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Abstract19

Reconstructing historical climate change from deep ground temperature measure-20

ments in cold regions is often complicated by the presence of permafrost. Existing meth-21

ods are typically unable to account for latent heat effects due to the freezing and thaw-22

ing of the active layer. In this work, we propose a novel method for reconstructing his-23

torical ground surface temperatures (GST) from borehole temperature measurements24

that accounts for seasonal thawing and refreezing of the active layer. Our method cou-25

ples a recently developed fast numerical modeling scheme for two-phase heat transport26

in permafrost soils with an ensemble-based method for approximate Bayesian inference.27

We evaluate our method on two synthetic test cases covering both cold and warm per-28

mafrost conditions as well as using real data from a 100m deep borehole on Sardakh Is-29

land in northeastern Siberia. Our analysis of the Sardakh Island borehole data confirms30

previous findings that ground surface temperatures in the region have likely risen by 531

to 9 ◦C between the pre-industrial period of 1750–1855 and 2012. We also show that la-32

tent heat effects due to seasonal freeze-thaw have a substantial impact on the resulting33

reconstructed surface temperatures. We find that neglecting the thermal dynamics of34

the active layer can result in biases of roughly −1 to −1.5 ◦C in cold conditions (i.e. mean35

annual ground temperature below −5 ◦C) and as much as −2 to −3 ◦C in warmer con-36

ditions where substantial active layer thickening (> 200 cm) has occurred. Our results37

highlight the importance of considering seasonal freeze-thaw in GST reconstructions from38

permafrost boreholes.39

Plain Language Summary40

Long-term changes in the temperature of the atmosphere are recorded in the solid41

Earth due to the insulating properties of soil and rock. As a result, it is possible to es-42

timate past changes in temperature at the interface between the ground and the atmo-43

sphere by measuring ground temperatures deep below Earth’s surface. In cold regions,44

the presence of permafrost, i.e. ground that remains frozen throughout the year, com-45

plicates such analyses due to the effects of water freezing and thawing in the soil. In this46

work, we present a new method for reconstructing past changes in ground surface tem-47

perature from boreholes situated in permafrost using a computational model of heat flow48

that accounts for these effects. We evaluate our method on both synthetic test cases as49

well as real data from a 100m deep borehole in northeastern Siberia. Our results demon-50

strate that annual freezing and thawing of water near the surface has a substantial im-51

pact on the reconstructed ground surface temperatures, especially in regions where per-52

mafrost is thawing. The proposed method is the first to be widely applicable to ground53

temperatures measured in permafrost and thus constitutes a valuable new tool for un-54

derstanding past and present climate change in cold regions.55

1 Introduction56

Reconstructing historical climate change is crucial to provide context for the re-57

cent warming trends observed in the late 20th and early 21st centuries. Global instru-58

mental surface-air temperature records date back only to the mid-19th century (Benes-59

tad et al., 2019), and such long-term records are even more limited in Arctic regions (Gilichin-60

sky et al., 1998) where much of the surface is underlain by permafrost, i.e. ground that61

remains perennially frozen. Recent studies have established from ground temperature62

records that permafrost is warming globally over the last two decades (Biskaborn et al.,63

2019). Long-term historical simulations of land surface heat exchange (Langer et al., 2024)64

as well as ice core reconstructions (Opel et al., 2013) suggest that this warming trend65

likely dates back to the conclusion of the Little Ice Age in the early- to mid-19th cen-66

tury. However, paleoclimate reconstructions from proxy data carry with them significant67
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uncertainties (Hernández et al., 2020) and thus may not always be representative for ter-68

restrial permafrost regions.69

Temperature measurements from deep boreholes provide a valuable source of in-70

sight into how the thermal state of the Earth has evolved over time scales ranging from71

decades to millennia. This is possible due to the fact that temperature fluctuations at72

the surface diffuse relatively slowly through rock and soil (Huang et al., 2000). The solid73

Earth thereby acts as a low-pass filter that smooths the temperature signal over long time74

frames, with the length-scale of the smoothing kernel increasing with depth. As a result,75

it is possible to detect past changes in ground surface temperature (GST) from deep bore-76

hole temperature measurements (Lachenbruch & Marshall, 1986). Since its original con-77

ception by Beck & Judge (1969), this problem has been extensively studied (Vasseur et78

al., 1983; Shen & Beck, 1991; Huang et al., 1996; Dahl-Jensen et al., 1998; Pollack et al.,79

1998; Mann et al., 2003). One of the most commonly applied solutions uses singular value80

decomposition to solve the linear inverse problem posed by an analytical forward model81

of heat transport (Mareschal & Beltrami, 1992). This approach was recently augmented82

by Cuesta-Valero et al. (2022) to account for uncertainty through a bootstrap sampling83

approach. Such methods are, however, limited to simple forward models of conductive84

heat transport to which linear inversions are applicable. Furthermore, they do not eas-85

ily permit the inclusion of a priori information about surface temperatures or other un-86

knowns. In contrast, Bayesian approaches to GST reconstruction have the advantage of87

fully accounting for uncertainty in the ill-posed inverse problem and allowing for the di-88

rect incorporation of external information through prior distributions (Wang, 1992; Wood-89

bury & Ferguson, 2006). Hopcroft & Gallagher (2023) recently applied one such method90

(Hopcroft et al., 2007) to the International Heat Flow Commission database (Huang &91

Pollack, 1998) of 1012 temperature profiles, reaffirming that 20th century warming is anoma-92

lous in comparison to the 500-year period prior to industrialization. This database, how-93

ever, features relatively few profiles in Arctic and subarctic regions, where permafrost94

is often a key feature of the landscape.95

In cold regions where permafrost is present, effective thermal diffusivity in the so-96

called “active layer”, i.e. the top layer of ground subjected to annual freezing and thaw-97

ing (Harris et al., 1988), can drop to 0.1m2 yr−1 (3.17× 10−9 m2 s−1) or lower during98

the thawing and refreezing seasons due to the effects of latent heat (D. Riseborough, 1990).99

This has two important implications for geothermal reconstructions of GST where per-100

mafrost exists: Firstly, when surface temperatures are reconstructed as annual or multi-101

annual averages, i.e. neglecting seasonal freezing and thawing, the reconstructed upper102

boundary represents the long-term average temperature at the top of the permafrost (TTOP)103

rather than that of the land surface (Lachenbruch & Marshall, 1986). Consequently, such104

reconstructions necessarily assume that the depth of the permafrost table does not change105

over the full reconstruction period since the spatial domain of the model is typically treated106

as constant. Secondly, in regions with warmer permafrost, here defined as those with mean107

annual top of permafrost temperatures ≥ −5 ◦C (Nitzbon et al., 2023), and finer grained108

soils with moderate to high silt or clay content, latent heat effects may be present even109

well below the top of the permafrost (Romanovsky & Osterkamp, 2000; Nicolsky & Ro-110

manovsky, 2018). This is due to the presence of unfrozen water in soil pores at subzero111

temperatures as a result of capillary action (Koopmans & Miller, 1966). The presence112

of such effects generally precludes the application of most existing GST reconstruction113

techniques, which typically ignore non-conductive heat transport, to borehole temper-114

ature measurements in permafrost soils (Beltrami, 1996; Mann & Schmidt, 2003; Mot-115

taghy & Rath, 2006). As a result, most studies which have applied such methods to bore-116

holes in cold regions have either neglected seasonal freezing and thawing (Kneier et al.,117

2018), selected boreholes in low porosity material such as bedrock (Isaksen et al., 2000;118

Guglielmin et al., 2018), or omitted permafrost boreholes altogether from the analysis119

(Pollack et al., 2003). There is, therefore, a general need for GST reconstruction meth-120

ods that can account for latent heat effects in frozen ground.121
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In this work, we propose a new method for inverting GST from permafrost bore-122

holes where latent heat effects play a dominant role due to both seasonal and long-term123

thawing of ground ice. Our method builds upon the thermal modeling scheme of Cryo-124

GridLite (Langer et al., 2024), which allows for efficient, high-fidelity simulation of two-125

phase heat conduction over large time scales. Similar to Hopcroft et al. (2007), we em-126

ploy a Bayesian formulation of the inverse problem that provides a probabilistic inter-127

pretation of uncertainty in the reconstructed GST histories and permits the inclusion128

of prior information where available. We adapt the Bayesian inverse modeling workflow129

of Groenke et al. (2023) to GST reconstruction in order to efficiently obtain an approx-130

imate posterior distribution over plausible GST histories. We first evaluate the method131

on synthetic datasets where the “true” surface temperature history is known and com-132

pare GST parameterizations with and without latent heat effects included. We then fur-133

ther apply our method to a real-world temperature profile from a 100m deep borehole134

on Sardakh Island in northeastern Siberia and reconstruct historical ground surface tem-135

peratures over the time period of 1750–2012.136

2 Methods137

2.1 Forward model of two-phase heat transport138

In order to recover past changes in GST from measured temperature profiles, a for-139

ward model of subsurface heat transport is required to map changes in temperature at140

the surface to the resulting ground temperature profiles. Vertical conductive heat trans-141

port in the Earth’s subsurface can be represented according to the standard form of the142

heat equation, with the upper boundary set according to surface temperature and the143

lower boundary set to an appropriate geothermal heat flux (Lachenbruch & Marshall,144

1986; Jaeger, 1965). The resulting temperature field can then be represented as devia-145

tions from the quasi-linear steady state solution:146

T (z, t) = T0 +
Qgeo

k(z)
z +∆T (z, t) (1)147

where T = T (z, t) is the temperature field (K) over depth z (m) and time t (s), T0 is148

the mean annual GST (K), Qgeo is the geothermal heat flux (Wm−2), and k(z) is the149

thermal conductivity (Wm−1 K−1) which may vary with depth. In regions where per-150

mafrost exists, latent heat effects due to the freezing and thawing of groundwater play151

a significant role in the thermal dynamics. Phase change can be accounted for by rewrit-152

ing the heat equation in terms of enthalpy (Jury & Horton, 2004) as153

∂

∂z

[
k
∂T

∂z

]
− ∂h(T )

∂t
− S = 0, (2)154

where k = k(T ) is the temperature-dependent bulk thermal conductivity of the ma-155

terial, and S = S(z, t) is a potential external heat source or sink (Wm−3). The volu-156

metric enthalpy (Jm−3) of the soil volume is then defined as157

h(T ) =

Sensible︷ ︸︸ ︷
c(T )(T − Tref)+

Latent︷ ︸︸ ︷
Lθw(T ), (3)158

where θw(T ) is the volumetric unfrozen water content (m3 m−3), L is the volumetric la-159

tent heat of fusion of water (Jm−3), c(T ) is the temperature-dependent bulk material160

heat capacity (JK−1 m−3), and Tref = 0 ◦C is the reference temperature set to the freez-161

ing point of water at standard conditions. The two additive terms on the right hand side162

are respectively referred to as sensible and latent energy. We parameterize the bulk ther-163

mal properties k(T ) and c(T ) of the soil volume as simple mixtures of four constituent164

materials, such that165

1 = θw + θi + θo + θm, (4)
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where θi = θtot−θw is volumetric ice content (m3 m−3), θo = (1−θtot)ω is volumetric166

organic content, and θm = (1−θtot)(1−ω) is volumetric mineral content. Here θtot =167

θw + θi is the total water content, and ω represents the scaled organic fraction of the168

solid material. Throughout this study, we assume saturated conditions, so θtot is taken169

to be equal to the natural porosity of the soil volume. For further details on the param-170

eterizations of the thermal properties, see Groenke et al. (2023); Langer et al. (2024).171

Note also that equations (1) to (3) assume strictly conductive heat transport without172

any internal heat sources or sinks other than those due to the phase change of water. This173

model therefore neglects both lateral heat transport as well as advection of heat due to174

groundwater flow. Boreholes which are known to be significantly affected by such pro-175

cesses are thus not suitable for inversion with this approach.176

The constitutive relation θw(T ) represents the unfrozen water content as a mono-177

tonic function of temperature. For fine-grained soils with high silt or clay content, this178

function can be highly nonlinear due to the effects of capillary action on the effective freez-179

ing point of water in the soil (Koopmans & Miller, 1966). As a result of this nonlinear-180

ity, obtaining forward solutions to Eq. (2) is generally nontrivial and requires numer-181

ical integration with time steps typically ranging from seconds to minutes for high res-182

olution discretizations of the soil volume (≤ 10 cm). To mitigate this, we follow Langer183

et al. (2024) in using the numerical scheme of Swaminathan & Voller (1992) to efficiently184

simulate two-phase heat conduction over multiple centuries. We configure the spatial do-185

main of the model to correspond to a 1000m vertical column extending below the sur-186

face of the Earth. The spatial discretization has a grid cell spacing of 10 cm in the up-187

per 2.5m of the ground, where the freeze-thaw dynamics play the largest role, which is188

then increased non-uniformly to 10m in the bottom 900m of the domain. We augment189

the numerical scheme of Langer et al. (2024) to allow for more realistic forms of θw(T )190

that can represent the freezing characteristics of common soils when seasonal freezing191

and thawing is considered. More details on the modified numerical scheme are given in192

Appendix A.193

We represent the GST in our forward model as the sum of three independent com-194

ponents as195

T (0, t) = T0 −A sin
(2π
P

(t− t0)
)
+

N∑
i=1

ψi(t)

[
τi +

τi+1 − τi
ti+1 − ti

(t− ti)

]
, (5)196

where T0 = T (0, t0) is the initial ground surface temperature (◦C) at the beginning of197

the simulation period, A is the annual amplitude (◦C) at the surface, and P = 1yr is198

the period of the seasonal cycle. In cases where the annual cycle is neglected A = 0.199

Deviations in the GST history from the initial surface temperature T0 are represented200

as a continuous piecewise linear function with knots τi covering N time segments, where201

ψi(t) correspond to boxcar functions that are zero everywhere outside of the interval [ti, ti+1).202

We follow Kneier et al. (2018) in setting the endpoints of each segment such that each203

interval spans a range of ± 1
3 t

′, where t′ is the time before the borehole measurement.204

This loosely reflects the expected loss of temporal resolution that is characteristic of dif-205

fusive heat transport (Demezhko & Shchapov, 2001). We set the minimum value of t′206

to one year since we are only interested in reconstructing GSTs beyond this time hori-207

zon.208

2.2 Borehole temperature data209

Temperature profiles T = [T (z1, t), T (z2, t), . . . , T (zN , t)] typically consist of a se-210

quence of N temperature measurements along a vertical profile perpendicular to the Earth’s211

surface. Such measurements are typically made by inserting thermistor chains into deep212

holes drilled into the Earth, often referred to as boreholes. Temperatures can then be213

measured from boreholes either as point measurements, i.e. where the temperature sen-214

sors are covered and then left to equilibrate with the subsurface temperature at the time215
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of measurement, or as temporal averages computed from a series of measurements made216

at regular (sub-daily) intervals over a longer time period, typically at least one annual217

cycle.218

In the latter case, stochastic measurement noise can generally be presumed to be219

dominated by model error, and seasonal fluctuations in the temperature signal are av-220

eraged out over the full profile. In the more common case where T is a point measure-221

ment, temperatures measured at depths above the depth of zero annual amplitude (ZAA)222

should generally be discarded for the purposes of GST reconstructions since they are af-223

fected by seasonal variations that are typically below the time scale considered in the224

inversion. Furthermore, measurement error due to the accuracy and resolution limits of225

the temperature sensor also need to be considered in such cases since fluctuations be-226

low these limits should not be allowed to affect the reconstruction. This can be accounted227

for by setting the error term equal to the sensor resolution (see section 2.3).228

In this work, we consider only the former case of temperature profiles which are229

computed as temporal averages over at least one full annual cycle. This is the case for230

both the synthetic experiments, where daily temperature profiles produced by the for-231

ward model are averaged over the final simulation year, as well as the experiment using232

data from an instrumented borehole on Sardakh Island where hourly measurements are233

available. Note, however, that our method is also readily applicable to point measure-234

ments, so long as the aforementioned considerations are taken into account.235

2.3 Bayesian inversion of ground temperatures236

Bayesian inference provides a natural framework for constraining uncertainty about237

unknown model parameters using data observed from the system under investigation (Berliner,238

2003). For GST reconstruction, we seek to obtain the posterior distribution over the un-239

known parameters φ ∈ Φ for a particular forward model M : Φ 7→ T (z, tn) given240

some observed temperature profile T over depths z at time tn241

p(φ|T,M) ∝ p(T|φ,M)p(φ|M) (6)

where p(φ|M) represents the prior distribution over model parameters φ for a given for-242

ward model M, and p(T|φ,M) = N (M(φ),ΣT ). The model parameters φ consist of243

both the unknowns in Eq. (5) (i.e. T0, A, and τ) as well as a subset of the unknown pa-244

rameters required for the heat conduction model such as the soil porosity, solid mate-245

rial thermal conductivity, and the geothermal heat flux at the lower boundary, Qgeo. It246

is important to note that, while we do not generally expect to be able to uniquely de-247

termine both the material thermal properties and the GST history simultaneously from248

a single temperature profile, including them in the posterior distribution still allows us249

to account for their associated uncertainties in the reconstructed GST histories (Wang,250

1992; Shen et al., 1995).251

Computing the GST history from Eq. (5) over samples from the posterior distri-252

bution characterizes the most plausible surface temperature reconstructions after con-253

sidering the observed temperature profile. One common problem in ground surface tem-254

perature reconstruction is enforcing smoothness in the reconstructed temperature his-255

tory (Hartmann & Rath, 2005). As noted by Hopcroft et al. (2007), the Bayesian ap-256

proach of computing averages or quantiles over the posterior distribution naturally pro-257

duces a smoother reconstruction without additional regularization or constraints. How-258

ever, we observed that neglecting temporal correlation in the prior artificially inflates the259

spread of the posterior due to the presence of unrealistically large oscillations in inde-260

pendently sampled temperature histories. To mitigate this, we place a multivariate nor-261

mal prior with Töplitz covariance structure over the temperature offsets. This corresponds262

to the covariance of a first order autoregressive process where each GST offset is assumed263
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to be correlated with the offset from the previous segment:264

τi+1 = ρτi + ε, (7)265

where ε ∼ N (0, σ2). Since we model the temperature within each segment as a linear266

ramp between τi and τi+1, it is natural to choose ρ = 1
2 based on the observation that267

the average GST within each segment is always τi+1+τi
2 . In all of our experiments, we268

set σ = 2 ◦C which translates into a prior on temperature deviations with 95% cov-269

erage over the interval −4 to 4 ◦C. Note that this does not preclude inference of values270

outside of this range but naturally requires very strong evidence to override the prior.271

The initial surface temperature T0 is assigned a Gaussian prior with mean based on his-272

torical air temperatures and variance identical to that of the τi parameters.273

For the soil parameters (i.e. porosity, mineral thermal conductivity, and organic274

content in the top layer), we use logit-normal priors centered on the values in the ini-275

tial stratigraphy with σ = 0.5; this translates into a prior uncertainty of roughly 5 to 10%276

in the constrained parameter space, although the exact deviation depends on the loca-277

tion of the parameter due to the nonlinearity introduced by the logit transform. The log-278

amplitude, log(A), is similarly assigned a Gaussian prior with σ = 0.1 which translates279

into a variance of roughly ±4 ◦C in the positive constrained space. The mean of the log-280

amplitude prior can be set for any given site based on the earliest available estimates of281

air temperature, though it’s worth noting that the true GST amplitude will generally282

be smaller than that of air temperature in cold regions due to the insulating effect of snow283

cover in the winter (Park et al., 2015). Note that the aforementioned standard devia-284

tions are defined in the transformed parameter space and are thus dimensionless.285

The posterior distribution in Eq. (6) typically has no analytical form for arbitrary286

priors p(φ) and nonlinear forward models M. As a result, numerical sampling methods287

are required in order to obtain approximate samples from the posterior. Markov Chain288

Monte Carlo (MCMC) algorithms are generally considered the gold standard of numer-289

ical sampling algorithms due to their asymptotic convergence guarantees (Gelman et al.,290

2013). The method employed by Hopcroft et al. (2007), for example, uses a “reversible291

jump” variant of MCMC that permits the sampler to vary not only the parameter val-292

ues but also the number of parameters (i.e. the number the of time points in the recon-293

struction). Such methods are tractable when the forward model has a low computational294

cost. Accurately resolving freeze-thaw dynamics in the forward model used in this work,295

however, makes this impractical at multi-century time scales due to the nonlinearities296

induced by freezing and thawing.297

To circumvent this issue, we use the Ensemble Kalman Sampling (EKS) algorithm298

of Garbuno-Inigo et al. (2020) as previously outlined by Groenke et al. (2023). EKS is299

a gradient-free method for approximate Bayesian inference that evolves an initial param-300

eter ensemble as an interactive particle system governed by Langevin dynamics. The al-301

gorithm is formulated such that the steady state distribution of the ensemble members302

corresponds to the posterior distribution in the limit of infinite iterations of the algorithm.303

Like other ensemble or particle-based sampling algorithms, EKS has the advantage of304

allowing parallel execution of the model ensemble at each iteration, thus greatly improv-305

ing efficiency over sequential sampling and optimization methods. To limit the overall306

computational cost of each experiment, we run EKS for a maximum of 20 iterations with307

ensembles of size Nens = 256. We specify the residual noise covariance as ΣT = 4δ2I308

where I is the identity matrix. We found empirically that setting δ to the minimum ab-309

solute temperature change in the observed profile generally produced good results and310

prevented overfitting for both the synthetic and measured temperature profiles.311
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a. Cold permafrost extent
MAGT at 10m < -5 C

b. Latent heat change
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Figure 1. Maps showing the prototype warm and cold locations used by the synthetic exper-
iments in this study, as well as GTN-P boreholes deeper than 50m, overlain on a map of “cold”
permafrost extent (a), here defined as areas where simulated mean annual ground temperatures
(MAGT) are below −5 ◦C at 10m depth. We calculate the spatial extent of cold permafrost, by
this definition, to be approximately 34.1% of the total area considered here.. The second panel
(b) shows total latent heat change as estimated by Nitzbon et al. (2023) for the time period
1980-2018. Higher latent heat change generally indicates more thaw.

3 Synthetic test cases312

3.1 Experiment setup313

We first evaluate our GST inversion method on synthetic test cases where the “true”314

GST history is known. In order to generate a synthetic temperature profile, we run our315

forward model over the time period 500-2010 CE forced by air temperatures at the up-316

per boundary taken from the paleoclimate reconstruction of Phipps et al. (2013) for the317

years 500-1979 and ERA-interim (ERA-I) reanalysis (Dee et al., 2011) for the more re-318

cent period of 1979-2010. The paleoclimate reconstruction is based on simulations from319

the climate system model Mk3Lv1.2. Further details regarding the forcing data are given320

by Langer et al. (2024). It is important to note that, for the purposes of this experiment,321

the historical accuracy of the air temperature forcing is not particularly important, as322

we only aim to produce a semi-realistic temperature profile and GST record that we can323

use to evaluate the inversion method.324

We consider two different synthetic test cases: one based on cold conditions (sec-325

tion 3.2) and one based on warm conditions (section 3.3). This is motivated by recent326

findings that the thermal response of cold vs. warm permafrost to climate change often327

differ substantially (Nicolsky & Romanovsky, 2018; Groenke et al., 2023) as well as by328

the hypothesis that latent heat effects will likely be more dominant in regions where per-329

mafrost has temperatures closer to 0 ◦C. We select the Lena River Delta in northeast-330

ern Siberia as the prototype for cold conditions since it lies well within the region char-331

acterized by our working definition of cold permafrost (Figure 1a). For the warm pro-332

totype, we select a region east of the James Bay in western Quebec where previous stud-333

ies indicate that significant permafrost thaw has likely occurred (Figure 1b). By this def-334

inition, roughly two-thirds of permafrost in the northern hemisphere can be considered335

“warm” which underscores the importance of correctly representing such regions in geother-336

mal climate reconstructions.337
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For each synthetic test case, we apply constant freezing and thawing degree-day338

factors (Lunardini, 1978; Groenke et al., 2023) to the air temperatures in order to roughly339

approximate the thermal offset between near-surface air temperature and GST due to340

snow, vegetation, and other factors. We initialize the forward model with a steady state341

temperature profile corresponding to a fixed initial surface temperature T0 and geother-342

mal heat flux Qgeo = 53mWm−2. We select 1700-2010 CE as the inversion period with343

the first 1200 year period (500-1700 CE) of the forward run discarded as spin-up. The344

“observed” temperature profile datasets are then produced by taking the mean annual345

ground temperature profile at ten depths ranging from 1 to 100m over the final simu-346

lation year.347

We use a simple, three-layer soil stratigraphy (Table 1) in the forward model which348

consists of a 1m thick organic rich layer (A Horizon) followed by a 19m thick medium349

porosity subsoil layer (B Horizon) and low-porosity layer representing a combined sub-350

stratum and bedrock layer (C + R Horizon) thereafter (Jahn et al., 2006). In order to351

investigate the impact of freeze-thaw dynamics on the reconstruction, we use a freezing352

characteristic curve where 27.5% of the pore water remains unfrozen at −10 ◦C. This353

is a typical freezing characteristic for soils with high silt or clay content (D. W. Risebor-354

ough, 2002; Ren & Vanapalli, 2019). While such soils are not necessarily representative355

of all the soil types actually found in the study regions considered here, they represent356

the end-member case in which we would expect freeze-thaw dynamics to be most likely357

to affect the observed temperature profiles even at temperatures well below the nomi-358

nal freezing point of water.359

For each dataset, we compare four different parameterizations of the forward model360

used in the inversion:361

1. Homogeneous soil without seasonal thaw (FW1L). The soil stratigraphy is misspec-362

ified as a homogeneous medium with all material and thermal properties invari-363

ant with depth. No seasonal cycle is applied to the upper boundary (i.e. A = 0)364

thereby excluding the active layer. The idealized “free water” freezing character-365

istic (see Appendix A) is used in place of a soil freezing characteristic. As a re-366

sult, freezing and thawing at the surface will not occur unless the mean annual367

GST exceeds the melting point Tm = 0 ◦C.368

2. Three-layer soil without seasonal thaw (FW3L). This configuration is the same as369

the FW1L but using the “true” three-layer soil stratigraphy given in Table 1.370

3. Three-layer sandy soil with seasonal thaw (SS3L). Three-layer soil stratigraphy371

with seasonal temperature variation applied to the GST. The van Genuchten pa-372

rameters (van Genuchten, 1980) governing the shape of the soil freezing charac-373

teristic curve are intentionally misspecified using typical values for a sandy soil.374

In sandy soils, freezing occurs much earlier when temperatures fall below 0 ◦C.375

4. Three-layer clay soil with seasonal thaw (CS3L). This configuration corresponds376

to the ground truth forward model with a simplified upper boundary following Eq.377

5. Note, however, that the soil parameters in each layer are still varied, so each378

sampled model realization is generally not identical to the ground truth forward379

model.380

Comparing configurations 1 (FW1L) and 2 (FW3L) allows us to quantify the impact of381

neglecting spatial heterogeneity in the soil properties while comparing configurations 3382

(SS3L) and 4 (CS3L) allows us to assess the impact of misspecifying the soil freezing char-383

acteristic. We can additionally compare configurations 2 (FW3L) and 3 (SS3L) in or-384

der to quantify the impact of excluding seasonal freeze-thaw effects.385

In each experiment, the set of model parameters considered in the inversion includes386

the initial GST T0, the geothermal heat flux Qgeo, and the 10 GST offsets at geomet-387

rically spaced intervals between 1500 and 2010 (see section 2.1). For the cases where sea-388
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Table 1. Three-layer soil stratigraphy used for the synthetic forward runs. Soil properties
are treated as homogeneous within each layer. Here θtot refers to the total water/ice content,
presumed equal to porosity (m3 m−3), ω to the organic solid fraction (m3 m−3), and km to the
thermal conductivity (Wm−1 K−1) of the mineral constituent. Uncertainties refer to the (approx-
imate) standard deviations of the prior.

Layer Depth θtot × 100 ω × 100 km

1 0.0 65± 10 30± 10 2.8± 0.5
2 1.0 35± 10 1 3.1± 0.5
3 20.0 5± 5 0 3.5± 0.5

sonal thaw is considered, the annual amplitude is also included as a parameter. In the389

homogeneous soil configuration, the porosity and mineral thermal conductivity are var-390

ied as parameters, and in the three-layer soil stratigraphy, these parameters are varied391

independently within each of the layers for a total of six additional parameters. Since392

the primary goal of these experiments is to evaluate differences in the reconstructed GST393

histories rather than recover the soil parameters, we center the parameter priors for the394

three-layer model configurations on the true values used in the forward model (Table 1)395

to avoid introducing a priori biases into the inversion.396

3.2 Cold conditions397

For the first experiment, we use a dataset generated by the forward model forced398

by air temperatures from a region in northeastern Siberia (E 127◦ N 72◦) at the edge399

of the Laptev Sea. We use freezing and thawing degree day factors of 0.7 (fairly cold,400

low to moderate snow cover) and 0.9 (minimal insulation from vegetation) respectively.401

The region lies within the continuous permafrost zone and is characterized by histori-402

cally low mean annual air temperatures (−16 ◦C for the pre-industrial period 1500-1850403

CE). As a result, mean annual ground temperatures can reach −10 ◦C or lower even at404

depths well below the active layer (Romanovsky et al., 2007). We can therefore reason-405

ably expect the presence of unfrozen water in the deeper permafrost layers, despite the406

relatively significant depression of the freezing point due to the assumed freezing char-407

acteristics of the soil. The average GST in the ground truth simulation increased by 2.4 ◦C408

over the study period (1700-2010 CE) with active layer thickness (ALT) increasing from409

roughly 40 cm to 60 cm over the same time frame.410

All four model configurations are able to produce temperature profiles which fit well411

to the synthetic temperature profile (Figure 2b) with the mean absolute error and full412

90% highest density interval < 0.05 ◦C in all cases (Table 2). We note that the poste-413

rior predicted ground temperatures from all three of the model configurations which use414

the “true” three-layer soil stratigraphy are nearly identical, whereas the homogeneous415

soil variant has larger uncertainty below 30m depth. This can be attributed to the model’s416

inability to account for heterogeneity in the soil thermal properties, thereby producing417

biases in the predicted temperature profiles. The median predicted temperature profile418

nevertheless shows good agreement. This seems to indicate that the temporal variations419

in the inverted GSTs can compensate for such biases arising from misspecification of the420

soil thermal properties. This is consistent with the findings of Shen et al. (1995) who as-421

sessed the impact of heterogeneous thermal properites on the reconstructions.422

The reconstructed GST histories for each model configuration (Figure 2a) are largely423

consistent in terms of relative warming with the exception of the second model config-424

uration (FW3L). This model infers a cooling event of roughly 0.5 ◦C for the first two postin-425

dustrial periods of 1855-1933 CE and 1933-1971 CE. This appears to be a result of the426
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Figure 2. Reconstructed ground surface temperatures for synthetic borehole data in cold con-
ditions (a) along with the corresponding predicted temperature profiles (b). The dotted black
line shows the “true” mean annual ground surface temperature history produced by running the
forward model with air temperature forcing from northeastern Siberia (E 127◦ N 72◦) while the
solid black line is its corresponding long-time average over the reconstruction intervals. The solid
colored lines correspond to the median and the shaded regions to the 90% highest density inter-
val over the posterior ensemble.

inversion algorithm reducing the mineral conductivity of the second stratigraphy layer427

to 2.0±0.3Wm−1 K−1 in order to compensate for the positive bias in bulk thermal con-428

ductivity due to the pore ice remaining frozen.429

The posterior median GSTs for the third and fourth model configurations (SS3L430

vs. CS3L) are both able to accurately recover the total warming (≈ 2.4±0.1 ◦C) since431

the pre-industrial period (1750-1855 CE). The largest deviation between the two recon-432

structions is in the mid-to-late 20th century (1933–1977 CE) where the GSTs from the433

sandy soil model are roughly 1 ◦C cooler than with the clay soil. This is similarly due434

to higher average thermal conductivity as a result of higher pore ice content, which thereby435

requires lower average GSTs to compensate.436

The first model variant (FW1L), which excludes seasonal thaw, infers a cooling pat-437

tern over the 1991-2001 CE reconstruction period. There is some evidence of such an event438

in the ground truth surface temperature which shows a slight cooling in 1998 (0.8 ◦C)439

and 1999 CE (1.1 ◦C) over the previous two year average. This could be a result of the440

1997–1999 CE El Niño/La Niña event which is known to have teleconnections to cen-441

tral and northern Siberian air temperatures (Vicente-Serrano et al., 2006). However, this442

event does not appear to have had a significant impact on the long-term average at the443

time scale of the reconstruction (see the solid black line in Figure 2a); thus the SS3L and444

CS3L reconstructions are still arguably more faithful to the true long-term average GST.445

Both of the models which exclude seasonal thaw, thereby neglecting latent heat ef-446

fects, produce GSTs with a cold bias of −1.3±0.2 ◦C compared to biases of −0.5±0.2 ◦C447

and 0.1±0.4 ◦C in the sand and clay models, respectively (Table 2). This can be at least448

partially explained by the thermal offset in mean annual ground temperatures typically449

observed in the active layer. We note again that, when the active layer is neglected in450
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Table 2. Summary statistics for evaluating the inversion produced by each model configuration
under cold vs. warm conditions: ground surface temperature reconstruction bias, mean absolute
error in the predicted temperature profiles, and Pearson correlation with the true (averaged)
ground surface temperature history. Uncertainties correspond to the standard deviation over the
posterior ensemble (N = 256).

Model Cold Warm
Rec. bias (◦C) Pred. MAE (◦C) Corr. Rec. bias (◦C) Pred. MAE (◦C) Corr.

FW1L −1.34± 0.18 0.02± 0.01 0.79± 0.17 −2.59± 0.26 0.04± 0.01 0.71± 0.15
FW3L −1.26± 0.15 0.01± 0.0 0.72± 0.23 −2.27± 0.23 0.06± 0.01 0.67± 0.14
SS3L −0.24± 0.28 0.02± 0.03 0.83± 0.14 −0.93± 0.52 0.04± 0.02 0.84± 0.1
CS3L 0.22± 0.43 0.02± 0.01 0.85± 0.11 −0.34± 0.5 0.05± 0.02 0.94± 0.05
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Figure 3. Reconstructed ground surface temperatures for synthetic borehole data in warm
conditions (a) along with the corresponding predicted temperature profiles (b). The dotted black
line shows the “true” mean annual ground surface temperature history produced by running the
forward model with air temperature forcing from western Quebec, east of the James Bay (W
77◦ N 53◦). The solid colored lines correspond to the median and the shaded regions to the 90%
highest density interval over the posterior ensemble.

the model, its thermal offset is not present, and the reconstructed GSTs effectively rep-451

resent the temperature at the top of the permafrost (Lachenbruch & Marshall, 1986).452

3.3 Warm conditions453

For this experiment, we use air temperatures from western Quebec, east of the James454

Bay (W 77◦ N 53◦) to force the forward model. The region lies outside of the contin-455

uous permafrost zone and is characterized by historical mean annual air temperatures456

of −6 ◦C for the pre-industrial time period of 1500-1850. The average GST in the ground457

truth simulation increased by 4.9 ◦C over the study period (1700-2010 CE) with ALT458

increasing substantially from 80 cm to 350 cm over the same time frame.459

We find that the inversion method is again able to produce temperature profiles460

that are in good agreement with the simulated observations (Figure 3b) with the mean461

absolute prediction error < 0.1 ◦C for all four model configurations (Table 2). We note,462
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however, that unlike in the cold experiment, the two soil models which incorporate sea-463

sonal freeze-thaw have a larger spread in the predicted temperature profiles. This is likely464

due to the sensitivity of two-phase heat transport to uncertainty in soil parameters such465

as porosity, which directly determines the amount of water/ice which undergoes freez-466

ing and thawing. This is the case for all subzero temperatures, but the effects are stronger467

at temperatures closer to the freezing point of water, where the constitutive relation be-468

tween temperature and unfrozen water content becomes increasingly nonlinear.469

Like in the cold experiment, the reconstructed GSTs for both model configurations470

which neglect phase change (FW1L and FW3L) have significant cold biases (−2.6±0.2 ◦C471

and −2.3±0.2 ◦C respectively) when averaged over the study period (Figure 3a and Ta-472

ble 2). Since we use the same ground truth stratigraphy setup in both experiments, we473

can infer that the larger magnitude of the bias in this case can only be explained by the474

deeper active layer, which naturally results in a larger offset between the ground surface475

and the top of the permafrost. As permafrost thaws and the active layer deepens, this476

offset becomes larger, which may explain the minimal change in the early 20th century477

GSTs from both of these model configurations (Figure 3). In contrast, the inversion for478

the clay soil model (CS3L) accurately recovers the warming trend over both the 19th and479

20th centuries, though there is still a slight cold bias of −0.3±0.5 ◦C which may be due480

to short-term warming events in the forcing data that are below the time scale resolv-481

able by the GST parameterization.482

All four models consistently reproduce the warming trend of the late 20th century,483

though the models excluding seasonal thaw (FW1L and FW3L) tend to slightly over-484

estimate the rate of warming. Both of these models also infer a large jump (> 3 ◦C) in485

the GST for the most recent two time periods in order to fit the uppermost depths in486

the temperature profile at 1m and 2m. This is because the mean annual ground tem-487

peratures at these depths are significantly higher due to being in the active layer at the488

end of the study period. Since both of these model configurations do not include sea-489

sonal thaw, they are not able to represent the active layer, and thus the only way to fit490

these points is by dramatically increasing the GST in the most recent years. This effect491

could be mitigated by simply removing these points from the inversion and setting the492

upper boundary of the soil domain to a depth that is assumed to be well below the ac-493

tive layer throughout the study period. However, this requires ALT for the site or re-494

gion to be known a priori and precludes direct comparison with other GST records from495

observations or land surface models that are able to represent freezing and thawing of496

the active layer.497

4 Inversion of borehole data from Sardakh Island498

We additionally evaluate our method on real-world borehole data from a 100m bore-499

hole on Sardakh Island which was drilled in 2009 (Kneier et al., 2018). Sardakh Island500

lies in the southern part of the Lena River Delta in northeastern Siberia and is charac-501

terized by very long and cold winters with temperatures reaching −45 ◦C and below. The502

site lies within the region covered by the forcing data described in section 3.2 and thus503

can be assumed to have likely experienced similar pre-industrial mean annual air tem-504

peratures of roughly −16 ◦C. Recent analyses of air temperatures at the nearby Samoylov505

Island station (Boike et al., 2019), which lies roughly 50 km southwest of Sardakh, show506

significant warming of at least 0.1Kyr−1 over the last two decades with recent mean an-507

nual air temperatures ranging from −12 to −8 ◦C (Groenke et al., 2023).508

We use the same underlying dataset and stratigraphy information for the site as509

published previously by Kneier et al. (2018). We select, however, the slightly more re-510

cent time frame of 2011–2012 instead of 2010–2011 due to the data record having fewer511

gaps after cleaning and quality control. We discard temperature measurements above512

1m depth since these are likely to be affected by land surface processes that our model513
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Figure 4. Reconstructed ground surface temperatures from the 100m borehole on Sardakh
Island (a) along with the corresponding predicted temperature profiles (b) both including and
excluding seasonal temperature variations at the surface. The dashed blue line in panel (a) repre-
sents the air temperature forcing of Langer et al. (2024) for the region (see section 3.2) over the
full study period; the corresponding solid blue line shows the same data averaged over the recon-
struction intervals. The green crosses show annual average air temperatures measured from the
nearby NOAA meteorological station at Tiksi with the solid line showing half-decadal averages.
The black dots in panel (b) are mean annual ground temperatures at each depth for the period
2011-10-1 to 2012-10-1. The dashed line shows the upper part of the temperature profile used to
initialize the forward model in the year 1600 CE.

cannot resolve. We also use a condensed, eight-layer version of the soil stratigraphy (Ta-514

ble B1) that includes a half meter thick organic layer at the top of the soil profile. Like515

in the synthetic experiments, we allow the porosity and mineral thermal conductivity516

to vary as parameters in each of these layers.517

The reconstructed GST histories and predicted temperature profiles, both includ-518

ing (purple) and excluding (orange) seasonal freezing and thawing, are shown in Figure519

4. The inversions from both model configurations indicate substantial warming of 5 to520

9 ◦C over the last two centuries. Furthermore, consistent with the results shown in sec-521

tions 3.2 and 3.3, the model variant excluding freezing and thawing at the upper bound-522

ary generally underestimates GSTs due to the thermal offset of the active layer. In this523

case, this offset does not appear to be entirely constant over the 160 year time period.524

This may be in part due, however, to the deepest temperature measurement at 100m525

depth which appears unusually cold in comparison to the geothermal gradient. This is526

discussed further in Appendix B.527

Both variants also indicate a cooling period during the latter half of the 20th cen-528

tury though they disagree about the timing and magnitude of this cooling. The first re-529

construction excluding seasonal thaw (Figure 4a) suggests that GSTs initially peaked around530

1950 before cooling by roughly 1.5 ◦C by the end of century. The second reconstruction531

that includes seasonal thaw indicates the onset of cooling to have started in the mid-1970s.532

Observed air temperatures from the nearby NOAA station at Tiksi appear to suggest533

that this cooling may have started even later (early to mid 1980s), though there are two534

unusually cold years (below −16 ◦C) in the two decades prior (1966 and 1979). This dis-535

crepancy could be due to the fact that the reconstructions are limited in their capacity536

to resolve the timing of past changes by the fixed time intervals. The half-decadal av-537
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eraged air temperatures at Tiksi show a decrease of roughly 1 ◦C from 1986 to 1995 which538

is consistent with the reconstruction that includes seasonal thaw. This timing is also roughly539

consistent with previous reconstructions from the same borehole (Kneier et al., 2018).540

Ice core reconstructions from the Russian high Arctic have also indicated similar 20th541

century cooling, though the timing varies across samples (Fritzsche et al., 2005; Opel et542

al., 2013).543

The reanalysis air temperature record for the region shown by the blue line in Fig-544

ure 2a (Langer et al., 2024) also largely agrees with the timing of the cooling indicated545

in the second reconstruction, although the long-term average (solid line) suggests a smaller546

magnitude of roughly 0.2 ◦C. The model variant excluding seasonal thaw is able to re-547

solve the short-term temperature fluctuation during the mid 2000s seen in the reanal-548

ysis air temperature record, while the model variant including seasonal thaw does not.549

This may be due to the freezing and thawing of the active layer effectively damping out550

this fluctuation in the forward model, reducing the apparent effect size of these GSTs551

in the inversion. This hypothesis is further supported by the observation that the first552

model variant without seasonal thaw accurately predicts the ground temperature at 30m553

depth while the second model variant with seasonal thaw has a warm bias of roughly 0.05 ◦C554

which may be due to this cooling event not being resolved.555

5 Discussion556

Both our synthetic and real-world test cases demonstrate that latent heat effects557

have a significant impact on the inverted GSTs due to the impacts of freezing and thaw-558

ing on the thermal dynamics of the soil. This is especially the case in warmer regions559

where permafrost temperatures are higher than −5 ◦C and ALT varies significantly over560

time. However, our results also indicate that, under cold conditions where ALT remains561

relatively stable, the impact of seasonal freeze-thaw on GST reconstructions is limited562

primarily to a quasi-constant shift due to the thermal offset of the active layer. Long-563

term warming at the surface may also be underestimated when neglecting the active layer564

since energy being consumed as latent heat is not accounted for. Under such conditions,565

classical inversion methods that neglect latent heat effects could still be used so long as566

the inverted upper boundary temperatures are carefully interpreted as TTOP and are567

not directly compared to measured or simulated ground temperatures within or above568

the active layer. Latent heat effects can also generally be ignored in boreholes where the569

porosity of the solid material is lower than 5% (Mottaghy & Rath, 2006). However, in570

the more common high porosity permafrost soils where the active layer is likely to play571

a significant role, existing methods that ignore seasonal thawing of the active layer should572

not be used, as they will produce physically incoherent inversions due to the non-stationary573

position of the upper boundary (i.e. the permafrost table). Our method provides a vi-574

able solution to this problem by directly accounting for the seasonal freezing and thaw-575

ing of the active layer in the forward model and representation of the GST, thus mak-576

ing it more suitable for boreholes in frozen soils. We note also that our approach has the577

advantage of being broadly applicable to arbitrarily complex forward models of heat (and578

potentially water) flow, so long as the numerical scheme allows for large enough time steps579

to make simulations on time scales of centuries to millennia feasible within a given com-580

putational budget.581

Despite the advantages of our proposed method, there are some important caveats582

to consider. Firstly, the EKS algorithm that we use for inference is still relatively costly,583

requiring a total of 5120 forward model evaluations over the full inversion period (310584

years for the synthetic experiment); i.e. 20 iterations of an ensemble of size Nens = 256.585

Even with the (relatively) efficient forward model which required 5-10 minutes of wall-586

clock execution time per forward model evaluation, this translated into each iteration587

taking roughly 20-30 minutes on a compute cluster with a 64-core AMD EPYC 7742 pro-588

cessor (256 vCPUs) and 1 TB of memory. Thus, reconstructions spanning multiple mil-589
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lennia may be prohibitively expensive depending on available compute resources. Future590

work might therefore consider alternative inference algorithms that employ emulators591

or reduced-order models to reduce this cost, e.g. the “calibrate, emulate, sample” method592

of Cleary et al. (2021).593

Secondly, our formulation of the GST currently assumes the annual amplitude to594

remain fixed over the full inversion period. This is a significant source of potential un-595

certainty since there is ample reason to believe that winter warming has been stronger596

than summer warming in many Arctic regions (Meyer et al., 2015; Rantanen et al., 2022).597

While it is theoretically possible within our framework to parameterize the GST ampli-598

tude as a time-varying function in addition to the long-term mean, this would greatly599

increase both the size and the complexity of the resulting inverse problem. As such, we600

consider the constant amplitude assumption to be a reasonable first order approxima-601

tion.602

Thirdly, our approach uses a fixed length parameterization of the GST function;603

i.e. we do not consider the impacts of varying the size and number of time segments in604

the reconstruction. This constitutes a significant source of unquantified uncertainty since605

the timing of each change point has a substantial impact on the observed temperature606

profile. One possible improvement could be to combine our forward thermal model of607

permafrost with the reversible-jump Markov Chain Monte Carlo (RJ-MCMC) approach608

of Hopcroft et al. (2007). There are significant computational challenges in doing so, how-609

ever, since such algorithms tend to require tens of thousands of (sequential) iterations610

to converge, which is prohibitively difficult given the much higher resolution of our for-611

ward model.612

Another natural continuation of this work would be to apply our method to a cir-613

cumpolar or global dataset such as the GTN-P (Biskaborn et al., 2015) or the Xibalbá614

database (Cuesta-Valero et al., 2022). This would enable larger scale GST reconstruc-615

tions across the cryosphere. However, deep boreholes, here defined as those that extend616

to depths of at least 50m below the surface, are relatively rare in Arctic and subarctic617

regions. This is especially the case in many of the warmer areas where permafrost is likely618

to be rapidly thawing (see Figure 1b). Boreholes with accessible temperature records span-619

ning both the active and deeper permafrost layers, as well as metadata describing the620

soil properties, are unfortunately even rarer. Furthermore, despite the development of621

borehole metadata networks such as GTN-P, ground temperature data from existing bore-622

holes are generally not readily accessible at a global scale.623

There is, therefore, an urgent need for a global campaign to install additional deep624

boreholes in regions where limited historical climate data are available as well as for an625

improved global database of temperature profiles from permafrost boreholes. Novel re-626

construction methods such as ours significantly increase the value of such efforts since,627

in addition to providing information about the present and future thermal state of per-628

mafrost, these data can also provide valuable information about historical climate change629

predating available observational records. For the time being, however, significant chal-630

lenges remain in conducting a robust, global scale reconstruction of historical GSTs in631

permafrost regions from borehole temperature measurements.632

6 Conclusions633

In this work, we presented a novel method for reconstructing historical ground sur-634

face temperatures (GST) from permafrost boreholes using Bayesian inversion of a fast635

numerical model of two-phase heat transport in permafrost soils. There are two key in-636

novations in our work: Firstly, this is the first study to systematically analyze the im-637

pact of seasonal freezing and thawing on GST reconstructions in both cold and warm638

permafrost environments. Secondly, our proposed method is, to the best of our knowl-639
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edge, the first method for geothermal climate reconstruction that is widely applicable640

to boreholes in regions underlain by permafrost. We demonstrated through experiments641

with both synthetic and real-world data that latent heat effects due to seasonal thaw-642

ing and refreezing of the active layer can have a substantial impact on the reconstructed643

GST histories, especially in warmer regions where permafrost is most likely to be thaw-644

ing. This implies that such effects should not be ignored in studies which aim to recon-645

struct surface temperatures from boreholes in regions where permafrost currently is or646

previously was present. Our work highlights the need for further collection and aggre-647

gation of borehole data in cold regions in order to facilitate such reconstructions and im-648

prove our understanding of the past, present, and future evolution of permafrost.649

Appendix A Numerical details of the forward model650

The permafrost thermal modeling approach of Langer et al. (2024) is based on the651

numerical scheme of Swaminathan & Voller (1992). This approach solves the discretized652

partial differential equation using a first-order, backwards Euler time stepping scheme653

where the energy state at each time step is solved iteratively:654

hj+1
i = hji +

∂h

∂T j
i

[
T j+1
i − h−1(hji )

]
(A1)655

where j and i refer to the iteration and discretized grid cell indices respectively. The ini-656

tial iteration h0i is set to the energy state from the previous time step. The temperature657

field at each iteration is solved by linearizing the diffusion equation (2) at the next time658

point t and solving the linear system for Tj+1:659

ATj+1 − ∂h

∂Tj

Tj+1 −Tj

∆t
− h(Tj)− h0

∆t
− b = 0 (A2)660

where Tj is the discretized temperature state vector at iteration j, A is the tridiagonal661

diffusion matrix, h0 is the previous energy state, ∆t = 24hr is the time step size, and662

b is a forcing term appropriately augmented with the corresponding Dirichlet or Neu-663

mann boundary conditions at the current time step.664

Key to this approach is the invertible enthalpy-temperature relation, h(Ti), which665

corresponds to the general enthalpy function given by Eq. (3). For simplicity, Langer666

et al. (2024) use the so-called “free water” freezing characteristic which defines the un-667

frozen water content θw in terms of enthalpy:668

θw(hi) =


θtot
i hi > Lθtot

i
hi

L 0 ≤ hi ≤ Lθtot
i

0 hi < 0

(A3)669

where θtot
i is the total volumetric water and ice content of the i’th soil volume, typically670

equal to the porosity under saturated conditions. Temperature is then correspondingly671

determined according to the inverse enthalpy relation:672

h−1(hi) =


(hi−Lθtot

i )
Ci

hi > Lθtot
i

0 0 ≤ hi ≤ Lθtot
i

hi

Ci
hi < 0

(A4)673

where Ci = C(θi) is the volumetric heat capacity at grid cell i, and here θi = θw(hi)674

as defined above. The free water freezing characteristic corresponds to the idealized case675

of phase change in pure water. We also use this formulation in the model variants which676

exclude seasonal thaw.677
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Table B1. Soil stratigraphy used for the Sardakh Island borehole inversion. Soil parameters
are assumed to be homogeneous within each layer. Here θtot refers to the total water/ice content,
presumed equal to porosity (m3 m−3), ω to the organic solid fraction, and km to the thermal
conductivity (Wm−1 K−1) of the mineral constituent. Uncertainties refer to the (approximate)
standard deviations of the prior.

Layer Depth [m] θtot × 100 ω × 100 km

1 0.0 80± 10 25± 10 2.5± 0.5
2 0.5 50± 10 1 2.5± 0.5
3 9.0 20± 10 0 2.5± 0.5
4 13.0 10± 5 0 3.0± 0.5
5 18.0 20± 10 0 2.5± 0.5
6 30.0 5± 5 0 2.5± 0.5
7 50.0 5± 5 0 1.0± 0.5
8 80.0 10± 5 0 2.5± 0.5

As discussed in section 2.1, realistic representations of the freezing and thawing of678

water in porous media such as soils are complicated by the presence of capillary action679

which effectively lowers the freezing point of water in the soil pores. In order to account680

for these effects in the implicit integration scheme described above, it is necessary to de-681

fine an inverse function for Eq. (3). While no analytical inverse function is generally avail-682

able, temperature can be recovered by solving a nonlinear system for Ti in the i’th grid683

cell:684
hi − Lθw(Ti)

Ci
− Ti = 0 (A5)

where Ci = C(Ti) is the temperature dependent volumetric heat capacity. For com-685

putational efficiency, we pre-calculate this inverse function over a large temperature range686

(−50 to 0 ◦C) within each stratigraphy layer using an adaptive linear interpolation scheme687

with an error tolerance of 10−4 or 0.01%. In order to ensure good convergence of the688

iterative scheme (A1), we found it necessary to reduce the integration time step ∆t to689

12 hr.690

Our scheme is generally agnostic to the choice of freezing characteristic, θw(T ), so691

long as the resulting enthalpy-temperature relation is monotonic and has a unique so-692

lution for any given energy state. For the synthetic experiments, we use the freezing char-693

acteristic described by Painter & Karra (2014) with van Genuchten (van Genuchten, 1980)694

parameters α = 1 and n = 2 for the prototypical sandy soil case and α = 0.02 and695

n = 1.4 for the clay soil case. For the Sardakh Island borehole, in order to be consis-696

tent with the previous analysis of Kneier et al. (2018), we use instead the empirical func-697

tion derived by Langer et al. (2011) for a nearby site on Samoylov Island.698

Appendix B Additional details for Sardakh Island inversion699

The soil stratigraphy used for the Sardakh Island borehole inversion is given in Ta-700

ble B1. We derived this stratigraphy manually based on the details provided in the sup-701

plement of Kneier et al. (2018) regarding the Sardakh Island borehole. The eight lay-702

ers correspond roughly to the lithology of the region, and the specific values for the soil703

parameters in each layer are taken from the inversion results published in the same work.704

The posterior densities of the porosity and thermal conductivity parameters in each705

layer are shown in Figure B1. There is relatively minimal deviation from the priors ex-706

cept in the porosity of the top organic layer which is poorly constrained given that we707

do not include temperature measurements above 1m. There are some slight deviations708
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Figure B1. Posterior densities for the porosity and thermal conductivity parameters in each
stratigraphy layer. The top (orange) density in each layer corresponds to the model without
seasonal thaw, while the bottom (purple) density corresponds to the model with seasonal thaw
included.

between the two model variants, e.g. in the thermal conductivities of layers 3-5. The pos-709

terior densities for the variant with seasonal thaw appear to have shifted (increasing in710

layer 3 and decreasing in layer 4) which is likely to compensate for the impacts of freez-711

ing and thawing on the thermal properties of the upper layers. In the bottom-most layer,712

the posterior density for the first model variant (excluding seasonal thaw) indicates a713

higher thermal conductivity which would result in a smaller geothermal gradient. This714

is consistent with the smaller bias in the predicted temperature profiles shown in Fig-715

ure 4b. The reason for the decrease in the posterior estimate of this conductivity for the716

model variant with seasonal thaw is, however, less clear. It could be that this is a com-717

pensating effect for the model having a slight cold bias at the 80m sensor, or it may sim-718

ply be an artifact of the sampling method failing to adequately adjust these parameters.719

The inclusion of the annual signal increases the difficulty of the optimization problem720

since it adds an additional parameter (i.e. the seasonal amplitude) and makes the re-721

sponse of the near-surface ground temperatures to the GST signal more nonlinear.722

Appendix C Open Research723

The data and code repository used to generate the results in this work is available724

on Zenodo (Groenke, Langer, et al., 2024). The code for the forward model, CryoGrid.jl,725

is available as open source software on both GitHub and Zenodo (Groenke, Nitzbon, &726

Langer, 2024). The historical air temperature forcing data used in the synthetic exper-727

iments can be downloaded from Zenodo (Langer et al., 2022a). The model outputs from728

Nitzbon et al. (2023) and Langer et al. (2024) used in Figure 1 are also available on Zen-729

odo (Langer et al., 2022b). Air temperature data from Tiksi can be obtained directly730

from the NOAA Climate Data Center (NOAA National Centers of Environmental In-731

formation, 1999).732
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