References

1. Moore WC, Meyers DA, Wenzel SE, et al. Identification of Asthma Phenotypes Using Cluster Analysis in the Severe Asthma Research Program.American journal of respiratory and critical care medicine . 2010 2010;181(4):315-323.
2. Haldar P, Pavord ID, Shaw DE, et al. Cluster Analysis and Clinical Asthma Phenotypes. American journal of respiratory and critical care medicine . 2008;178(3):218-224. doi:10.1164/rccm.200711-1754oc
3. Wu W, Bleecker E, Moore W, et al. Unsupervised phenotyping of Severe Asthma Research Program participants using expanded lung data.Journal of Allergy and Clinical Immunology . 2014 2014;133(5):1280-1288.
4. Weatherall M, Travers J, Shirtcliffe P, et al. Distinct clinical phenotypes of airways disease defined by cluster analysis.European Respiratory Journal . 2009;34(4):812-818.
5. Prosperi MC, Sahiner UM, Belgrave D, et al. Challenges in identifying asthma subgroups using unsupervised statistical learning techniques.American journal of respiratory and critical care medicine . 2013;188(11):1303-1312.
6. Khanam UA, Gao Z, Adamko D, et al. A scoping review of asthma and machine learning. Journal of Asthma . 2023;60(2):213-226. doi:10.1080/02770903.2022.2043364
7. Deliu M, Yavuz TS, Sperrin M, et al. Features of asthma which provide meaningful insights for understanding the disease heterogeneity.Clin Exp Allergy . Jan 2018;48(1):39-47. doi:10.1111/cea.13014
8. Global initative for asthma. Global Strategy For Asthma Management And Prevention, 2022. 1/6/2023, 2023. https://ginasthma.org/
9. Nwaru BI, Ekerljung L, Rådinger M, et al. Cohort profile: the West Sweden Asthma Study (WSAS): a multidisciplinary population-based longitudinal study of asthma, allergy and respiratory conditions in adults. BMJ open . 2019;9(6):e027808-e027808. doi:10.1136/bmjopen-2018-027808
10. Stekhoven DJ, Bühlmann P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics . 2012;28(1):112-118. doi:10.1093/bioinformatics/btr597
11. Hong S, Lynn HS. Accuracy of random-forest-based imputation of missing data in the presence of non-normality, non-linearity, and interaction. BMC Medical Research Methodology . 2020;20(1)doi:10.1186/s12874-020-01080-1
12. Wilson S. miceRanger: Multiple Imputation by Chained Equations with Random Forests. https://CRAN.R-project.org/package=miceRanger
13. Xie J, Girshick R, Farhadi A. Unsupervised deep embedding for clustering analysis. PMLR; 2016:478-487.
14. Charrad M, Ghazzali N, Boiteau V, Niknafs A. NbClust: an R package for determining the relevant number of clusters in a data set.Journal of statistical software . 2014;61:1-36.
15. John CR, Watson D, Russ D, et al. M3C: Monte Carlo reference-based consensus clustering. Sci Rep . 2020;10(1)doi:10.1038/s41598-020-58766-1
16. John CR, Watson D, Russ D, et al. M3C: Monte Carlo reference-based consensus clustering. Sci Rep . 2020;10(1):1816.
17. Prosperi MCF, Sahiner UM, Belgrave D, et al. Challenges in Identifying Asthma Subgroups Using Unsupervised Statistical Learning Techniques. Article. American journal of respiratory and critical care medicine . Dec 2013;188(11):1303-1312. doi:10.1164/rccm.201304-0694OC
18. Weatherall M, Shirtcliffe P, Travers J, Beasley R. Use of cluster analysis to define COPD phenotypes. Editorial Material. European Respiratory Journal . Sep 2010;36(3):472-474. doi:10.1183/09031936.00035210
19. Weatherall M, Travers J, Shirtcliffe PM, et al. Distinct clinical phenotypes of airways disease defined by cluster analysis. Article.European Respiratory Journal . Oct 2009;34(4):812-818. doi:10.1183/09031936.00174408
20. Bochenek G, Kuschill-Dziurda J, Szafraniec K, Plutecka H, Szczeklik A, Nizankowska-Mogilnicka E. Certain subphenotypes of aspirin-exacerbated respiratory disease distinguished by latent class analysis. Journal of Allergy and Clinical Immunology . 2014 2014;133(1):98-103.
21. Jeong A, Imboden M, Hansen S, et al. Heterogeneity of obesity-asthma association disentangled by latent class analysis, the SAPALDIA cohort.Respiratory medicine . 2017 2017;125:25-32.
22. Kaneko Y, Masuko H, Sakamoto T, et al. Asthma phenotypes in japanese adults - their associations with the CCL5 and ADRB2 genotypes.Allergology International . 2013 2013;62(1):113-121.
23. Kim MA, Shin SW, Park JS, et al. Clinical characteristics of exacerbation-prone adult asthmatics identified by cluster analysis.Allergy, Asthma and Immunology Research . 2017 2017;9(6):483-490.
24. Nadif R, Febrissy M, Andrianjafimasy M, et al. Adult asthma phenotypes identified by a cluster analysis on clinical and biological characteristics. European Respiratory Journal . 2018 2018;52:2.
25. Sakagami T, Hasegawa T, Koya T, et al. Identification Of Clinical Asthma Phenotypes By Using Cluster Analysis With Simple Measurable Variables In Japanese Population. American journal of respiratory and critical care medicine . 2011 2011;183:1.
26. Loureiro CC, Sa-Couto P, Todo-Bom A, Bousquet J. Cluster analysis in phenotyping a Portuguese population. Revista Portuguesa de Pneumologia (English Edition) . 2015 2015;21(6):299-306.
27. Nadif R, Febrissy M, Andrianjafimasy MV, et al. Endotypes identified by cluster analysis in asthmatics and non-asthmatics and their clinical characteristics at follow-up: the case-control EGEA study. BMJ open respiratory research . 2020;7(1):e000632.
28. Nagasaki T, Matsumoto H, Kanemitsu Y, et al. Integrating longitudinal information on pulmonary function and inflammation using asthma phenotypes. Journal of Allergy and Clinical Immunology . 2014 2014;133(5):1474-U406.
29. Tay TR, Choo XN, Yii A, et al. Asthma phenotypes in a multi-ethnic Asian cohort. Respiratory medicine . 2019 2019;157:42-48.
30. Wang L, Liang R, Zhou T, et al. Identification and validation of asthma phenotypes in Chinese population using cluster analysis.Annals of Allergy Asthma & Immunology . 2017 2017;119(4):324-332.
31. Seino Y, Hasegawa T, Koya T, et al. A Cluster Analysis of Bronchial Asthma Patients with Depressive Symptoms. Internal Medicine . 2018 2018;57(14):1967-1975.
32. Ilmarinen P, Tuomisto LE, Niemela O, Tommola M, Haanpaa J, Kankaanranta H. Cluster Analysis on Longitudinal Data of Patients with Adult-Onset Asthma. Journal of Allergy and Clinical Immunology-in Practice . 2017 2017;5(4):967-78.
33. Hsiao HP, Lin MC, Wu CC, Wang CC, Wang TN. Sex-Specific Asthma Phenotypes, Inflammatory Patterns, and Asthma Control in a Cluster Analysis. Journal of Allergy and Clinical Immunology-in Practice . 2019 2019;7(2):556-67.
34. Kim JH, Chang HS, Shin SW, Baek DG, Son JH, Park CS, Park JS. Lung function trajectory types in never-smoking adults with asthma: Clinical features and inflammatory patterns. Allergy, Asthma and Immunology Research . 2018 2018;10(6):614-627.
35. Watanabe S, Koya T, Hasegawa T, et al. Cluster Analysis Of Uncontrolled Asthma In Japanese Population. American journal of respiratory and critical care medicine . 2016 2016;193:1.
36. Dudchenko LS, Savchenko VM. Cluster analysis classification of asthmatic pathologic manifestations during stay at the resort.Tuberculosis and Lung Diseases . 2018 2018;96(2):16-21.
37. Boudier A, Curjuric I, Basagana X, et al. Ten-Year Follow-up of Cluster-based Asthma Phenotypes in Adults A Pooled Analysis of Three Cohorts. American journal of respiratory and critical care medicine . 2013 2013;188(5):550-560.
38. Liang ZY, Liu LY, Zhao HJ, et al. A Systemic Inflammatory Endotype of Asthma With More Severe Disease Identified by Unbiased Clustering of the Serum Cytokine Profile. Medicine . 2016 2016;95(25):7.
39. Loza MJ, Djukanovic R, Chung KF, et al. Validated and longitudinally stable asthma phenotypes based on cluster analysis of the ADEPT study.Respiratory Research . 2016 2016;17:21.
40. Kim TB, Jang AS, Kwon HS, et al. Identification of asthma clusters in two independent Korean adult asthma cohorts. European Respiratory Journal . 2013 2013;41(6):1308-1314.
41. Makikyro EMS, Jaakkola MS, Jaakkola JJK. Subtypes of asthma based on asthma control and severity: a latent class analysis. Respiratory Research . 2017 2017;18:11.
42. Zaihra T, Walsh CJ, Ahmed S, et al. Phenotyping of difficult asthma using longitudinal physiological and biomarker measurements reveals significant differences in stability between clusters. BMC Pulm Med . 2016 2016;16:8.
43. De Vries R, Dagelet YWF, Spoor P, et al. Clinical and inflammatory phenotyping by breathomics in chronic airway diseases irrespective of the diagnostic label. European Respiratory Journal . 2018 2018;51(1):10.
44. Fingleton J, Huang KW, Weatherall M, et al. Phenotypes of symptomatic airways disease in China and New Zealand. European Respiratory Journal . 2017 2017;50(6):10.
45. Rootmensen G, van Keimpema A, Zwinderman A, Sterk P. Clinical phenotypes of obstructive airway diseases in an outpatient population.Journal of Asthma . 2016 2016;53(10):1026-1032.
46. Zein JG, Erzurum SC. Asthma is Different in Women. Current Allergy and Asthma Reports . 2015;15(6)doi:10.1007/s11882-015-0528-y
47. Koike F, Otani Y, Oyama S, et al. Cluster analysis of cough variant asthma using exhaled value of forced oscillation technique.European Respiratory Journal . 2018 2018;52:3.
48. Amin K. Relationship between inflammatory cells and structural changes in the lungs of asymptomatic and never smokers: a biopsy study.Thorax . 2003;58(2):135-142. doi:10.1136/thorax.58.2.135
49. Honkamäki J, Piirilä P, Hisinger-Mölkänen H, et al. Asthma Remission by Age at Diagnosis and Gender in a Population-Based Study. The Journal of Allergy and Clinical Immunology: In Practice . 2021;9(5):1950-1959.e4. doi:10.1016/j.jaip.2020.12.015