine colitis in association with suppressed macrophage inhibitory factor production. Gastroenterology.2006;131(4):1110-1121.
64. Sato A, Hara T, Nakamura H, et al. Thioredoxin-1 suppresses systemic inflammatory responses against cigarette smoking. Antioxid Redox Signal. 2006;8(9-10):1891-1896.
65. Kondo N, Ishii Y, Son A, et al. Cysteine-dependent immune regulation by TRX and MIF/GIF family proteins. Immunol Lett.2004;92(1-2):143-147.
66. Son A, Kato N, Horibe T, et al. Direct association of thioredoxin-1 (TRX) with macrophage migration inhibitory factor (MIF): regulatory role of TRX on MIF internalization and signaling. Antioxid Redox Signal. 2009;11(10):2595-2605.
67. Agnello D, Lankford CS, Bream J, et al. Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J Clin Immunol. 2003;23(3):147-161.
68. Nembrini C, Abel B, Kopf M, Marsland BJ. Strong TCR signaling, TLR ligands, and cytokine redundancies ensure robust development of type 1 effector T cells. J Immunol. 2006;176(12):7180-7188.
69. Yagi J, Arimura Y, Takatori H, Nakajima H, Iwamoto I, Uchiyama T. Genetic background influences Th cell differentiation by controlling the capacity for IL-2-induced IL-4 production by naive CD4+ T cells.Int Immunol. 2006;18(12):1681-1690.
70. Angelini G, Gardella S, Ardy M, et al. Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc Natl Acad Sci U S A.2002;99(3):1491-1496.
71. Edinger AL, Thompson CB. Antigen-presenting cells control T cell proliferation by regulating amino acid availability. Proc Natl Acad Sci U S A. 2002;99(3):1107-1109.
72. Matthias LJ, Yam PT, Jiang XM, et al. Disulfide exchange in domain 2 of CD4 is required for entry of HIV-1. Nat Immunol.2002;3(8):727-732.
73. Schwertassek U, Balmer Y, Gutscher M, et al. Selective redox regulation of cytokine receptor signaling by extracellular thioredoxin-1. EMBO J. 2007;26(13):3086-3097.
74. Kang MW, Jang JY, Choi JY, et al. Induction of IFN-gamma gene expression by thioredoxin: positive feed-back regulation of Th1 response by thioredoxin and IFN-gamma. Cell Physiol Biochem.2008;21(1-3):215-224.
75. Kim SH, Oh J, Choi JY, Jang JY, Kang MW, Lee CE. Identification of human thioredoxin as a novel IFN-gamma-induced factor: mechanism of induction and its role in cytokine production. BMC Immunol.2008;9:64.
76. Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol.2004;75(2):163-189.
77. Plugis NM, Weng N, Zhao Q, et al. Interleukin 4 is inactivated via selective disulfide-bond reduction by extracellular thioredoxin.Proc Natl Acad Sci U S A. 2018;115(35):8781-8786.
78. Baugh JA, Bucala R. Macrophage migration inhibitory factor.Crit Care Med. 2002;30(1 Supp):S27-S35.
79. Heath H, Qin S, Rao P, et al. Chemokine receptor usage by human eosinophils. The importance of CCR3 demonstrated using an antagonistic monoclonal antibody. J Clin Invest. 1997;99(2):178-184.
80. Kobayashi N, Yamada Y, Ito W, et al. Thioredoxin reduces C-C chemokine-induced chemotaxis of human eosinophils. Allergy.2009;64(8):1130-1135.
81. Boehme SA, Sullivan SK, Crowe PD, et al. Activation of mitogen-activated protein kinase regulates eotaxin-induced eosinophil migration. J Immunol. 1999;163(3):1611-1618.
82. Kampen GT, Stafford S, Adachi T, et al. Eotaxin induces degranulation and chemotaxis of eosinophils through the activation of ERK2 and p38 mitogen-activated protein kinases. Blood.2000;95(6):1911-1917.
83. Chuang CY, Chang CH, Huang YL. Thioredoxin mediates remodeling factors of human bronchial epithelial cells upon interaction with house dust mite-stimulated eosinophils. Inhal Toxicol.2009;21(2):153-167.
84. Kondo N, Nakamura H, Masutani H, Yodoi J. Redox regulation of human thioredoxin network. Antioxid Redox Signal.2006;8(9-10):1881-1890.
85. Wolfreys K, Oliveira DB. Alterations in intracellular reactive oxygen species generation and redox potential modulate mast cell function. Eur J Immunol. 1997;27(1):297-306.
86. Suzuki Y, Yoshimaru T, Inoue T, Niide O, Ra C. Role of oxidants in mast cell activation. Chem Immunol Allergy. 2005;87:32-42.
87. Yoshimaru T, Suzuki Y, Matsui T, et al. Blockade of superoxide generation prevents high-affinity immunoglobulin E receptor-mediated release of allergic mediators by rat mast cell line and human basophils.Clin Exp Allergy. 2002;32(4):612-618.
88. Suzuki Y, Yoshimaru T, Matsui T, et al. Fc epsilon RI signaling of mast cells activates intracellular production of hydrogen peroxide: role in the regulation of calcium signals. J Immunol.2003;171(11):6119-6127.
89. Cairns JA. Inhibitors of mast cell tryptase beta as therapeutics for the treatment of asthma and inflammatory disorders. Pulm Pharmacol Ther. 2005;18(1):55-66.
90. Castells M, Schwartz LB. Tryptase levels in nasal-lavage fluid as an indicator of the immediate allergic response. J Allergy Clin Immunol. 1988;82(3 Pt 1):348-355.
91. Cook KM, McNeil HP, Hogg PJ. Allosteric control of betaII-tryptase by a redox active disulfide bond. J Biol Chem.2013;288(48):34920-34929.
92. Hosoki K, Itazawa T, Boldogh I, Sur S. Neutrophil recruitment by allergens contribute to allergic sensitization and allergic inflammation. Curr Opin Allergy Clin Immunol. 2016;16(1):45-50.
93. Nakamura H, Herzenberg LA, Bai J, et al. Circulating thioredoxin suppresses lipopolysaccharide-induced neutrophil chemotaxis. Proc Natl Acad Sci U S A. 2001;98(26):15143-15148.
94. Rizoli SB, Rotstein OD, Kapus A. Cell volume-dependent regulation of L-selectin shedding in neutrophils. A role for p38 mitogen-activated protein kinase. J Biol Chem. 1999;274(31):22072-22080.
95. Zhou J, Wang C, Wu J, et al. Anti-Allergic and Anti-Inflammatory Effects and Molecular Mechanisms of Thioredoxin on Respiratory System Diseases. Antioxid Redox Signal. 2020;32(11):785-801.
96. Ueda S, Nakamura T, Yamada A, et al. Recombinant human thioredoxin suppresses lipopolysaccharide-induced bronchoalveolar neutrophil infiltration in rat. Life Sci. 2006;79(12):1170-1177.
97. Richards A, Kavanagh D, Atkinson JP. Inherited complement regulatory protein deficiency predisposes to human disease in acute injury and chronic inflammatory statesthe examples of vascular damage in atypical hemolytic uremic syndrome and debris accumulation in age-related macular degeneration. Adv Immunol. 2007;96:141-177.
98. Thau L, Asuka E, Mahajan K. Physiology, Opsonization. In:StatPearls. Treasure Island (FL)2021.
99. Aeberli D, Leech M, Morand EF. Macrophage migration inhibitory factor and glucocorticoid sensitivity. Rheumatology (Oxford).2006;45(8):937-943.
100. Roger T, Chanson AL, Knaup-Reymond M, Calandra T. Macrophage migration inhibitory factor promotes innate immune responses by suppressing glucocorticoid-induced expression of mitogen-activated protein kinase phosphatase-1. Eur J Immunol.2005;35(12):3405-3413.
101. Chen P, Li J, Barnes J, Kokkonen GC, Lee JC, Liu Y. Restraint of proinflammatory cytokine biosynthesis by mitogen-activated protein kinase phosphatase-1 in lipopolysaccharide-stimulated macrophages.J Immunol. 2002;169(11):6408-6416.
102. Kassel O, Sancono A, Kratzschmar J, Kreft B, Stassen M, Cato AC. Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J. 2001;20(24):7108-7116.
103. Lasa M, Abraham SM, Boucheron C, Saklatvala J, Clark AR. Dexamethasone causes sustained expression of mitogen-activated protein kinase (MAPK) phosphatase 1 and phosphatase-mediated inhibition of MAPK p38. Mol Cell Biol. 2002;22(22):7802-7811.
104. Fan H, Kao W, Yang YH, et al. Macrophage migration inhibitory factor inhibits the antiinflammatory effects of glucocorticoids via glucocorticoid-induced leucine zipper. Arthritis Rheumatol.2014;66(8):2059-2070.
105. Wang FF, Zhu LA, Zou YQ, et al. New insights into the role and mechanism of macrophage migration inhibitory factor in steroid-resistant patients with systemic lupus erythematosus. Arthritis Res Ther.2012;14(3):R103.
106. Makino Y, Okamoto K, Yoshikawa N, et al. Thioredoxin: a redox-regulating cellular cofactor for glucocorticoid hormone action. Cross talk between endocrine control of stress response and cellular antioxidant defense system. J Clin Invest. 1996;98(11):2469-2477.
Table 1. Overview of commonly used anti-allergy drugs and Trx1