References
1. Holmgren A. Thioredoxin. Annu Rev Biochem. 1985;54:237-271.
2. Eklund H, Gleason FK, Holmgren A. Structural and functional relations
among thioredoxins of different species. Proteins.1991;11(1):13-28.
3. Arner ES. Focus on mammalian thioredoxin reductases–important
selenoproteins with versatile functions. Biochim Biophys Acta.2009;1790(6):495-526.
4. Rhee SG, Chae HZ, Kim K. Peroxiredoxins: a historical overview and
speculative preview of novel mechanisms and emerging concepts in cell
signaling. Free Radic Biol Med. 2005;38(12):1543-1552.
5. Lee S, Kim SM, Lee RT. Thioredoxin and thioredoxin target proteins:
from molecular mechanisms to functional significance. Antioxid
Redox Signal. 2013;18(10):1165-1207.
6. Lillig CH, Holmgren A. Thioredoxin and related molecules–from
biology to health and disease. Antioxid Redox Signal.2007;9(1):25-47.
7. Yamada Y, Nakamura H, Adachi T, et al. Elevated serum levels of
thioredoxin in patients with acute exacerbation of asthma. Immunol
Lett. 2003;86(2):199-205.
8. Tinkov AA, Bjorklund G, Skalny AV, et al. The role of the
thioredoxin/thioredoxin reductase system in the metabolic syndrome:
towards a possible prognostic marker? Cell Mol Life Sci.2018;75(9):1567-1586.
9. Lu J, Holmgren A. The thioredoxin superfamily in oxidative protein
folding. Antioxid Redox Signal. 2014;21(3):457-470.
10. Nasoohi S, Ismael S, Ishrat T. Thioredoxin-Interacting Protein
(TXNIP) in Cerebrovascular and Neurodegenerative Diseases: Regulation
and Implication. Mol Neurobiol. 2018;55(10):7900-7920.
11. Nakamura H, Hoshino Y, Okuyama H, Matsuo Y, Yodoi J. Thioredoxin 1
delivery as new therapeutics. Adv Drug Deliv Rev.2009;61(4):303-309.
12. Barnes PJ. Pathophysiology of asthma. Br J Clin Pharmacol.1996;42(1):3-10.
13. Locksley RM. Asthma and allergic inflammation. Cell.2010;140(6):777-783.
14. Kuperman DA, Huang X, Koth LL, et al. Direct effects of
interleukin-13 on epithelial cells cause airway hyperreactivity and
mucus overproduction in asthma. Nat Med. 2002;8(8):885-889.
15. Saito A, Okazaki H, Sugawara I, Yamamoto K, Takizawa H. Potential
action of IL-4 and IL-13 as fibrogenic factors on lung fibroblasts in
vitro. Int Arch Allergy Immunol. 2003;132(2):168-176.
16. Barnes PJ. Reactive oxygen species and airway inflammation.Free Radic Biol Med. 1990;9(3):235-243.
17. Das D, Wang YH, Hsieh CY, Suzuki YJ. Major vault protein regulates
cell growth/survival signaling through oxidative modifications.Cell Signal. 2016;28(1):12-18.
18. Bozza MT, Lintomen L, Kitoko JZ, Paiva CN, Olsen PC. The Role of MIF
on Eosinophil Biology and Eosinophilic Inflammation. Clin Rev
Allergy Immunol. 2020;58(1):15-24.
19. Weiss ST. Emerging mechanisms and novel targets in allergic
inflammation and asthma. Genome Med. 2017;9(1):107.
20. Mokra D, Tonhajzerova I, Mokry J, Petraskova M, Hutko M, Calkovska
A. Cardiovascular side effects of aminophylline in meconium-induced
acute lung injury. Adv Exp Med Biol. 2013;756:341-347.
21. Ito W, Kobayashi N, Takeda M, et al. Thioredoxin in allergic
inflammation. Int Arch Allergy Immunol. 2011;155 Suppl 1:142-146.
22. Ichiki H, Hoshino T, Kinoshita T, et al. Thioredoxin suppresses
airway hyperresponsiveness and airway inflammation in asthma.Biochem Biophys Res Commun. 2005;334(4):1141-1148.
23. Imaoka H, Hoshino T, Takei S, et al. Effects of thioredoxin on
established airway remodeling in a chronic antigen exposure asthma
model. Biochem Biophys Res Commun. 2007;360(3):525-530.
24. Torii M, Wang L, Ma N, et al. Thioredoxin suppresses airway
inflammation independently of systemic Th1/Th2 immune modulation.Eur J Immunol. 2010;40(3):787-796.
25. Imaoka H, Hoshino T, Okamoto M, et al. Endogenous and exogenous
thioredoxin 1 prevents goblet cell hyperplasia in a chronic antigen
exposure asthma model. Allergol Int. 2009;58(3):403-410.
26. Jia JJ, Zeng XS, Li Y, Ma S, Bai J. Ephedrine induced thioredoxin-1
expression through beta-adrenergic receptor/cyclic AMP/protein kinase
A/dopamine- and cyclic AMP-regulated phosphoprotein signaling pathway.Cell Signal. 2013;25(5):1194-1201.
27. Galli E, Neri I, Ricci G, et al. Consensus Conference on Clinical
Management of pediatric Atopic Dermatitis. Ital J Pediatr.2016;42:26.
28. Kaplan DH, Jenison MC, Saeland S, Shlomchik WD, Shlomchik MJ.
Epidermal langerhans cell-deficient mice develop enhanced contact
hypersensitivity. Immunity. 2005;23(6):611-620.
29. Miyachi Y, Uchida K, Komura J, Asada Y, Niwa Y. Auto-oxidative
damage in cement dermatitis. Arch Dermatol Res.1985;277(4):288-292.
30. Nakamura H, Masutani H, Yodoi J. Extracellular thioredoxin and
thioredoxin-binding protein 2 in control of cancer. Semin Cancer
Biol. 2006;16(6):444-451.
31. Fukunaga A, Horikawa T, Ogura K, et al. Thioredoxin suppresses the
contact hypersensitivity response by inhibiting leukocyte recruitment
during the elicitation phase. Antioxid Redox Signal.2009;11(6):1227-1235.
32. Ono R, Masaki T, Dien S, et al. Suppressive effect of recombinant
human thioredoxin on ultraviolet light-induced inflammation and
apoptosis in murine skin. J Dermatol. 2012;39(10):843-851.
33. Tian H, Matsuo Y, Fukunaga A, Ono R, Nishigori C, Yodoi J.
Thioredoxin ameliorates cutaneous inflammation by regulating the
epithelial production and release of pro-inflammatory cytokines.Front Immunol. 2013;4:269.
34. Brough HA, Liu AH, Sicherer S, et al. Atopic dermatitis increases
the effect of exposure to peanut antigen in dust on peanut sensitization
and likely peanut allergy. J Allergy Clin Immunol.2015;135(1):164-170.
35. Venkataraman D, Soto-Ramirez N, Kurukulaaratchy RJ, et al. Filaggrin
loss-of-function mutations are associated with food allergy in childhood
and adolescence. J Allergy Clin Immunol. 2014;134(4):876-882
e874.
36. Vickery BP, Scurlock AM, Kulis M, et al. Sustained unresponsiveness
to peanut in subjects who have completed peanut oral immunotherapy.J Allergy Clin Immunol. 2014;133(2):468-475.
37. Sampson HA. Peanut oral immunotherapy: is it ready for clinical
practice? J Allergy Clin Immunol Pract. 2013;1(1):15-21.
38. Bauer RN, Manohar M, Singh AM, Jay DC, Nadeau KC. The future of
biologics: applications for food allergy. J Allergy Clin Immunol.2015;135(2):312-323.
39. Buchanan BB, Adamidi C, Lozano RM, et al. Thioredoxin-linked
mitigation of allergic responses to wheat. Proc Natl Acad Sci U S
A. 1997;94(10):5372-5377.
40. del Val G, Yee BC, Lozano RM, et al. Thioredoxin treatment increases
digestibility and lowers allergenicity of milk. J Allergy Clin
Immunol. 1999;103(4):690-697.
41. Matsumoto T, Shimada Y, Hirai S. Mitigated binding of IgE to
thioredoxin-treated salt-soluble wheat allergens in a child with Baker’s
asthma. Ann Allergy Asthma Immunol. 2007;98(6):599-600.
42. Taketani Y, Kinugasa K, Furukawa S, et al. Yeast
thioredoxin-enriched extracts for mitigating the allergenicity of foods.Biosci Biotechnol Biochem. 2011;75(10):1872-1879.
43. Shahriari-Farfani T, Shahpiri A, Taheri-Kafrani A. Enhancement of
Tryptic Digestibility of Milk beta-Lactoglobulin Through Treatment with
Recombinant Rice Glutathione/Thioredoxin and NADPH Thioredoxin
Reductase/Thioredoxin Systems. Appl Biochem Biotechnol.2019;187(2):649-661.
44. Jung D, Lee S, Hong S. Effects of acupuncture and moxibustion in a
mouse model of allergic rhinitis. Otolaryngol Head Neck Surg.2012;146(1):19-25.
45. Jeong KT, Kim SG, Lee J, et al. Anti-allergic effect of a Korean
traditional medicine, Biyeom-Tang on mast cells and allergic rhinitis.BMC Complement Altern Med. 2014;14:54.
46. Durham SR, Penagos M. Sublingual or subcutaneous immunotherapy for
allergic rhinitis? J Allergy Clin Immunol. 2016;137(2):339-349
e310.
47. Kramer MF, Jordan TR, Klemens C, et al. Factors contributing to
nasal allergic late phase eosinophilia. Am J Otolaryngol.2006;27(3):190-199.
48. Shi Q, Lei Z, Cheng G, et al. Mitochondrial ROS activate
interleukin-1beta expression in allergic rhinitis. Oncol Lett.2018;16(3):3193-3200.
49. Edo Y, Otaki A, Asano K. Quercetin Enhances the Thioredoxin
Production of Nasal Epithelial Cells In Vitro and In Vivo.Medicines (Basel). 2018;5(4).
50. Bonadonna P, Lombardo C. Drug allergy in mastocytosis. Immunol
Allergy Clin North Am. 2014;34(2):397-405.
51. Son A, Nakamura H, Kondo N, et al. Redox regulation of mast cell
histamine release in thioredoxin-1 (TRX) transgenic mice. Cell
Res. 2006;16(2):230-239.
52. Inomata Y, Tanihara H, Tanito M, et al. Suppression of choroidal
neovascularization by thioredoxin-1 via interaction with complement
factor H. Invest Ophthalmol Vis Sci. 2008;49(11):5118-5125.
53. King BC, Nowakowska J, Karsten CM, Kohl J, Renstrom E, Blom AM.
Truncated and full-length thioredoxin-1 have opposing activating and
inhibitory properties for human complement with relevance to endothelial
surfaces. J Immunol. 2012;188(8):4103-4112.
54. Mitsui A, Hamuro J, Nakamura H, et al. Overexpression of human
thioredoxin in transgenic mice controls oxidative stress and life span.Antioxid Redox Signal. 2002;4(4):693-696.
55. Du Y, Zhang H, Lu J, Holmgren A. Glutathione and glutaredoxin act as
a backup of human thioredoxin reductase 1 to reduce thioredoxin 1
preventing cell death by aurothioglucose. J Biol Chem.2012;287(45):38210-38219.
56. Tan SX, Greetham D, Raeth S, Grant CM, Dawes IW, Perrone GG. The
thioredoxin-thioredoxin reductase system can function in vivo as an
alternative system to reduce oxidized glutathione in Saccharomyces
cerevisiae. J Biol Chem. 2010;285(9):6118-6126.
57. Kang SW, Chae HZ, Seo MS, Kim K, Baines IC, Rhee SG. Mammalian
peroxiredoxin isoforms can reduce hydrogen peroxide generated in
response to growth factors and tumor necrosis factor-alpha. J Biol
Chem. 1998;273(11):6297-6302.
58. Weiser WY, Temple PA, Witek-Giannotti JS, Remold HG, Clark SC, David
JR. Molecular cloning of a cDNA encoding a human macrophage migration
inhibitory factor. Proc Natl Acad Sci U S A.1989;86(19):7522-7526.
59. Lang T, Foote A, Lee JP, Morand EF, Harris J. MIF: Implications in
the Pathoetiology of Systemic Lupus Erythematosus. Front Immunol.2015;6:577.
60. Das R, Moss JE, Robinson E, et al. Role of macrophage migration
inhibitory factor in the Th2 immune response to epicutaneous
sensitization. J Clin Immunol. 2011;31(4):666-680.
61. Kleemann R, Kapurniotu A, Frank RW, et al. Disulfide analysis
reveals a role for macrophage migration inhibitory factor (MIF) as
thiol-protein oxidoreductase. J Mol Biol. 1998;280(1):85-102.
62. Thiele M, Bernhagen J. Link between macrophage migration inhibitory
factor and cellular redox regulation. Antioxid Redox Signal.2005;7(9-10):1234-1248.
63. Tamaki H, Nakamura H, Nishio A, et al. Human thioredoxin-1
ameliorates experimental murine colitis in association with suppressed
macrophage inhibitory factor production. Gastroenterology.2006;131(4):1110-1121.
64. Sato A, Hara T, Nakamura H, et al. Thioredoxin-1 suppresses systemic
inflammatory responses against cigarette smoking. Antioxid Redox
Signal. 2006;8(9-10):1891-1896.
65. Kondo N, Ishii Y, Son A, et al. Cysteine-dependent immune regulation
by TRX and MIF/GIF family proteins. Immunol Lett.2004;92(1-2):143-147.
66. Son A, Kato N, Horibe T, et al. Direct association of thioredoxin-1
(TRX) with macrophage migration inhibitory factor (MIF): regulatory role
of TRX on MIF internalization and signaling. Antioxid Redox
Signal. 2009;11(10):2595-2605.
67. Agnello D, Lankford CS, Bream J, et al. Cytokines and transcription
factors that regulate T helper cell differentiation: new players and new
insights. J Clin Immunol. 2003;23(3):147-161.
68. Nembrini C, Abel B, Kopf M, Marsland BJ. Strong TCR signaling, TLR
ligands, and cytokine redundancies ensure robust development of type 1
effector T cells. J Immunol. 2006;176(12):7180-7188.
69. Yagi J, Arimura Y, Takatori H, Nakajima H, Iwamoto I, Uchiyama T.
Genetic background influences Th cell differentiation by controlling the
capacity for IL-2-induced IL-4 production by naive CD4+ T cells.Int Immunol. 2006;18(12):1681-1690.
70. Angelini G, Gardella S, Ardy M, et al. Antigen-presenting dendritic
cells provide the reducing extracellular microenvironment required for T
lymphocyte activation. Proc Natl Acad Sci U S A.2002;99(3):1491-1496.
71. Edinger AL, Thompson CB. Antigen-presenting cells control T cell
proliferation by regulating amino acid availability. Proc Natl
Acad Sci U S A. 2002;99(3):1107-1109.
72. Matthias LJ, Yam PT, Jiang XM, et al. Disulfide exchange in domain 2
of CD4 is required for entry of HIV-1. Nat Immunol.2002;3(8):727-732.
73. Schwertassek U, Balmer Y, Gutscher M, et al. Selective redox
regulation of cytokine receptor signaling by extracellular
thioredoxin-1. EMBO J. 2007;26(13):3086-3097.
74. Kang MW, Jang JY, Choi JY, et al. Induction of IFN-gamma gene
expression by thioredoxin: positive feed-back regulation of Th1 response
by thioredoxin and IFN-gamma. Cell Physiol Biochem.2008;21(1-3):215-224.
75. Kim SH, Oh J, Choi JY, Jang JY, Kang MW, Lee CE. Identification of
human thioredoxin as a novel IFN-gamma-induced factor: mechanism of
induction and its role in cytokine production. BMC Immunol.2008;9:64.
76. Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an
overview of signals, mechanisms and functions. J Leukoc Biol.2004;75(2):163-189.
77. Plugis NM, Weng N, Zhao Q, et al. Interleukin 4 is inactivated via
selective disulfide-bond reduction by extracellular thioredoxin.Proc Natl Acad Sci U S A. 2018;115(35):8781-8786.
78. Baugh JA, Bucala R. Macrophage migration inhibitory factor.Crit Care Med. 2002;30(1 Supp):S27-S35.
79. Heath H, Qin S, Rao P, et al. Chemokine receptor usage by human
eosinophils. The importance of CCR3 demonstrated using an antagonistic
monoclonal antibody. J Clin Invest. 1997;99(2):178-184.
80. Kobayashi N, Yamada Y, Ito W, et al. Thioredoxin reduces C-C
chemokine-induced chemotaxis of human eosinophils. Allergy.2009;64(8):1130-1135.
81. Boehme SA, Sullivan SK, Crowe PD, et al. Activation of
mitogen-activated protein kinase regulates eotaxin-induced eosinophil
migration. J Immunol. 1999;163(3):1611-1618.
82. Kampen GT, Stafford S, Adachi T, et al. Eotaxin induces
degranulation and chemotaxis of eosinophils through the activation of
ERK2 and p38 mitogen-activated protein kinases. Blood.2000;95(6):1911-1917.
83. Chuang CY, Chang CH, Huang YL. Thioredoxin mediates remodeling
factors of human bronchial epithelial cells upon interaction with house
dust mite-stimulated eosinophils. Inhal Toxicol.2009;21(2):153-167.
84. Kondo N, Nakamura H, Masutani H, Yodoi J. Redox regulation of human
thioredoxin network. Antioxid Redox Signal.2006;8(9-10):1881-1890.
85. Wolfreys K, Oliveira DB. Alterations in intracellular reactive
oxygen species generation and redox potential modulate mast cell
function. Eur J Immunol. 1997;27(1):297-306.
86. Suzuki Y, Yoshimaru T, Inoue T, Niide O, Ra C. Role of oxidants in
mast cell activation. Chem Immunol Allergy. 2005;87:32-42.
87. Yoshimaru T, Suzuki Y, Matsui T, et al. Blockade of superoxide
generation prevents high-affinity immunoglobulin E receptor-mediated
release of allergic mediators by rat mast cell line and human basophils.Clin Exp Allergy. 2002;32(4):612-618.
88. Suzuki Y, Yoshimaru T, Matsui T, et al. Fc epsilon RI signaling of
mast cells activates intracellular production of hydrogen peroxide: role
in the regulation of calcium signals. J Immunol.2003;171(11):6119-6127.
89. Cairns JA. Inhibitors of mast cell tryptase beta as therapeutics for
the treatment of asthma and inflammatory disorders. Pulm Pharmacol
Ther. 2005;18(1):55-66.
90. Castells M, Schwartz LB. Tryptase levels in nasal-lavage fluid as an
indicator of the immediate allergic response. J Allergy Clin
Immunol. 1988;82(3 Pt 1):348-355.
91. Cook KM, McNeil HP, Hogg PJ. Allosteric control of betaII-tryptase
by a redox active disulfide bond. J Biol Chem.2013;288(48):34920-34929.
92. Hosoki K, Itazawa T, Boldogh I, Sur S. Neutrophil recruitment by
allergens contribute to allergic sensitization and allergic
inflammation. Curr Opin Allergy Clin Immunol. 2016;16(1):45-50.
93. Nakamura H, Herzenberg LA, Bai J, et al. Circulating thioredoxin
suppresses lipopolysaccharide-induced neutrophil chemotaxis. Proc
Natl Acad Sci U S A. 2001;98(26):15143-15148.
94. Rizoli SB, Rotstein OD, Kapus A. Cell volume-dependent regulation of
L-selectin shedding in neutrophils. A role for p38 mitogen-activated
protein kinase. J Biol Chem. 1999;274(31):22072-22080.
95. Zhou J, Wang C, Wu J, et al. Anti-Allergic and Anti-Inflammatory
Effects and Molecular Mechanisms of Thioredoxin on Respiratory System
Diseases. Antioxid Redox Signal. 2020;32(11):785-801.
96. Ueda S, Nakamura T, Yamada A, et al. Recombinant human thioredoxin
suppresses lipopolysaccharide-induced bronchoalveolar neutrophil
infiltration in rat. Life Sci. 2006;79(12):1170-1177.
97. Richards A, Kavanagh D, Atkinson JP. Inherited complement regulatory
protein deficiency predisposes to human disease in acute injury and
chronic inflammatory statesthe examples of vascular damage in atypical
hemolytic uremic syndrome and debris accumulation in age-related macular
degeneration. Adv Immunol. 2007;96:141-177.
98. Thau L, Asuka E, Mahajan K. Physiology, Opsonization. In:StatPearls. Treasure Island (FL)2021.
99. Aeberli D, Leech M, Morand EF. Macrophage migration inhibitory
factor and glucocorticoid sensitivity. Rheumatology (Oxford).2006;45(8):937-943.
100. Roger T, Chanson AL, Knaup-Reymond M, Calandra T. Macrophage
migration inhibitory factor promotes innate immune responses by
suppressing glucocorticoid-induced expression of mitogen-activated
protein kinase phosphatase-1. Eur J Immunol.2005;35(12):3405-3413.
101. Chen P, Li J, Barnes J, Kokkonen GC, Lee JC, Liu Y. Restraint of
proinflammatory cytokine biosynthesis by mitogen-activated protein
kinase phosphatase-1 in lipopolysaccharide-stimulated macrophages.J Immunol. 2002;169(11):6408-6416.
102. Kassel O, Sancono A, Kratzschmar J, Kreft B, Stassen M, Cato AC.
Glucocorticoids inhibit MAP kinase via increased expression and
decreased degradation of MKP-1. EMBO J. 2001;20(24):7108-7116.
103. Lasa M, Abraham SM, Boucheron C, Saklatvala J, Clark AR.
Dexamethasone causes sustained expression of mitogen-activated protein
kinase (MAPK) phosphatase 1 and phosphatase-mediated inhibition of MAPK
p38. Mol Cell Biol. 2002;22(22):7802-7811.
104. Fan H, Kao W, Yang YH, et al. Macrophage migration inhibitory
factor inhibits the antiinflammatory effects of glucocorticoids via
glucocorticoid-induced leucine zipper. Arthritis Rheumatol.2014;66(8):2059-2070.
105. Wang FF, Zhu LA, Zou YQ, et al. New insights into the role and
mechanism of macrophage migration inhibitory factor in steroid-resistant
patients with systemic lupus erythematosus. Arthritis Res Ther.2012;14(3):R103.
106. Makino Y, Okamoto K, Yoshikawa N, et al. Thioredoxin: a
redox-regulating cellular cofactor for glucocorticoid hormone action.
Cross talk between endocrine control of stress response and cellular
antioxidant defense system. J Clin Invest. 1996;98(11):2469-2477.
Table 1. Overview of commonly used anti-allergy drugs and Trx1